

The emphasis of this course focuses on the capabilities of each application
programming interface (i.e., programming library, often called an API) — WebGL
and Three.js — and how to choose the best one to get started with, and less on
the details of developing application of using them.

We assume that you’re familiar with computer-graphics concepts: vertices,
geometry, rendering, simple illumination and lighting, and texture mapping. And
since we’re developing applications for the Web, we assume you know the
fundamentals of web browsers and servers, and familiarity with structured
programming languages like C or C++, Java, or Python.

3

The development of APIs for 3D computer graphics is exemplified by the development of
the OpenGL family of APIs. The original version contained many functions (commonly
called the fixed-function pipeline) for manipulating and rendering three-dimensional
geometry, which while simple to use, limited flexibility. As GPUs became programmable,
APIs supported programmable shaders. Consequently, the fixed-function pipeline was
replaced with a shader-based pipeline where applications are expected to provide the
shaders for rendering. Under both these paradigms, the graphics libraries were
accessed via code compiled for and executing on the CPU (in programming languages
like C/C++, Java, and Python, to name a few). As such, applications needed to be
recompiled for each CPU architecture

With the advent of the World Wide Web, the focus of interactive-graphics applications
switched to HTML, primarily through the HTML5 Canvas element. Such applications
could be distributed from a remote server to a web browser running on a machine and
make use of local hardware, especially the GPU. WebGL is a JavaScript implementation
of OpenGL ES that can be used with HTML5 and thus any recent browser. Because
WebGL uses the local hardware, its performance is close to that of desktop OpenGL.

Both desktop OpenGL and WebGL require the application to provide shaders, and to do
so requires knowledge of their shading language — GLSL — and how to create and
manipulate various buffer and many other tasks which may not be of interest to
application programmer. Scene graphs avoid many of these issue by providing a higher-
level API which calls into a system’s OpenGL/WebGL implementation. For web
applications, three.js is the dominant API for three-dimensional, interactive graphics
applications. A basic application needs only to describe a scene using objects, cameras,
and attributes (e.g., colors, textures, materials) that are part of the API.

4

5

OpenGL is a library of function calls for doing computer graphics. With it, you can
create interactive applications that render high-quality color images composed of
2D and 3D geometric objects and images.

Additionally, the OpenGL API is independent of all operating systems, and their
associated windowing systems. That means that the part of your application that
draws can be platform independent. However, for OpenGL to be able to render, it
needs a window to draw into. Generally, this is controlled by the windowing
system on whatever platform you are working on. Likewise, interaction is not part
of the API. Although the graphics part of the application is independent of the OS,
applications must be recompiled on each architecture.

6

OpenGL ES (often just called ES) is a smaller version of OpenGL that was
designed for embedded systems which did have the hardware capability to run
desktop OpenGL. ES 2.0 is based on desktop OpenGL 2.0 and is shader based.
Every application must provide both a vertex shader and a fragment shader.
OpenGL ES has become the standard API for developing 3D cell phone
applications.

WebGL is a JavaScript (JS) implementation of ES 2.0, and runs within the
browser, so it is independent of the operating and window systems. Additionally,
the signatures of the functions (i.e., the list of parameters) are identical in all but a
few cases, so learning WebGL gives the added benefit of knowing a lot about
programming OpenGL ES as well. Further, because WebGL uses the HTML
canvas element, it does not require system-dependent libraries for opening
windows and interaction.

WebGL 2.0 is a JavaScript implementation of ES 3.0.

Three.js is a JavaScript library implemented using WebGL. It uses higher-level
concepts — objects, cameras, materials, and scene graphs, for examples — to
simplify graphics application development. It isolates the application programmer
from most of the details required in configuring rendering using WebGL. The
graphics application code using WebGL can be hundreds of lines of JavaScript
code, while three.js usually requires much less code to accomplish similar
operations.

The cube is one of computer graphics’ fundamental primitives. It’s a built-in
object to three.js, but for WebGL, we’d need to specify the cube using the
primitives available for WebGL, most notably triangles. To shade our cube in
WebGL, we’ll need to understand concepts like lighting, textures and texture
mapping, and perhaps blending. These concepts are also available in three.js,
and require much less work to apply them to a geometric object. Similarly,
interacting with the geometric objects in three.js is quite simple. By contrast,
WebGL doesn’t have any facilities for interaction; the application programmer
needs to receive and interpret the user’s interaction with the application, and
convert those into operations affecting how WebGL manipulates its geometric
objects.

