
Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

The FFT on a GPU

Kenneth Moreland1 and Edward Angel2

1 Sandia National Laboratories, Albuquerque, NM, USA
2 Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

Abstract

The Fourier transform is a well known and widely used tool in many scientific and engineering fields.
The Fourier transform is essential for many image processing techniques, including filtering, manip-
ulation, correction, and compression. As such, the computer graphics community could benefit greatly
from such a tool if it were part of the graphics pipeline. As of late, computer graphics hardware has
become amazingly cheap, powerful, and flexible. This paper describes how to utilize the current gener-
ation of cards to perform the fast Fourier transform (FFT) directly on the cards. We demonstrate a
system that can synthesize an image by conventional means, perform the FFT, filter the image, and
finally apply the inverse FFT in well under 1 second for a 512 by 512 image. This work paves the way
for performing complicated, real-time image processing as part of the rendering pipeline.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and
framebuffer operations I.4.3 [Image Processing and Computer Vision]: Filtering

1. Introduction

Scientists and engineers have been using digital sig-
nal processing to manipulate images since the mid
1960’s1. Over the past 40 years a wide variety of tech-
niques have been developed to help enhance images
for better human visual perception and autonomous
machine perception. However, very little of this tech-
nology has been applied to real time computer syn-
thesized graphics. The high computational intensity
of such operations has been prohibitive. The graphics
hardware that generated these images was, until very
recently, not flexible enough to perform any but the
simplest image filtering. Also, moving the image data
to and from another processing unit, such as the CPU,
is in itself a serious bottleneck. Fortunately, the lat-
est releases of graphics hardware now have the power
and flexibility to perform even the most complicated
image filtering.

Digital image processing algorithms should be a
good fit for modern GPU hardware. Any digital im-
age processing technique entails a repetitive operation
on the pixels of an image. Graphics processors are de-
signed to perform a block of operations on groups of
vertices or pixels, and they do this very efficiently. Fur-

thermore, the performance growth of graphics hard-
ware has been exceeding Moore’s law, with an annual
increase in performance rate of over 2.4. In addition,
the functionality of these cards has also increased dra-
matically. Nearly every component on the GPU can
now be reprogrammed. A GPU is no longer a fixed
pipeline but is now better described as a SIMD paral-
lel processor2 or a streaming processor3. Furthermore,
these processors can now perform computations on full
32 bit floating point values as opposed to 8 bit fixed
values of one generation ago.

Fourier domain processing is not currently done for
real-time graphics synthesis because performing trans-
forms on a CPU requires data to be moved to and
from the graphics card, a serious bottleneck. Further-
more, commodity graphics hardware was not powerful
enough to perform the FFT necessary for complicated
image processing. However, the current generation of
graphics cards have the power, programmability, and
floating point precision required to perform the FFT
efficiently.

This paper describes how we used a commodity
graphics card to perform the FFT and filter images.
We start by providing an overview of the FFT al-

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

gorithm to facilitate understanding of our implemen-
tation. We will then discuss some properties of real
Fourier transforms that allow us to more efficiently
implement the FFT on a graphics card. Finally, we
will discuss the details of our implementation.

2. The Fast Fourier Transform

A primary component to signal processing is the im-
pulse response. The impulse response of a filter is its
response to a single impulse, or, in the case of digital
image filtering, its response to a single active pixel.
Any linear and time-invariant filter can be completely
characterized by its impulse response4.

A digital image filter can be applied by perform-
ing a convolution of the input image and the filter’s
impulse response. Unfortunately, the convolution op-
eration can be very computationally intensive. Per-
forming a straightforward convolution requires every
pixel in the input image to be multiplied by every pixel
in the impulse response. Some modern graphics cards
have hardware to perform a convolution5, but they
are limited to impulse responses of only three or four
pixels wide.

For wider impulse responses, there are faster ways
to perform a convolution. A common technique is to
use Fourier transforms. A Fourier transform converts
an image from the spatial domain to the frequency do-
main. An image in the spatial domain, as it is custom-
arily represented, is defined by color values at spatial
locations in the image. An image in the frequency do-
main is defined by amplitudes and phase shifts of the
various sinusoids that make up the image. An impor-
tant feature of the Fourier transform is that a convo-
lution in the spatial domain can be done with a sim-
ple piecewise multiplication in the frequency domain.
Thus, to filter an M by N image with an M by N
frequency response takes O

(

(MN)2
)

time in the spa-
tial domain but only O (MN) time in the frequency
domain once the Fourier transform is performed.

