Implementation III

Ed Angel
Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
University of New Mexico
Objectives

• Survey Line Drawing Algorithms
 - DDA
 - Bresenham
Rasterization

• Rasterization (scan conversion)
 - Determine which pixels that are inside primitive specified by a set of vertices
 - Produces a set of fragments
 - Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices

• Pixel colors determined later using color, texture, and other vertex properties
Scan Conversion of Line Segments

• Start with line segment in window coordinates with integer values for endpoints

• Assume implementation has a write_pixel function

\[y = mx + h \]

\[m = \frac{\Delta y}{\Delta x} \]
DDA Algorithm

- Digital Differential Analyzer
 - DDA was a mechanical device for numerical solution of differential equations
 - Line $y = mx + h$ satisfies differential equation
 \[
 \frac{dy}{dx} = m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
 \]
- Along scan line $\Delta x = 1$

```c
For(x=x1; x<=x2,ix++) {
    y+=m;
    write_pixel(x, round(y), line_color)
}
```
Problem

• DDA = for each x plot pixel at closest y
 - Problems for steep lines
Using Symmetry

- Use for $1 \geq m \geq 0$
- For $m > 1$, swap role of x and y
 - For each y, plot closest x
Bresenham’s Algorithm

• DDA requires one floating point addition per step
• We can eliminate all fp through Bresenham’s algorithm
• Consider only $1 \geq m \geq 0$
 - Other cases by symmetry
• Assume pixel centers are at half integers
• If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer
Candidate Pixels

$1 \geq m \geq 0$

Note that line could have passed through any part of this pixel.

$y = mx + h$

Candidates

Last pixel

$i + \frac{1}{2} \quad j + \frac{1}{2} \quad j + \frac{3}{2}$
d = Δx(a-b)

- d is an integer
- d < 0 use upper pixel
- d > 0 use lower pixel
Incremental Form

• More efficient if we look at d_k, the value of the decision variable at $x = k$

$$d_{k+1} = d_k - 2\Delta y, \quad \text{if } d_k > 0$$
$$d_{k+1} = d_k - 2(\Delta y - \Delta x), \quad \text{otherwise}$$

• For each x, we need do only an integer addition and a test
• Single instruction on graphics chips
Polygon Scan Conversion

• Scan Conversion = Fill
• How to tell inside from outside
 - Convex easy
 - Nonsimple difficult
 - Odd even test
 • Count edge crossings
 - Winding number

odd-even fill
Winding Number

• Count clockwise encirclements of point

winding number = 1

winding number = 2

• Alternate definition of inside: inside if winding number ≠ 0
Filling in the Frame Buffer

- Fill at end of pipeline
 - Convex Polygons only
 - Nonconvex polygons assumed to have been tessellated
 - Shades (colors) have been computed for vertices (Gouraud shading)
 - Combine with z-buffer algorithm
 - March across scan lines interpolating shades
 - Incremental work small
Using Interpolation

$C_1 C_2 C_3$ specified by `glColor` or by vertex shading
C_4 determined by interpolating between C_1 and C_2
C_5 determined by interpolating between C_2 and C_3
interpolate between C_4 and C_5 along span

scan line

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```c
flood_fill(int x, int y) {
    if(read_pixel(x, y) == WHITE) {
        write_pixel(x, y, BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
    }
}
```
Scan Line Fill

- Can also fill by maintaining a data structure of all intersections of polygons with scan lines
 - Sort by scan line
 - Fill each span

vertex order generated by vertex list
desired order
Data Structure

Scanlines

\[j \]

Intersections

\[x_1 \rightarrow x_2 \]

\[j + 1 \]

\[x_3 \rightarrow x_4 \]

\[j + 2 \]

\[x_4 \rightarrow x_5 \rightarrow x_7 \rightarrow x_8 \]
Aliasing

- Ideal rasterized line should be 1 pixel wide

- Choosing best y for each x (or visa versa) produces aliased raster lines
Antialiasing by Area Averaging

- Color multiple pixels for each x depending on coverage by ideal line

![Original](image1.png) ![Antialiased](image2.png)
Original Antialiased

![Magnified](image3.png) ![Magnified](image4.png)
Magnified Magnified
Polygon Aliasing

- Aliasing problems can be serious for polygons
 - Jaggedness of edges
 - Small polygons neglected
 - Need compositing so color of one polygon does not totally determine color of pixel

 All three polygons should contribute to color