At this point, you may be asking yourself “Why would anyone want to code
directly in WebGL?”. Low-level interfaces like WebGL provide the ultimate
flexibility to an application, and used appropriately, may provide superior
performance. Additionally, three.js prescribes how and the order that operations
are done. If your application needs to do something outside of those capabilities,
you may need to modify three.js’s operation, which can be done using WebGL.

In this section, we’ll describe the architecture of WebGL, describing its pipeline,
and highlighting the important parts for WebGL applications.

9

The initial version of OpenGL implemented a fixed-function pipeline, in which all the
operations that OpenGL supported were fully-defined, and an application could only
modify their operation by changing a set of input values (like colors or positions) through
function calls. The other point of a fixed-function pipeline is that the order of operations
was always the same – that is, you can’t reorder the sequence operations occur.

If you’re developing a new application, we strongly recommend using the techniques that
we’ll discuss. Those techniques can be more flexible, and will likely perform better than
using one of these early versions of OpenGL since they can take advantage of the
capabilities of recent Graphics Processing Units (GPUs).

To allow applications to gain access to these new GPU features, OpenGL version 2.0
officially added programmable shaders into the graphics pipeline. This version of the
pipeline allowed an application to create small programs, called shaders, that were
responsible for implementing the features required by the application. In the 2.0 version
of the pipeline, two programmable stages were made available:

!  vertex shading enabled the application full control over manipulation of the 3D
geometry provided by the application

•  fragment shading provided the application capabilities for shading pixels (the terms
classically used for determining a pixel’s color).

Until OpenGL 3.0, features have only been added (but never removed) from OpenGL,
providing a lot of application backwards compatibility (up to the use of extensions).
OpenGL version 3.0 introduced the mechanisms for removing features from OpenGL,
called the deprecation model.

10

WebGL is becoming increasingly more important because it is supported by all
browsers. Besides the advantage of being able to run without recompilation
across platforms, it can easily be integrated with other Web applications and
make use of a variety of portable packages available over the Web.

On Windows systems, Chrome and Firefox use an intermediate layer called
ANGLE, which takes OpenGL calls and turns them into DirectX calls. This is
done because the DirectX drivers are generally more efficient for Windows, since
they've undergone more development. Command-line options can disable the
use of ANGLE.

11

Once our JS and HTML code is interpreted and executes with a basic OpenGL pipeline.
Generally speaking, data flows from your application through the GPU to generate an
image in the frame buffer. Your application will provide vertices, which are collections of
data that are composed to form geometric objects, to the OpenGL pipeline. The vertex
processing stage uses a vertex shader to process each vertex, doing any computations
necessary to determine where in the frame buffer each piece of geometry should go.

After all the vertices for a piece of geometry are processed, the rasterizer determines
which pixels in the frame buffer are affected by the geometry, and for each pixel, the
fragment processing stage is employed, where the fragment shader runs to determine
the final color of the pixel.

In your OpenGL/WebGL applications, you’ll usually need to do the following tasks:

•  specify the vertices for your geometry

•  load vertex and fragment shaders (and other shaders, if you’re using them as well)

•  issue your geometry to engage the pipeline for processing

Of course, OpenGL and WebGL are capable of many other operations as well, many of
which are outside of the scope of this introductory course. We have included references
at the end of the notes for your further research and development.

12

Although OpenGL source code for rendering should be the same across multiple
platforms, the code must be recompiled for each architecture, In addition, the
non-rendering parts of an application such as opening windows and input
processing are not part of OpenGL and can be vary significantly on different
systems.

Almost all OpenGL applications are designed to run locally on the computer on
which they live.

13

A typical WebGL application consists of a mixture of HTML5, JavaScript and
GLSL (shader) code. The application can be located almost anywhere and is
accessed through its URL . All browsers can run JavaScript and all modern
browsers support HTML. The rendering part of the application is in JavaScript
and renders into the HTML5 Canvas element. Thus, the WebGL code is
obtained from a server (either locally or remote) and is compiled by the browser’s
JavaScript engine into code that run on the local CPU and GPU.