When applying an impulse response in the fre-
quency domain, the majority of the work is spent
by applying the Fourier transform and its inverse.
An efficient Fourier transform algorithm, the fast
Fourier transform (FFT), has been known for at
least 40 years6. The FFT can perform the Fourier
transform or its inverse of an M by N image in
O (MN (log M + log N))) time. The FFT makes tan-
gible the computational intensity of processing even
large images with complicated filters.

We now give a very brief overview of the discrete
Fourier transform and the fast Fourier transform al-
gorithm. More complete and formal descriptions of

Fourier theory and the FFT can be found in a wide
variety of articles and textbooks1, 4, 7, 8.

Fourier analysis is based on the idea that every func-
tion is composed of a set of potentially infinite sinu-
soidal waves. The functions we are interested in are
discrete functions of finite length. It can be shown that
the frequencies for any such discrete function, f(x),
can be fully represented by another discrete function,
F (u), with an equal number of samples. The discrete
Fourier transform gives the relationship between these
two functions as

F{f(x)} = F (u) =
1

N

N−1
∑

x=0

f(x)W ux
N (1)

F−1{F (u)} = f(x) =

N−1
∑

u=0

F (u)W−ux
N (2)

where N is the number of samples in f(x) and where
WN = e−j2π/N . By convention, we give functions in
time or spatial domains lower case letters and func-
tions in the frequency domain upper case letters. To
get these equations, we assume the functions f(x) and
F (u) are periodic. That is, f(x) = f(x + iN) and
F (u) = F (u + iN) for any integer i.

Equations 1 and 2 define the Fourier transform for
one dimensional discrete functions, but we wish to use
them on images, which are two dimensional. The two
dimensional Fourier transform (or its inverse) can be
calculated by applying the transform in one direction
and then in the other direction. Likewise for higher di-
mensions. Therefore, for simplicity, we need only dis-
cuss the transforms in one dimension and apply that
to higher dimensions.

The FFT algorithm works on the principle of divide
and conquer. The input is split into two halves, the
FFT is applied on each half, and the two are combined
to form a full transform. We split the input into the
sequence of values with even indices, f e(x) = f(2x),
and odd indices, fo(x) = f(2x + 1). For ease of expla-
nation, let us also temporarily define F ′(u) = NF (u).
We can rewrite Equation 1 as follows:

F ′(u) =

N−1
∑

x=0

f(x)W xu
N

=

N/2−1
∑

x=0

f e(x)W 2xu
N +

N/2−1
∑

x=0

fo(x)W
(2x+1)u
N

=

N/2−1
∑

x=0

f e(x)W 2xu
N + W u

N

N/2−1
∑

x=0

fo(x)W 2xu
N

(3)

Using the definition of WN , we get

W 2
N = e−j4π/N = e−j2π/(N/2) = WN/2

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

Plugging back into Equation 3, we get

F ′(u) =

N/2−1
∑

x=0

f e(x)W xu
N/2 + W u

N

N/2−1
∑

x=0

fo(x)W xu
N/2

= F ′e(u) + W u
NF ′o(u) (4)

Thus, Equation 4 shows us how to combine two half
transforms into a full transform. The same analysis
yields similar results for the inverse Fourier transform.

3. Index Magic

Note that in Equation 4, the sub-sequences are shuf-
fled together in the original sequence. The straight-
forward approach to the recursion would be to copy
samples from the input array into two separate sub ar-
rays. However, this would require an excessive amount
of data copying in what is usually a time critical ap-
plication.

Instead, one uses a dynamic programming approach
that performs the FFT iteratively. A common tactic is
to reverse the bits of the input indices8, 9. This allows
the program to treat the sub-sequences as contiguous
chunks of the array, and adjacent chunks are combined
in much the way the merge-sort algorithm works. How-
ever, to avoid this initial reordering of the array, we
instead kept the original order of the sequence in the
array. We will now discuss how to index into the array
to perform the FFT without any reordering.

