
Unsupervised Drift Detection on
High-speed Data Streams

Vinicius M. A. Souza
University of New Mexico, USA

vinicius@unm.edu

Farhan A. Chowdhury
University of New Mexico, USA

fasifchowdhury@unm.edu

Abdullah Mueen
University of New Mexico, USA

mueen@unm.edu

Abstract—Changes in data distribution of streaming data
(i.e., concept drifts), constitute a central issue in online data
mining. The main reason is that these changes are responsible
for outdating stream learning models, reducing their predictive
performance over time. A common approach adopted by real-
time adaptive systems to deal with concept drifts is to employ
detectors that indicate the best time for updates. However,
an unrealistic assumption of most detectors is that the labels
become available immediately after data arrives. In this paper,
we introduce an unsupervised and model-independent concept
drift detector suitable for high-speed and high-dimensional data
streams in realistic scenarios with the scarcity of labels. We
propose a straightforward two-dimensional representation of the
data aiming faster processing for detection. We develop a simple
adaptive drift detector on this visual representation that is effi-
cient for fast streams with thousands of features and is accurate
as existing costly methods that perform various statistical tests.
Our method achieves better performance measured by execution
time and accuracy in classification problems for different types
of drifts, including abrupt, oscillating, and incremental. Experi-
mental evaluation demonstrates the versatility of the method in
several domains, including astronomy, entomology, public health,
political science, and medical science.

Index Terms—Data streams, concept drift, drift detection

I. INTRODUCTION

Concept drifts generally represent changes in streaming
data caused by underlying changes in the dynamics of data
generation. For example, a job change can drastically mod-
ify the patterns of power consumption of a given customer
measured by smart meters. Consider Fig. 1, two classes -
blue diamonds u and red plus signs : - are appearing in
a stream. A drift changes the concept of “orientation” of the
objects by a 45� rotation, changing them to blue squares n and
red multiplier signs 6. Unsupervised concept drift detection
is useful in extracting optimal classification performance on
streaming data by smartly requesting labels from annotators
and retraining soon after or along with the drift. Besides,
concept drifts may indicate significant events, and thus provide
domain experts with actionable insight. For example, a concept
drift in political tweets points to the sway in public opinion.

Initial research on concept drift detection restrictively as-
sumes labeled data are always available, and exploits class la-
bels in detecting drifts [1] - if classifier performance degrades,
a drift must have occurred. Recent research work realistically
lifts the restriction to detect drifts in an unsupervised manner,
and request labels only when retraining is necessary deemed

Time

Abrupt

Incremental

Oscillating

Concept A Concept B

Fig. 1. Three types of drifts over time given two classes represented by
geometric figures. Concept A (:, u) represents the data before the drift, and
Concept B (6, n) represents the data after the drift.

by the detection [2], [3]. Typical unsupervised methods use
statistical tests that are rigid to specific confidence levels and
maintain required statistics over time [4]–[6]. Such methods
are generally costly, mainly on high-dimensional data, since
a test is performed for each feature. To elaborate, in order to
detect drifts in a Twitter stream with thousands of features,
an algorithm has to react as fast as in 20 msec of receiving
a tweet. In contrast, a statistical test on such data considering
a window of ten minutes takes about 12 sec, which is unac-
ceptable for high-speed data streams. Similar contrast exists in
other domains, including agriculture, Internet-of-Things (IoT),
and manufacturing, where streams of data objects are produced
at 50Hz or more. Therefore, we need techniques that perform
a more straightforward computation to identify drifts without
lagging behind the stream of data.

Concept drifts can be categorized into three kinds (see
Fig. 1): i) abrupt, ii) oscillating (also called gradual), and
iii) incremental. Abrupt drifts are instantaneous, i.e., an initial
concept A sudden changes to a new concept B. Oscillating
drifts occur over a window where both concepts A and B are
seen at the same time until the concept A is replaced by the
new concept B. Incremental drifts occur over a window of
time with intermediate concepts between the concepts A and
B. Most existing algorithms are designed for one specific kind
of drift and are generally less adaptive. For example, recently,
Barros et al. [7] experimentally showed that some detectors
work best when the drift is abrupt and delays in detecting
oscillating drift. Unfortunately, in most real-world problems,
the kind of drift is unknown ahead of time, and a single stream
can observe all kinds of drifting behavior; hence, we need a
single algorithm that can detect them all.