14

OpenGL is not object oriented. three.js is a scene graph which supports a variety
of objects including geometric objects (boxes, spheres, planes), cameras,
materials, lights and controls and methods for creating and manipulating them.
three.js also supports high level functionality such as shadows and kinematics.
three.js supports rendering by WebGL, SVG and the HTML Canvas although
most applications use WebGL.

WebGL can be looked at in two ways:

First as an API that we can use to build graphics applications.

Second as a rendering library that that can be accessed by other APIs such
three.js.

You can also download the demo programs from http://bit.ly/eric3demos.

17

18

Clearly, there are advantages to using a toolkit like three.js, so why work directly
in WebGL? Most of those libraries increase the download size of the web
application, which can impact both application load times, as well as their ability
to run on mobile devices. Further, toolkits prescribe the order of operations and
facilitates. WebGL allows the application programmer complete control over the
operation of the graphics pipeline from the application. Of course, that level of
control comes at the cost of needing to know considerably more about the
operation of computer graphics, and how to implement those algorithms.

That said, knowing how WebGL operates can make you more efficient and
informed when using a higher-level toolkit.

You’ll find that a few techniques for programming with modern WebGL goes a
long way. In fact, most programs – in terms of WebGL activity – are very
repetitive. Differences usually occur in how objects are rendered, and that’s
mostly handled in your shaders.
There four steps you’ll use for rendering a geometric object are as follows:
First, you’ll load and create WebGL shader programs from shader source
programs you create
Next, you will need to load the data for your objects into WebGL’s memory. You
do this by creating buffer objects and loading data into them.
Continuing, WebGL needs to be told how to interpret the data in your buffer
objects and associate that data with variables that you’ll use in your shaders. We
call this shader plumbing.
Finally, with your data initialized and shaders set up, you’ll render your objects

20

HTML (hypertext markup language) is the standard for describing Web pages. A
page consists of a several elements which are described by tags, HTML5
introduced the canvas element which provides a window that WebGL can render
into. Note other applications can also render into the canvas or on the same
page.

Generally, we use HTML to set up the canvas, bring in the necessary files and
set up other page elements such as buttons and sliders. We can embed our
JavaScript WebGL code in the same file or have the HTML file load the
JavaScript from a file or URL. Likewise with the shaders.

21

In OpenGL, as in other graphics libraries, objects in the scene are composed of
geometric primitives, which themselves are described by vertices. A vertex in
modern OpenGL is a collection of data values associated with a location in
space. Those data values might include colors, reflection information for lighting,
or additional coordinates for use in texture mapping. Locations can be specified
on 2, 3 or 4 dimensions but are stored in 4 dimensional homogeneous
coordinates.

The homogenous coordinate representation of a point has w = 1 and for a vector
w = 0. Perspective cameras can change the value of w. We return to normal 3D
coordinates by perspective division which replaces p = [x, y, z, w] by p’= [x/w, y/w,
z/w].

Vertices must be organized in OpenGL server-side objects called vertex buffer
objects (also known as VBOs), which need to contain all of the vertex information
for all the primitives that you want to draw at one time.

23

To form 3D geometric objects, you need to decompose them into geometric
primitives that WebGL can draw. WebGL (and modern desktop OpenGL) only
knows how to draw three things: points, lines, and triangles, but can use
collections of the same type of primitive to optimize rendering.

The next few slides will introduce our example program, one which simply
displays a cube with different colors at each vertex. We aim for simplicity in this
example, focusing on the WebGL techniques, and not on optimal performance.
This example is animated with rotation about the three coordinate axes and
interactive buttons that allow the user to change the axis of rotation and start or
stop the rotation.

25

To simplify our application development, we define a few types and constants to
make our code more readable and organized.

Our cube, like any other cube, has six square faces, each of which we’ll draw as
two triangles. In order to size memory arrays to hold the necessary vertex data,
we define the constant numVertices.

As we shall see, GLSL has vec2, vec3 and vec4 types. All are stored as four
element arrays: [x, y, z, w]. The default for vec2’s is to set z = 0 and w =1. For
vec3’s the default is to set w = 1.

MV.js also contains many matrix and viewing functions. The package is available
on the course website or at www.cs.unm.edu/~angel/WebGL. MV.js is not
necessary for writing WebGL applications but its functions simplify development
of 3D applications.