Keep in mind that even though we pack all values
into a single array of size N , at any particular itera-
tion of the FFT we actually consider the array to be
partitioned into a number of valid frequency spectra
(remember that Equation 4 shows us how to merge
two valid frequency spectra into a single larger spec-
trum). At iteration i = 0, before the FFT starts, we
have N partitions of size 1; at i = 1, we have N/2
partitions of size 2; at i = 2, we have N/4 partitions
of size 4, and so on. In general, at iteration i we have
N/2i partitions of size 2i. Let Pi,p[u] be the uth entry
of the pth partition at iteration i. The sequence Pi,p

contains the frequency spectrum of some subsequence
of the input data.

Consider array A[n] containing the data with which
we are performing the FFT (and therefore consisting
of partitions Pi,p for all applicable p at any given
iteration i). We pack our partitions in the array
such that Pi,p[u] ≡ A[n] if p = n mod N/2i and
u = n div N/2i (remember that there are N/2i par-
titions at iteration i). Conversely, A[n] ≡ Pi,p[u] if
n = (p + uN/2i) mod N . Note that at the final it-
eration, i = log N , when only one partition remains,
Alog N [n] ≡ Plog N,0[n]. Using this convention will re-
sult in the array containing the final Fourier transform
without further reordering.

We now will show that this indexing results in the
appropriate Fourier transform. Per Equation 4, we
must calculate Pi,p[u] as

Pi,p[u] = P e
ip

[u] + W u
2iP

o
ip

[u] (5)

By using previous definitions, we determine that

P e
i,p[u] ≡ Pi,p[2u]

≡ A[p + 2uN/2i] = A[p + uN/2i−1]

≡ Pi−1,p[u]

Likewise

P o
i,p[u] ≡ Pi,p[2u + 1]

≡ A[p + (2u + 1)N/2i]

= A[(p + N/2i) + uN/2i−1]

≡ Pi−1,p+N/2i [u]

From this we can see that each P e
i,p and P o

i,p maps
correctly to a unique partition from the previous iter-
ation.

We can now plug the indexing scheme into Equation
5 and get the operation performed on the array at each
step of the FFT.

A[n]← A[n + u] + W u
2iA[n + u + N/2i] (6)

where u = n div N/2i. Note that the indices into A
need to be placed in the range [0..N − 1] via modulo
N . Also note that in order to be correct, Equation 6
must be applied simultaneously to all values of A.

4. Frequency Compression

In general, the values generated by the Fourier trans-
form are complex, even when the original samples
are real, as is typical in a graphical image. However,
if the original samples are real, the Fourier trans-
form has much symmetry. It can be easily shown
from Equation 1 that if f is a real sequence, then
∀u, F (u) = F ∗(N − u). That is, nearly all the values
in F occur as pairs of complex conjugates. The only
two exceptions are for u = 0 and u = N/2. Mathemat-
ically, the values at F (0) and F (N/2) are conjugates
with themselves, and therefore must be real.

Computing both parts of these conjugates is inef-
ficient. Press9 gives an efficient method for comput-
ing the FFT of real functions. First, consider two real
functions f(x) and g(x). These functions can be any
pair of rows in our image. We define a new, complex
function, h(x) = f(x) + jg(x). h(x) can be easily de-
fined without any data movement by pointing to one
row of our image as the real values and another row as
the imaginary values. We can calculate H(u) in half
the time it would take to calculate F (u) and G(u)
individually.

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

0 �1−N 2
N

�12 +N12 +N 1−N
Real Values Imaginary Values

Figure 1: Packing for 1D Fourier transform.

Of course, H(u) itself is not useful to us. We need
to extract the F (u) and G(u) functions from H(u).
Because the Fourier transform is linear, we know

H(u) = F (u) + jG(u) (7)

We also know that F (u) and G(u) display the conju-
gate symmetry discussed above because f(x) and g(x)
are real. Combining this information, we find that

F (u)R = 1
2
(H(u)R + H(N − u)R)

F (u)I = 1
2
(H(u)I −H(N − u)I)

G(u)R = 1
2
(H(u)I + H(N − u)I)

G(u)I = − 1
2
(H(u)R −H(N − u)R)

(8)

where the R and I subscripts stand, respectively, for
the real and imaginary components of a complex num-
ber.

Again, we call out the special cases for when u = 0
or u = N/2. For these values of u, H(u) = H(N − u).
It falls out from Equation 8 that F (0)R = H(0)R,
F (0)I = 0, G(0)R = H(0)I , G(0)I = 0. Likewise for
values of F (N/2) and G(N/2).