Why the problem is difficult? Keeping up with a high-
speed stream while performing data mining tasks is a hard
problem. The main reason is that algorithms must be optimized
for worst-case scenarios instead of optimizing for average-case
scenarios in case of offline mining tasks. Because a series of
unfortunate worst-case scenarios can easily accumulate into
a lag for which the available memory/buffer would become
insufficient. Hence, drift detection on high-speed streams must
operate at a fixed worst-case cost per update. In addition,
detecting all kinds of drifts is challenging because the al-
gorithm needs to adapt to diverse conditions on the stream.
Most data-adaptive hypothesis tests are expensive and are hard
to generalize to high-dimensional data. Hence, we need an
adaptive algorithm suitable for high-dimensional data.

We propose a technique named Image-based Drift Detector

(IBDD) to estimate the difference between recent and histor-
ical data on a stream. By using a visual 2D representation,
we can efficiently detect a drift performing a single image
comparison based on pixels differences instead of comparing
the differences between data distributions for each feature
individually. This simplicity represents an essential speed
advantage over the traditional methods when applied to high-
speed streams with thousands of features. We empirically
demonstrate our findings using real-world datasets on several
domains with different kinds of drifts. Also, we present three
case studies in public health, political science, and medical
science. To support the reproducibility of this work, we made
publicly available all our code and the new datasets.

We summarize the main properties of our proposal below:
• IBDD is simple to implement and fast enough to process

high-dimensional streams at tens of objects per second;
• IBDD does not depend on labeled data to detect drifts;
• IBDD is adaptive to detect various kinds of drifts, such

as abrupt, oscillating, and incremental;
• IBDD is model-independent. The detection is based ex-

clusively on data, without any influence of the predictive
algorithm choice and their outputs or performance. It
allows us to employ IBDD in supervised or unsupervised
mining tasks, as well as for change analysis.

This paper is organized as follows. In Section II, we present
definitions of data streams. In Section III, we discuss related
works. In Section IV, we introduce IBDD. In Section V,
we present the experiments conducted on real-world data. In
Section VI, we discuss the performance of IBDD in three case
studies. Finally, Section VII concludes this work.

II. BACKGROUND

A data stream can be defined as an infinite sequence of ex-
amples ordered by time DS = { ~X1,

~X2, . . . ,
~Xt, . . .}, where

~Xt is a d-dimensional vector in the feature space that was
observed at time t. In practice, ~Xt is a list with d descriptive
features that represent the observation being made [8]. When
d is around hundreds or thousands of features, we have a high-
dimensional data streams.

In classification problems, each example ~Xt 2 X is associ-
ated to a class label yt 2 Y . In this task, the stream is a se-

quence of pairs DS = {(~X1, y1), (~X2, y2), . . . , (~Xt, yt), . . .}.
The goal of a model Li induced from a historical data
DSi = {(~X1, y1), . . . , (~Xi, yi)} is to predict the class label yt
of the example ~Xt observed in a future time t, where t > i.

Many real-world problems are dynamic with data generated
on evolving environments which leads to changes in the
underlying distribution of the stream. This change is named
concept drift, where the data distribution in a given moment
is called concept and the drift represents a change in such
distribution in a given time [6]. Formally, a concept drift occur
between the times t and t +�, if Pt(X,Y) 6= Pt+�(X,Y),
where Pt refers to the joint distribution at time t given a set
of examples (X) and their class labels (Y).

We can categorize the concept drifts into two groups ac-
cording to the type of change: i) real and ii) virtual [6].
In real drift, also called class drift or prior probability shift,
the change affects the class-conditional likelihoods P (Y |X),
while the features P (X) can change or not. In virtual drift,
also called feature change or covariate shift, the distribution
of the features P (X) changes over time, while the boundaries
among the classes remain unchanged. Thus, in classification
problems, virtual drifts do not affect the classifier’s predictive
performance. Unsupervised drift detectors, as proposed in this
work, can detect virtual drifts and real drifts. However, for
real drifts, it is needed that the changes also be observable in
the input features P (X). When the changes are exclusively
in P (Y |X), it is not possible to catch them without labeled
data [4]. At first glance, this limitation may seem very re-
strictive. However, this type of change is common in several
problems, as discussed in our experimental evaluation with
real data and case studies from different domains.