26

To provide data for WebGL to use, we need to stage it so that we can load it into
the VBOs that our application will use. In your applications, you might load these
data from a file, or generate them on the fly. For each vertex, we want to use two
bits of data – vertex attributes in OpenGL speak – to help process each vertex to
draw the cube. In our case, each vertex has a position in space, and an
associated color. To store those values for later use in our VBOs, we create two
arrays to hold the per vertex data. Note that we can organize our data in other
ways such as with a single array with interleaved positions and colors.

We note that JavaSript arrays are objects and are not equivalent to simple C/C+
+/Java arrays. JS arrays are objects with attributes and methods.

27

In our example we’ll copy the coordinates of our cube model into a VBO for
WebGLto use. Here we set up an array of eight coordinates for the corners of a
unit cube centered at the origin.

You may be asking yourself: “Why do we have four coordinates for 3D data?”
The answer is that in computer graphics, it’s often useful to include a fourth
coordinate to represent three-dimensional coordinates, as it allows numerous
mathematical techniques that are common operations in graphics to be done in
the same way. In fact, this four-dimensional coordinate has a proper name, a
homogenous coordinate. We could also use a vec3 type, i.e.

vec3(-0.5, -0.5, 0.5)

which will be stored in 4 dimensions on the GPU.

In this example, we will again use the default camera so our vertices all fit within
the default view volume.

28

Just like our positional data, we’ll set up a matching set of colors for each of the
model’s vertices, which we’ll later copy into our VBO. Here we set up eight
RGBA colors. In WebGL, colors are processed in the pipeline as floating-point
values in the range [0.0, 1.0]. Your input data can take any for; for example,
image data from a digital photograph usually has values between [0, 255].
WebGL will (if you request it), automatically convert those values into [0.0, 1.0], a
process called normalizing values.

29

flatten() is in MV.js.

Alternately, we could use typed arrays as we did for the triangle example and
avoid the use of flatten for one-dimensional arrays. However. we will still need to
convert matrices from two-dimensional to one-dimensional arrays to send them
to the shaders. In addition, there are potential efficiency differences between
using JS arrays vs typed arrays. It’s a very small change to use typed Arrays in
MV.js. See the website.

30

As our cube is constructed from square cube faces, we create a small function,
quad(), which takes the indices into the original vertex color and position arrays,
and copies the data into the VBO staging arrays. If you were to use this method
(and we’ll see better ways in a moment), you would need to remember to reset
the Index value between setting up your VBO arrays.

Note the use of the array method push() so we do not have to use indices for the
point and color array elements

31

Here we complete the generation of our cube’s VBO data by specifying the six
faces using index values into our original positions and colors arrays. It’s worth
noting that the order that we choose our vertex indices is important, as it will
affect something called backface culling later.

We’ll see later that instead of creating the cube by copying lots of data, we can
use our original vertex data along with just the indices we passed into quad()
here to accomplish the same effect. That technique is very common, and
something you’ll use a lot. We chose this to introduce the technique in this
manner to simplify the OpenGL concepts for loading VBO data.

32

While we’ve talked a lot about VBOs, we haven’t detailed how one goes about
creating them. Vertex buffer objects, like all (memory) objects in WebGL (as
compared to geometric objects) are created in the same way, using the same set
of functions. In fact, you’ll see that the pattern of calls we make here are like
other sequences of calls for doing other WebGL operations.
In the case of vertex buffer objects, you’ll do the following sequence of function
calls:
Generate a buffer’s by calling gl.createBuffer()
Next, you’ll make that buffer the “current” buffer, which means it’s the selected
buffer for reading or writing data values by calling gl.bindBuffer(), with a type of
GL_ARRAY_BUFFER. There are different types of buffer objects, with an array
buffer being the one used for storing geometric data.
To initialize a buffer, you’ll call gl.bufferData(), which will copy data from your
application into the GPU’s memory. You would do the same operation if you also
wanted to update data in the buffer
Finally, when it comes time to render using the data in the buffer, you’ll once
again call gl.bindVertexArray() to make it and its VBOs current again.

We can replace part of the data in a buffer with gl.bufferSubData()

33

To complete the “plumbing” of associating our vertex data with variables in our
shader programs, you need to tell WebGL where in our buffer object to find the
vertex data, and which shader variable to pass the data to when we draw. The
above code snippet shows that process for our two data sources. In our shaders
(which we’ll discuss in a moment), we have two variables: vPosition, and vColor,
which we will associate with the data values in our VBOs that we copied form our
vertex positions and colors arrays.