Computing the one dimensional FFT by combining
pairs of rows as described above takes about half the
time as computing the FFT directly. It also saves us
from having to allocate separate buffers for real and
complex numbers. We can also store the final result,
after being “untangled” by Equation 8, in an array
the same size as the input. Storing all N complex val-
ues would require 2N floating points. However, we can
throw out N/2− 1 complex values as they are conju-
gates of values we will be storing. We can also throw
away the imaginary part of values at indices 0 and
N/2 as we know they are always real. This leaves us
with only N floating point values we need to store in
our array. Figure 1 shows how we efficiently packed
the values for the Fourier transform. More formally,
the values for transformed function F (u) are stored in
a two dimensional array A of size N as follows.

F (u)R =

{

A[u] 0 ≤ u ≤ N
2

A[N − u] N
2

< u < N

F (u)I =











0 u ∈ {0, N
2
}

−A[N − u] 0 < u < N
2

A[u] N
2

< u < N

(9)

0

0

�1−M 2
M �12 +M12 +M 1−M

1
�

12 −N

2
N

12 +N
�

1−N

Real Values Imaginary Values

Figure 2: Packing for 2D Fourier transform.

After performing the 1D FFT on the rows of our im-
age and packing them as shown in Figure 1, we must
perform the FFT on the columns. Two of the columns,
those at indices 0 and N/2, contain real numbers. We
can pair these up and perform the FFT on them to-
gether with the method described above. The rest of
the columns, when properly paired, form sequences of
complex numbers. We perform a traditional complex
to complex FFT on these sequences. Figure 2 shows
how the final result is packed, which is similar to that
given by Pratt10. More formally, the values for trans-
formed function F (u, v) are stored in a two dimen-
sional array A of dimensions M by N as follows.

F (u, v)R

=







































A[u][v] u ∈ {0, M
2
}, v ≤ N

2

A[u][N−v] u ∈ {0, M
2
}, v > N

2

A[u][v] 0 < u < M
2

, v ∈ {0, N
2
}

A[u][N−v] 0 < u < M
2

, 0 < v < N
2

A[u][N−v] 0 < u < M
2

, N
2

< v < N

A[M−u][v] M
2

< u < M

F (u, v)I

=



















































0 u ∈ {0, M
2
}, v ∈ {0, N

2
}

−A[u][N−v] u ∈ {0, M
2
}, 0 < v < N

2

A[u][v] u ∈ {0, M
2
}, N

2
< v < N

−A[M−u][v] 0 < u < M
2

, v ∈ {0, N
2
}

−A[M−u][N−v] 0 < u < M
2

, 0 < v < N
2

−A[M−u][N−v] 0 < u < M
2

, N
2

< v < N

A[u][v] M
2

< u < M

(10)

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

The inverse FFT can also be performed in a similar
manner. First, we “tangle” pairs of rows by evaluating
the function in Equation 7. Once the inverse FFT is
performed on the tangled equation, the two correct
real functions will already be placed in their respective
entries in the image.

5. Implementation

We implemented the FFT algorithm as described in
sections 2 through 4 on an nVidia GeForce FX 5800
Ultra graphics card. This graphics card features fully
programmable vertex and fragment units, 32 bit float-
ing point frame buffers and textures, and full 32 bit
floating point enabled throughout the entire pipeline.
The vertex and fragment units were programmed with
OpenGL and the Cg computer language and runtime
libraries11, 12.

Implementing the FFT on the graphics card is rel-
atively straightforward. The FFT is inherently an
image-based algorithm. As such, we perform the FFT
by executing a fragment program on every pixel at
each step in a SIMD-like fashion. To execute these
fragment programs, we draw quadrilaterals that are
parallel to the screen, which causes the rasterizer to
create a single fragment for every pixel on the screen
and thereby invoking the fragment program for every
pixel. Because the vertex programs are trivial (and in
fact provided only for Cg convenience), we will focus
solely on describing the fragment programs necessary
for implementing the FFT.

Figure 3 shows a block diagram containing the steps
required to perform a full 2D FFT on an image buffer
or a full 2D IFFT on an array of frequencies. Each
block represents a single operation performed on each
pixel of the buffer. Abstractly, we can consider the op-
erations on all the pixels to be performed atomically
and in parallel. In reality, each pass of a fragment pro-
gram reads its inputs from one memory area (a tex-
ture) and writes to another memory area (a frame
buffer), which eliminates any possibility of read-after-
write control hazards. All the calculations can be done
with only two frame buffers by using the render-to-
texture extensions and swapping the buffer that be-
haves as a texture.

