{“l
The Universily ol' N

Building Models

Ed Angel

Professor of Computer Science,
Electrical and Computer
Engineering, and Media Arts

University of New Mexico

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~ P Objectives

Umversily ol New Mexico

* Introduce simple data structures for
building polygonal models
- Vertex lists
- Edge lists

* OpenGL vertex arrays

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

* There are 8 nodes and 12 edges
- 3 Interior polygons
- 6 interior (shared) edges
* Each vertex has a location v. = (x. y. z))

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~&" Simple Representation

mversily ol New Mexico

» Define each polygon by the geometric locations of its
vertices

» Leads to OpenGL code such as

glBegin (GL POLYGON) ;
glVertex3f (x1, x1, x1);
glVertex3f (x6, y6, z6);
glVertex3f (x8, y8, z8);
glVertex3f (x7, y7, z7);

glEnd() ;
 |nefficient and unstructured

- Consider moving a vertex to a new location
- Must search for all occurrences

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

a Inward and Outward
S Facing Polygons

* The order {v,, v, v, v,} and {v, v¢, v, v} are
equivalent in that the same polygon will be rendered
by OpenGL but the order {v,, v,, vq, v} is different

 The first two describe outwardly T

facing polygons M

» Use the right-hand rule = / | £\

counter-clockwise encirclement / 7
T i 2

of outward-pointing normal 1 |

* OpenGL can treat inward and

outward facing polygons differently 0

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~#" Geometry vs Topology

* Generally it is a good idea to look for data
structures that separate the geometry
from the topology

- Geometry: locations of the vertices

- Topology: organization of the vertices and
edges

- Example: a polygon is an ordered list of vertices
with an edge connecting successive pairs of
vertices and the last to the first

- Topology holds even if geometry changes

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~] v Vertex Lists

* Put the geometry in an array

» Use pointers from the vertices into this array
* Introduce a polygon list

’W lil Y1 21

Pl \'Z X2 52 Zz
Py vy 3343
P3 |.... > Ve X4 Y424
P4 | e X5 Ys Zs,
PS | Ml W " | %6 Y6 %
VZ — *X7¥717

topology geometry [8 Y8 78

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~ Shared Edges

* Vertex lists will draw filled polygons correctly but
If we draw the polygon by its edges, shared
edges are drawn twice

« Can store mesh by edge list

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

e4

e2
el

e5
eb
e’/
e§
e9

vl
v6

X1¥Y1 %4
X2 Y27,
X3 Y3 Z3
X4 Y424

X5 Y5 Zs

X6 Yo Zg
X7Y¥Y, 7,
X3 ¥Yg Zg

Note polygons are
not represented

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

~ Modeling a Cube

Model a color cube for rotating cube program

Define global arrays for vertices and colors

GLfloat wvertices|[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},
{1.0,-1.0,1.0}, {(1.0,1.0,1.0}, {-1.0,1.0,1.0}};

0.0,0.0,0.0},{1.0,0.0,0.0},
0.0}, {0.0,0.0,1.0},
1.0}, {0.0,1.0,1.0}};

GLfloat colors[][3] = {
{1.0,1.0,0.0}, {0.0,1.0
{1.0,0.0,1.0}, {1.0,1.0

{

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 10

q Drawing a polygon from a
list of indices

Draw a quadrilateral from a list of indices into the
array vertices and use color corresponding to
first index

void polygon(int a, int b, int c
, int d)
{
glBegin (GL POLYGON) ;
glColor3fv(colors[a]) ;
glVertex3fv (vertices[a]) ;
glVertex3fv (vertices|[b]) ;
glVertex3fv (vertices|[c]) ;
glVertex3fv (vertices|[d]) ;
glEnd() ;

}

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

11

~ Draw cube from faces

void colorcube()

{
polygon(0,3,2,1); 5 6
polygon(2,3,7,6) ;
polygon(0,4,7,3);
polygon(1,2,6,5) ; ! 2
polygon(4,5,6,7) ;
polygon(0,1,5,4);

0

Note that vertices are ordered so that
we obtain correct outward facing normals

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 12

X Efficiency

Umversily ol New Mexico

* The weakness of our approach is that we
are building the model in the application
and must do many function calls to draw
the cube

* Drawing a cube by its faces in the most
straight forward way requires
- 6 glBegin, 6 glEnd
-6 glColor
- 24 glVertex
- More if we use texture and lighting

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

13

X Vertex Arrays

mversily ol New Mexico

* OpenGL provides a facility called vertex arrays
that allows us to store array data in the
Implementation

Six types of arrays supported
- Vertices
- Colors
- Color indices
- Normals
- Texture coordinates
- Edge flags

We will need only colors and vertices

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

14

~] v Initialization

 Using the same color and vertex data, first we
enable
glEnableClientState (GL COLOR ARRAY) ;
glEnableClientState (GL _VERTEX ARRAY) ;

* |dentify location of arrays
glVertexPointer (3, GL FLOAT, 0, vertices);

////, f T <£;aanay

3d arrays stored as floats data contiguous

glColorPointer (3, GL FLOAT, 0, colors);

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

15

-#" Mapping indices to faces

* Form an array of face indices
GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6
0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

* Each successive four indices describe a
face of the cube

* Draw through glbrawElements Which
replaces all glvertex and glcColor calls In
the display callback

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 16

= K Drawing the cube

* Method 1: what to draw umber of indices

T~

for (1i=0; i<6; i++) glDrawElements (GL POLYGON, 4,
GL UNSIGNED BYTE, &cubeIndices[4*i]);

4 \

format of index data start of index data

 Method 2:

glDrawElements (GL QUADS, 24,
GL UNSIGNED BYTE, cubelndices);

Draws cube with 1 function call!!

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 7