The calls to gl.getAttribLocation() will return a compiler-generated index which we
need to use to complete the connection from our data to the shader inputs. We
also need to “turn the valve” on our data by enabling its attribute array by calling
gl.enableVertexAttribArray() with the selected attribute location.

Here we use the flatten function to extract the data from the JS arrays and put
them into the simple form expected by the WebGL functions, basically one
dimensional C-style arrays of floats.

34

35

To initiate rendering in your application, you need to issue a drawing routine.
The render() function shown above contains the essence of what needs to be
done each frame to render with WebGL.

First, we clear where we want to render by calling gl.clear(). In the case shown
above, we clear two buffers: the color buffer, where our generated image will
appear; and the depth buffer, used for hidden surface removal. In order to
remove hidden surfaces, you need to ask WebGL to enable depth testing, using
the call gl.enable(gl.DEPTH_TEST), which we would have specified in our init()
routine (assuming we wanted it enabled for the entirety of the application).

While there are many routines for rendering in WebGL, we’ll discuss the most
fundamental ones. The simplest routine is gl.drawArrays(), specifies the type of
graphics primitive you want to draw (e.g., here we’re rending triangles); the
vertex in the enabled vertex attribute arrays to start with; and how many vertices
to send. If we use triangle strips or triangle fans, we only need to store four
vertices for each face of the cube rather than six.

This is the simplest way of rendering geometry in WebGL. You merely need to
store you vertex data in sequence, and then gl.drawArrays() takes care of the
rest. However, in some cases, this won’t be the most memory efficient method of
doing things. Many geometric objects share vertices between geometric
primitives, and with this method, you need to replicate the data once for each
vertex.

36

The vertex shader the stage between the application and the raster. It operates in
four dimensions and is used primarily for geometric operations such as changes
in representations from the object space to the camera space and lighting
computations. A vertex shader must output a position in clip coordinates or
discard the vertex. It can also output other attributes such as colors and texture
coordinates to the rasterizer.

37

Once our JS and HTML code is interpreted and executes with a basic OpenGL pipeline.
Generally speaking, data flows from your application through the GPU to generate an
image in the frame buffer. Your application will provide vertices, which are collections of
data that are composed to form geometric objects, to the OpenGL pipeline. The vertex
processing stage uses a vertex shader to process each vertex, doing any computations
necessary to determine where in the frame buffer each piece of geometry should go.

After all the vertices for a piece of geometry are processed, the rasterizer determines
which pixels in the frame buffer are affected by the geometry, and for each pixel, the
fragment processing stage is employed, where the fragment shader runs to determine
the final color of the pixel.

In your OpenGL/WebGL applications, you’ll usually need to do the following tasks:

•  specify the vertices for your geometry

•  load vertex and fragment shaders (and other shaders, if you’re using them as well)

•  issue your geometry to engage the pipeline for processing

Of course, OpenGL and WebGL are capable of many other operations as well, many of
which are outside of the scope of this introductory course. We have included references
at the end of the notes for your further research and development.

38

The final shading stage that OpenGL supports is fragment shading which allows
an application per-pixel-location control over the color that may be written to that
location. Fragments, which are on their way to the framebuffer, but still need to
do some pass some additional processing to become pixels. However, the
computational power available in shading fragments is a great asset to
generating images. In a fragment shader, you can compute lighting values –
similar to what we just discussed in vertex shading – per fragment, which gives
much better results, or add bump mapping, which provides the illusion of greater
surface detail. Likewise, we’ll apply texture maps, which allow us to increase the
detail for our models without increasing the geometric complexity.

39

Generally, GLS Lcode is compiled by WebGL as opposed to the HML and JS
code which is interpreted. After successful compilation the shaders are put into a
program object which is linked with the application code. WebGL allows for
multiple program objects and thus multiple shaders within an application.

41

As with any programming language, GLSL has types for variables. However, it
includes vector-, and matrix-based types to simplify the operations that occur
often in computer graphics.

In addition to numerical types, other types like texture samplers are used to
enable texture operations. We’ll discuss texture samplers in the texture mapping
section.

The vector and matrix classes of GLSL are first-class types, with arithmetic and
logical operations well defined. This helps simplify your code, and prevent errors.