Although the same basic operation is performed on
every pixel at every step in our algorithm, the frag-
ment program will need to exhibit slightly different be-
haviors based on the position of the pixel. The GeForce
FX architecture does not allow branching within its
fragment programs, so the developer is left with two
choices: calculate all possible cases and multiplex the
result or load a different program variant for all pos-
sible cases. We chose the latter figuring the number of

Imaginary
Tangled

Real
Tangled

Real
G

Real
F

Imag.
F

Imag.
G

Sc
al

e

Sc
al

e

R
ea

l
U

nt
an

gl
ed

R
ea

l, 
T

an
gl

ed

Im
ag

., 
T

an
gl

ed

R
ea

l
U

nt
an

gl
ed

FF
T

U
nt

an
gl

e
FF

T
U

nt
an

gl
e

Scale Scale

R
, F

I, 
F

R
, F

I, 
F

Imaginary
Tangled

Real
Tangled

Real
G

Real
F

Imag.
F

Imag.
G

Pa
ss

Pa
ss

R
ea

l
U

nt
an

gl
ed

R
ea

l, 
T

an
gl

ed

Im
ag

., 
T

an
gl

ed

R
ea

l
U

nt
an

gl
ed

FF
T

Pass Pass

R
, F

I, 
F

R
, F

I, 
F

T
an

gl
e

FF
T

T
an

gl
e

Images

Frequency Spectra

Figure 3: Program flow for performing the Fourier
transform and the inverse Fourier transform.

instructions saved would outweigh the cost of chang-
ing fragment programs. Each block in Figure 3 shows
a breakdown of the different cases encountered within
an array and the program variants to handle these
cases. We shall now describe the function of each frag-
ment program required to perform the Fourier trans-
form on an image. For purposes of this discussion, we
will assume an image of dimensions M by N .

First, we perform an FFT on each row of the image.
To save computation and avoid doubling our memory
for handling complex numbers, we use the tangling

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

technique discussed in section 4. The lower N/2 rows
are the real values and the upper N/2 rows are the
imaginary values. The real values in row n are cou-
pled with the imaginary values in row n + N/2. The
fragment programs used for real values and imaginary
values are similar, but differ in their indexing and the
value computed. We therefore load a separate program
for the real and imaginary values. By grouping all the
real values together and likewise all the imaginary val-
ues rather than interlace them, we can run the appro-
priate fragment program on all the entries by “render-
ing” only two quadrilateral primitives. Each fragment
program performs one iteration of the FFT algorithm,
so this computation must be repeated log M times.

Second, we untangle the values using Equation 8,
scale by 1/M , and lay out the data in each row as
shown in Figure 1. Note that the lower half of the val-
ues are indexed differently than the upper half of the
values. There are also slightly different equations for
computing the real and imaginary values. We there-
fore load four fragment programs to handle these four
cases. Also recall that the untangling processes has
special cases for the columns 0 and M/2. The FFT
operation of the previous step lays down the data in
such a way that these two columns need only be scaled.

Next, we must perform the Fourier transform for
each column. At this point, there are only two columns
that contain real values. We perform the FFT on these
two columns in the same way that we performed the
FFT on all the rows earlier, by using the tangling tech-
nique. The rest of the entries in the array contain one
part of a true complex number. The tangling tech-
nique therefore no longer applies, and we can perform
the FFT directly on these values without increasing
memory space or calculations. In all, we have four pro-
grams: real and imaginary forms of the tangled FFT
as well as real and imaginary forms of the standard
FFT. In truth, the operation of the FFT is the same
regardless of whether the values are tangled. The only
difference between the tangled and untangled forms of
the FFT is one of indexing. As before, we must run
the FFT fragment programs log N times to perform a
complete FFT.

Finally, we must perform the untangling and scal-
ing. As stated above, the majority of the columns are
not tangled in the first place. The FFT operation of
the previous step leaves its values in the correct places
per Figure 2, and those values therefore need only to
be scaled by 1/N . The two columns at indices 0 and
M/2 are untangled in the same manner as we untan-
gled the rows before.

The inverse FFT is performed by reversing the order
of operations of the forward FFT. The only difference
besides the order of operations is that tangling per

Equation 7 is performed in lieu of untangling and that
scaling is not performed.