Drifts constitute a central issue on stream learning since it
is responsible for the outdating of predictive models, leading
to decreases in their accuracy. To deal with this problem is
common for stream classifiers, the use of a drift detector to
indicate the best time for the model update with recent data,
as proposed in this work. There is a vast body of works about
drift detection [4]–[6], [9], [10], in Section III, we discuss the
related ones of our proposal.

III. RELATED WORK

Novel drift detectors are proposed every year. However,
most of them, such as the state-of-the-art DDM [1] and
ADWIN [10], are supervised methods which require that
the ground-truth be available almost immediately after every
prediction for monitoring the error rate and verify when the
classifier is outdated. The assumption of label availability
after predictions is very optimistic and not realistic in many
situations due to the high cost of manual labeling a massive
amount of fast arrival data, restricting the use of these detectors
in real problems [11], [12]. Also, these detectors are model
dependent, which means that their results can vary according
to the chosen predictive algorithm and their outputs.

Although semi-supervised learning is a popular approach,
using partially labeled data is still poorly explored for drift
detection. An example is the SUN algorithm [13]. The general

idea is to build a growing decision tree incrementally and gen-
erates concept clusters in the leaves using labeled information.
The unlabeled data are then labeled according to the majority-
class of their nearest cluster. For drift detection, SUN considers
the difference between old and new concept clusters.

Unsupervised drift detectors focus on finding changes with-
out any label information. In general, such methods are based
on the use of statistical hypothesis tests performed on two
groups of data, one drawn from the past in a reference window
and another with the most recent data in a sliding window. If
the test rejects the null hypothesis that both groups are from
the same distribution, a drift is detected. After the detection,
the reference window is updated with recent data, and new
comparisons are made with the new incoming streaming
data [9]. Common choices for statistical tests are the univari-
ate tests Kolmogorov-Smirnov, Two-sample T-test, Wilcoxon
Rank Sum, Wilcoxon Signed-rank, and Wald-Wolfowitz [5].

In Žliobaitė [4], three different information are used by
statistical tests for unsupervised drift detection: i) raw data,
ii) classifier output, and iii) estimated class labels. The first
approach of monitoring raw data is the most usual technique,
where the test is performed on each feature of the recent data
compared with the reference data to determine whether both
come from the same population [2], [5], [6], [9]. Concept
drift is detected if one or a subset of features show statistical
differences. The advantage of this approach is that it works
independently of a classifier but can be time costly on high-
dimensional data. In this direction, Reis et al. [2] proposed the
Incremental Kolmogorov-Smirnov test (IKS). IKS is a speedup
of the original Kolmogorov-Smirnov test for data streams,
which reduces the complexity of O(N logN) to O(logN)
for the comparison of two samples with N unidimensional
examples. The general idea is employing a randomized tree
for the insertion and removal of data during the recomputing
of statistics in an incremental manner taking advantage of
previously computed values. However, the test still needs to
be performed individually for each d feature, which can be
costly when we have thousands of features.

In the second approach discussed by Žliobaitė [4], the statis-
tical test considers the output data of the classifier, such as the
score or the probability of the examples to belonging a class.
The dependence of a classifier is a drawback of this approach
since the wrong choice of a learner can drastically change the
results. Besides, predicting well-calibrated probabilities is still
a challenge for many supervised learning algorithms [14]. In
the latter approach, the statistical test considers the class labels
outputted by a classifier. In this case, it is only possible to
detect changes in the proportions of the classes P (Y) over
time, which typically has less impact on the accuracy.

For multidimensional tests, we can mention the Kullback-
Leibler distance to detect drifts [15]. However, such a test
considers labeled data to compare the probability distribution
for each class. Moreover, Alippi et al. [16] have experimentally
shown that the detectability worsens when the number of
dimensions increases, even at reasonably low-dimensions (e.g.,
ten features).