Note in the above example, overloading ensures that both a*m and m*a are
defined although they will not in general produce the same result.

42

In addition to types, GLSL has numerous qualifiers to describe a variable usage.
The most common of those are:
attribute qualifiers indicate the shader variable will receive data flowing into the
shader, either from the application,
varying qualifier which tag a variable as data output where data will flow to the
next shader stage
uniform qualifiers for accessing data that doesn’t change across a draw operation

Recent versions of GLSL replace attribute and varying qualifiers by in and out
qualifiers

43

GLSL also provides a rich library of functions supporting common operations.
While pretty much every vector- and matrix-related function available you can
think of, along with the most common mathematical functions are built into GLSL,
there’s no support for operations like reading files or printing values. Shaders are
data-flow engines with data coming in, being processed, and sent on for further
processing.

44

Fundamental to shader processing are a couple of built-in GLSL variable which
are the terminus for operations. Vertex data, which can be processed by up to
four shader stages in desktop OpenGL, are all ended by setting a positional
value into the built-in variable, gl_Position.

Additionally, fragment shaders provide seversal of built-in variables. For
example, gl_FragCoord is a read-only variable, while gl_FragDepth is a read-
write variable. Recent versions of OpenGL allow fragment shaders to output to
other variables of the user’s designation as well.

45

46

Here’s the simple vertex shader we use in our cube rendering example. It
accepts two vertex attributes as input: the vertex’s position and color, and does
very little processing on them; in fact, it merely copies the input into some output
variables (with gl_Position being implicitly declared). The results of each vertex
shader execution are passed further down the pipeline, and ultimately end their
processing in the fragment shader.

47

Here’s the associated fragment shader that we use in our cube example. While
this shader is as simple as they come – merely setting the fragment’s color to the
input color passed in, there’s been a lot of processing to this point. Every
fragment that’s shaded was generated by the rasterizer, which is a built-in, non-
programmable (i.e., you don’t write a shader to control its operation). What’s
magical about this process is that if the colors across the geometric primitive (for
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will
interpolate those colors across the primitive, passing each iterated value into our
color variable.

The precision for floats must be specified. All WebGL implementations must
support medium precision.

Shaders need to be compiled before they can be used in your program. As
compared to C programs, the compiler and linker are implemented within
WebGL , and accessible through function calls from within your program. The
diagram illustrates the steps required to compile and link each type of shader into
your shader program. A program must contain a vertex shader (which replaces
the fixed-function vertex processing), a fragment shader (which replaces the
fragment coloring stages).

Just a with regular programs, a syntax error from the compilation stage, or a
missing symbol from the linker stage could prevent the successful generation of
an executable program. There are routines for verifying the results of the
compilation and link stages of the compilation process, but are not shown here.
Instead, we’ve provided a routine that makes this process much simpler, as
demonstrated on the next slide.

48

To simplify our lives, we created a routine that simplifies loading, compiling, and
linking shaders: InitShaders(). It implements the shader compilation and linking
process shown on the previous slide. It also does full error checking, and will
terminate your program if there’s an error at some stage in the process
(production applications might choose a less terminal solution to the problem, but
it’s useful in the classroom).

InitShaders() accepts two parameters, each a filename to be loaded as source
for the vertex and fragment shader stages, respectively.
The value returned from InitShaders() will be a valid GLSL program id that you
can pass into glUseProgram().

49

50

OpenGL shaders, depending on which stage their associated with, process
different types of data. Some data for a shader changes for each shader
invocation. For example, each time a vertex shader executes, it’s presented with
new data for a single vertex; likewise for fragment, and the other shader stages in
the pipeline. The number of executions of a particular shader rely on how much
data was associated with the draw call that started the pipeline – if you call
glDrawArrays() specifying 100 vertices, your vertex shader will be called 100
times, each time with a different vertex.

Other data that a shader may use in processing may be constant across a draw
call, or even all the drawing calls for a frame. GLSL calls those uniform varialbes,
since their value is uniform across the execution of all shaders for a single draw
call.

Each of the shader’s input data variables (ins and uniforms) needs to be
connected to a data source in the application. We’ve already seen
glGetAttribLocation() for retrieving information for connecting vertex data in a
VBO to shader variable. You will also use the same process for uniform
variables, as we’ll describe shortly.