Our ultimate goal is to perform image filtering by
multiplying the frequency spectra of images and im-
pulse responses. We therefore need one final fragment
program to perform this operation. Building a single
pass fragment program to do this is trivial. Simply
look up the appropriate real and imaginary values,
which can be located with equation 10, perform the
complex multiplication, and write the values in the
same packing as shown in Figure 2.

Program Instructions Invocations

Arithmetic Texture

FFT 27 3 2MN(log N + log M)

Untangle 4 2 MN − 4

Scale 1 1 MN + 2N

Tangle 1 2 MN − 4

Pass 0 1 MN + 2N

Multiply 66 4 MN

Table 1: Instructions executed per fragment. All pro-
gram variants (e.g. real vs. imaginary) are grouped to-
gether because their instruction counts are equal.

Table 1 shows how many instructions are executed
per fragment for each fragment program involved in
computing the Fourier transform. The final column,
Invocations, specifies the number of fragments each
program processes while filtering an M by N image us-
ing the FFT method. That is, we apply the FFT to an
image, piecewise multiply the frequencies by a static
impulse response, and then apply the inverse FFT.
Each texture lookup instruction involves the reading
of four 32 bit floating point numbers (an RGBA tuple)
from texture memory. Also, each iteration of any one
of the fragment programs results in the writing of four
32 bit floating point numbers (again a single RGBA
tuple) into the frame buffer. Due to the nature of the
hardware, each arithmetic instruction can perform an
operation on up to four different sets of values held in
four-tuple registers. As such, we compute the FFT for
all four color channels of an image in one shot.

Program Arithmetic Megabytes Megabytes
Operations Read Written

FFT 1,132,462,080 1,920 640

Untangle 4,194,288 32 16

Scale 1,050,624 16 16
Tangle 1,048,572 32 16

Pass 0 16 16

Multiply 69,206,016 64 16

Total 1,207,961,580 2,080 720

Table 2: Operations performed per fragment program
and total for performing FFT on a 10242 image.

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

Table 2 gives the number of operations required to
perform an image filtering with the FFT method. It
gives the total amount of arithmetic operations per-
formed and the total amount of data read from and
written to memory while performing a filtering of an
image of size 1024 by 1024.

6. Results

We built a test application that renders a simple ge-
ometry (the Utah teapot) and applies a filter on the
resulting image with the FFT method described in
this paper. The application filters four color channels
(red, green, blue, and alpha). The graphics hardware,
which was optimized for calculation on four compo-
nent color values, performs the calculations of all four
color channels simultaneously. Figure 4(a) shows an
unfiltered image. Figure 4(b) shows the frequencies of
that image. Figures 4(c) through 4(f) show various
filters that we applied to the image.

Image Rendering Arithmetic Texture
Size Rate (Hz) (sec) Lookup (sec)

10242 0.37 1.9 0.60
5122 1.6 0.44 0.13

2562 6.7 0.09 0.03
1282 25 0.01 0.007

Table 3: FFT filtering performance.

Table 3 gives the performance of our test appli-
cation. The rendering rate is measured with respect
to the total time needed to produce a frame, includ-
ing issuing drawing commands to render the teapot.
The last two columns were calculated by removing
the texture and arithmetic operations from the frag-
ment programs and observing the effect on the frame
rate. Combining the information from Tables 2 and 3,
we find that our application is performing on average
about 2.5 GigaFLOPS (assuming each arithmetic op-
eration performs four floating point calculations) and
reading texture memory at a rate of about 3.4 GB/sec.
Although our current implementation may not be fast
enough to support real-time or interactive applications
yet, performance improvements from future genera-
tion graphics cards should put this FFT within inter-
active rates.

We now compare our FFT run on a GPU with an
FFT run on a traditional CPU. Using the FFTW li-
brary (freely available from www.fftw.org) on our 1.7
GHz Intel Zeon, we performed a Fourier transform,
a piecewise complex multiplication, and an inverse
Fourier transform on four 1024 by 1024 arrays of 32 bit
floating point numbers. We found this operation to

take about 0.625 seconds (or up to 2 seconds if scal-
ing is not performed correctly). We feel that our GPU
implementation, which took about 2.7 seconds, is com-
parable to the highly optimized FFTW library. Also
realize that if we wish to perform Fourier analysis on
images generated by or otherwise already stored in the
graphics card, the GPU implementation saves us from
having to the transfer these data between CPU and
GPU memory.