This completes the rotating cube example.

Other interactive elements such as menus, sliders and text boxes are only
slightly more complex to add since they return extra information to the listener.
We can obtain position information from a mouse click in a similar manner.

51

52

Matrix operations are supported directly in GLSL where matrices and vectors are
atomic types. In the application code, we either carry out the operations in our
code or use a library such as MV.js or glMatrix.

Recall that WebGL uses four dimensional homogeneous coordinates (x, y, z, w).
If we use 3D in our application, w defaults to 1.

Clip coordinates and screen coordinates are the only ones required by WebGL.
However, applications prefer to use their own coordinates and convert to clip
coordinates in the vertex shader.

54

55

Note that human vision and a camera lens have cone-shaped viewing volumes.
OpenGL (and almost all computer graphics APIs) describe a pyramid-shaped
viewing volume. Therefore, the computer will “see” differently from the natural
viewpoints, especially along the edges of viewing volumes. This is particularly
pronounced for wide-angle “fish-eye” camera lenses.

These transformations were built into the original fixed-function OpenGL,
Although the functions that used these coordinate systems have been
deprecated (other than the viewport transformation), most applications prefer to
build in all these transformations.

56

The processing required for converting a vertex from 3D or 4D space into a 2D
window coordinate is done by the transform stage of the graphics pipeline. The
operations in that stage are illustrated above. Each box represent a matrix
multiplication operation. In graphics, all our matrices are 4×4 matrices (they’re
homogenous, hence the reason for homogenous coordinates).

When we want to draw an geometric object, like a chair for instance, we first
determine all the vertices that we want to associate with the chair. Next, we
determine how those vertices should be grouped to form geometric primitives,
and the order we’re going to send them to the graphics subsystem. This process
is called modeling. Quite often, we’ll model an object in its own little 3D
coordinate system. When we want to add that object into the scene we’re
developing, we need to determine its world coordinates. We do this by specifying
a modeling transformation, which tells the system how to move from one
coordinate system to another.

Modeling transformations, in combination with viewing transforms, which dictate
where the viewing frustum is in world coordinates, are the first transformation that
a vertex goes through. Next, the projection transform is applied which maps the
vertex into another space called clip coordinates, which is where clipping occurs.
After clipping, we divide by the w value of the vertex, which is modified by
projection. This division operation is what allows the farther-objects-being-
smaller activity. The transformed, clipped coordinates are then mapped into the
window.

57

By using 4×4 matrices, OpenGL can represent all geometric transformations
using one matrix format. Perspective projections and translations require the 4th
row and column. Otherwise, these operations would require an vector-addition
operation, in addition to the matrix multiplication.

While OpenGL specifies matrices in column-major order, this is often confusing
for “C” programmers who are used to row-major ordering for two-dimensional
arrays. OpenGL provides routines for loading both column- and row-major
matrices. However, for standard OpenGL transformations, there are functions
that automatically generate the matrices for you, so you don’t generally need to
be concerned about this until you start doing more advanced operations.
For operations other than perspective projection, the fourth row is always (0, 0, 0,
1) which leaves the w-coordinate unchanged.

58

Lighting is an important technique in computer graphics. Without lighting, objects
tend to look like they are made from plastic.
The models used in most WebGL applications divide lighting into three parts:
material properties, light properties and global lighting parameters.
While we’ll discuss the mathematics of lighting in terms of computing illumination
in a vertex shader, the almost identical computations can be done in a fragment
shader to compute the lighting effects per-pixel, which yields much better results.

The lighting normal determines how the object reflects light around a vertex. If
you imagine that there is a small mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

WebGL can use the shade at one vertex to shade an entire polygon (constant
shading) or interpolate the shades at the vertices across the polygon (smooth
shading), the default.

The original lighting model that was supported in hardware and OpenGL was due
to Phong and later modified by Blinn.

Here we declare numerous variables that we’ll use in computing a color using a
simple lighting model. All the uniform values are passed in from the application
and describe the material and light properties being rendered. We can send
these values to either the vertex or fragment shader, depending on how we want
to do lighting computation, either on per vertex basis or a per fragment basis.