As we mentioned earlier, the use of Fourier anal-
ysis extends well beyond the range of digital image
filtering. Another example related the the realm of
computer graphics is the use of the Fourier projection-
slice theorem to perform renderings of translucent 3D
volumes13, 14. Another use of Fourier transforms is
the generation of random textures15. Figures 5(a) and
5(b) show textures generated by building frequencies
with known magnitudes and random phase angles.

7. Acknowledgments

This work was partially supported by Sandia National
Laboratories. Sandia is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of En-
ergy under contract DE-AC04-94AL85000. The work
was also partially supported by the National Science
Foundation under grant number CDA-9503064.

We would like to especially thank the Graphics
Hardware 2003 papers co-chairs William Mark and
Andreas Schilling as well as all those who reviewed
this paper for their quick turnaround and insightful
comments.

References

1. R. C. Gonzalez and P. Wintz, Digital Image Pro-
cessing. Addison Wesley, (1983). ISBN 0-201-
03045-4.

2. S. Krishnan, N. H. Mustafa, S. Muthukrishnan,
and S. Venkatasubramanian, “Extended inter-
section queries on a geometric SIMD machine
model”, in 14th Annual ACM Symposium on Par-
allel Algorithms and Architectures (submitted),
(2002).

3. B. Khailany, W. J. Dally, S. Rixner, U. J. Ka-
pasi, P. Mattson, J. Namkoong, J. D. Owens,
B. Towles, and A. Chang, “Imagine: Media pro-
cessing with streams”, IEEE Micro, (2001).

4. C. L. Phillips and J. M. Parr, Signals, Systems,
and Transforms. Englewood Cliffs, New Jersey:
Prentice Hall, (1995). ISBN 0-13-795253-8.

5. M. Woo, J. Neider, T. Davis, and D. Shreiner,

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

OpenGL Programming Guide. Reading Mas-
sachusetts: Addison Wesley, 3rd ed., (1999). ISBN
0-201-60458-2.

6. J. W. Cooley and J. W. Tukey, “An algorithm
for the machine calculation of complex fourier
series”, Mathematics of Computation, 19(90),
pp. 297–301 (1965).

7. J. W. Cooley, P. A. W. Lewis, and P. D. Welch,
“Application of the fast fourier transform to com-
putation of fourier integrals, fourier series, and
convolution integrals”, IEEE Transactions on Au-
dio and Electroacoustics, AU-15(2), pp. 79–84
(1967).

8. S. J. Orfandis, Introduction to Signal Processing.
Upper Saddle River, New Jersey: Prentice Hall,
(1996). ISBN 0-13-209172-0.

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes in C++.
Cambridge University Press, second ed., (2002).
ISBN 0-521-75033-4.

10. W. K. Pratt, Digital Image Processing. John Wi-
ley & Sons, Inc, (1978). ISBN 0-471-01888-0.

11. R. Fernando and M. J. Kilgard, The Cg Tutuo-
rial. Addison Wesley, (March 2003). ISBN 0-321-
19496-9.

12. W. R. Mark, R. S. Glanville, K. Akeley, and M. J.
Kilgard, “Cg: A system for programming grapihcs
hardware in a c-like language”, in Proceedings of
SIGGRAPH 2003, (July 2003).

13. T. Malzbender, “Fourier volume rendering”,
ACM Transactions on Graphics, 12(3), pp. 233–
250 (1993).

14. T. Totsuka and M. Levoy, “Frequency domain
volume rendering”, in Proceedings of ACM SIG-
GRAPH 1993, pp. 271–278, (July 1993).

15. D. S. Ebert, F. K. Musgrave, D. Peachey, K. Per-
lin, and S. Worley, Texturing & Modeling: A Pro-
cedural Approach. AP Professional, 2nd ed., (July
1998). ISBN 0-12-228730-4.

c© The Eurographics Association 2003.



Moreland and Angel / The FFT on a GPU

(a) Original image. (b) Frequency magnitudes. (c) Image with low pass filter.

(d) Image with high pass filter. (e) Image with Laplacian filter. (f) Image with non-photorealistic

motion blur.

Figure 4: Examples of using the FFT for image filtering.

(a) Low frequencies. (b) Mixed frequencies.

Figure 5: Textures generated from frequencies with random phase angles.

c© The Eurographics Association 2003.