62

63

Textures are images that can be thought of as continuous and be one, two, three,
or four dimensional. By convention, the coordinates of the image are s, t, r and q.
Thus for the two dimensional image above, a point in the image is given by its (s,
t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right corner.
A texture map for a two-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

When you want to map a texture onto a geometric primitive, you need to provide
texture coordinates. Valid texture coordinates are between 0 and 1, for each
texture dimension, and usually manifest in shaders as vertex attributes. We’ll
see how to deal with texture coordinates outside the range [0, 1] in a moment.

In the simplest approach, we must perform these four steps.
Textures reside in texture memory. When we assign an image to a texture it is
copied from processor memory to texture memory where pixels are formatted
differently.
Texture coordinates are actually part of the state as are other vertex attributes
such as color and normals. As with colors, WebGL interpolates texture inside
geometric objects.
Because textures are discrete and of limited extent, texture mapping is subject to
aliasing errors that can be controlled through filtering.
Texture memory is a limited resource and having only a single active texture can
lead to inefficient code.

Specifying the texels for a texture is done using the gl.texImage_2D() call. This
will transfer the texels in CPU memory to OpenGL, where they will be processed
and converted into an internal format.
The level parameter is used for defining how WebGL should use this image when
mapping texels to pixels. Generally, you’ll set the level to 0, unless you are using
a texturing technique called mipmapping.

Just like vertex attributes were associated with data in the application, so too with
textures. You access a texture defined in your application using a texture sampler
in your shader. The type of the sampler needs to match the type of the
associated texture. For example, you would use a sampler2D to work with a two-
dimensional texture created with gl.texImage2D(GL_TEXTURE_2D, …);

Within the shader, you use the texture() function to retrieve data values from the
texture associated with your sampler. To the texture() function, you pass the
sampler as well as the texture coordinates where you want to pull the data from.

Note: the overloaded texture() method was added into GLSL version 3.30. Prior
to that release, there were special texture functions for each type of texture
sampler (e.g., there was a texture2D() call for use with the sampler2D).

68

Some common uses:

desktop OpenGL: used for large scientific applications
OpenGL ES: used to design smart phone apps
WebGL: Web applications, increasing interest in using it for games
three.js: CADV
Vulkan: high-end games

There are a couple of major areas we haven’t discussed. One is image
processing/texture. Support for texture and large amounts of texture memory
make GPUs well suited for imaging applications. Support for off-screen rendering
leads to a variety of applications such as shadow mapping.

71

Only atomic primitives in JS are numbers (64 bit floats), strings and booleans.
Everything else is an object. Objects inherit from a prototype object and thus
even the simplest objects have some members and functions that are defined in
the prototype. JS uses function scope rather than block scope as in most other
languages. There are global variables defined outside of your program, e.g.
window.

Typing is dynamic so we can change the type of a variable anyplace in the
program.

JavaScript is a large language that has matured over the past few years.
However, there are multiple ways to accomplish a task with JS, some good and
some bad. See for example Crockford, JavaScript, the Good Parts.

72

WebGL 2.0 is now supported in almost all browsers. Other types of shaders are
widely available as WebGL extensions.

73

Buffer array objects let us put multiple vertex attributes together. When combined
with transform feedback, simulation applications can be executed entirely in the
GPU.

74

Many of these variants allow programmers more familiar with Java and Python to
write JS code that is more familiar to them and avoids some of the “gotchas” in
JS. Some variants also allow the programmer to write more concise code.

Some of the ES6 additions allow for more familiar object types and scoping.

75

Generally, OpenGL programs are fairly small and the driver large. Consequently,
it is straightforward to write an OpenGL application since the complexity is in the
driver. But that limits the ability of the application programmer to take advantage
of many options that have been set in the driver. Vulkan takes the opposite view
and puts a tremendous amount of control in the application and requires a
relatively small driver. Thus with Vulkan an application can adjust to the
hardware, e.g. an integrated processor vs separate CPU and GPU. For the most
applications, we can get the performance we need with WebGL and OpenGL.

77

OpenGL may also continue to develop in parallel with Vulkan since OpenGL has
a large user community that does not need to deal with the complexity of Vulkan.

78

79

80

81

All the above books except Angel and Shreiner, Interactive Computer Graphics
(Addison-Wesley) and Learning three.js, are in the Addison-Wesley Professional
series of OpenGL books.

82

Many example programs, a JS matrix-vector package and the InitShader function
are under the Book Support tab at www.cs.unm.edu/~angel

83