IV. IBDD: IMAGE-BASED DRIFT DETECTOR

IBBD is a model-independent and unsupervised drift detec-
tor for data streams that uses a visual representation to monitor
changes in data distributions over time. While traditional sta-
tistical tests need to compare the differences between the dis-
tributions of each feature, the visual representation employed
by IBDD allows performing such comparison efficiently in
a single pass procedure. It represents an important advantage
over the traditional methods when applied to high-dimensional
data such as time series, text, and computer vision problems
which typically has thousands of features.

Our detector is simple to implement and works indepen-
dently of a classifier, which means that it can be used in
supervised tasks such as classification or in tasks with fully
unlabeled data such as data analysis and online monitoring to
provide warnings about significant changes in data. IBDD is
adequate as a trigger mechanism to indicate the best time for
model updates, aiming to maintain predictive performance in
evolving environments. The detections are based exclusively
on the data, without any influence of the predictive algorithm
choice. In classification, the detector can identify both virtual
and real drifts when the changes are observable in the features.

To detect drifts, IBDD uses two data windows (w1 and w2)
with the same size w, where w1 is a reference window which
contains data of a known and stable concept (in classification
problems, it represents the training data used to build an initial
model), and w2 is a sliding window updated continuously with
each new example that arrives from the stream over time.

The d-dimensional data from w1 and w2 are then converted
into two different 2-dimensional gray-scale images. In this
image, the pixels’ intensities represent the feature values
of each example into the window. Each row of the image
represents a feature, while an entire column represents an
example with d features. In this manner, it is possible to
represent a sequence of d-dimensional examples visually in
two dimensions with height p equal to the number of features
and width q equal to the number of examples into the window.

To better illustrate the visual representation used by IBDD,
consider the images Iw1 and Iw2 shown in Fig. 2.

Examples

Fe
at
ur
es

Fe
at
ur
es

Examples

Iw1 Iw2 Drift

Examples

Fe
at
ur
es

Fe
at
ur
es

Examples

Iw1 Iw2 Drift

0 200 400 600 1000800
0

200

400

600

800

1024

0

200

400

600

800

1024

0 200 400 600 1000800

Examples Examples

Fe
at
ur
es

Fe
at
ur
es

0

Fig. 2. Example of the visual representation used by IBDD given two data
distributions drawn from different periods on the StarLightCurves dataset.

The images of Fig. 2 represent two data distributions
drawn from a different time of one of the evaluated datasets
(StarLightCurves). The windows have 1,000 examples with

1,024 features each one. Thus, the images have a height of
1,024 pixels and a width of 1,000 pixels. We also indicate the
drift point in Iw2. It is interesting to note the contrast change
in the entire image Iw2 in addition to the change in the pixel
intensities after the indicated drift. This contrast change occurs
due to the normalization in the sliding window data, and it
helps to identify the differences in the compared distributions.

After the conversion of windows w1 and w2 into the images
Iw1 and Iw2, we can measure the similarity between them
to find significant changes in data distribution. As w2 is a
sliding window updated with each new arrival example from
the stream, the comparison between the images is performed
continuously.

To measure the similarity between Iw1 and Iw2, we employ
the simple and straightforward metric Mean-Squared Devia-
tion (MSD), as defined in Eq. 1. Both images need to have
the same dimension with p⇥ q pixels, according to the height
and width, respectively.

MSD(Iw1, Iw2) =
1

p⇥ q

pX

i=1

qX

j=1

(Iw1(i,j) � Iw2(i,j))
2 (1)

The general idea of MSD is to measure the difference
between the pixel intensities of two images. The MSD has the
property of non-negativity, and a value of 0 indicates perfect
similarity between the compared images. MSD is symmetric,
which means that MSD(Iw1, Iw2) = MSD(Iw2, Iw1).

According to the similarity value returned by MSD, we
flag a drift when a sequence with m values are above a
superior threshold or below an inferior threshold. To avoid
false alarms due to noise, we recommend m > 1. While
statistical tests return a probability value (p-value), which
represents the level of confidence to reject the null hypothesis
that two data are from the same distribution, the value returned
by MSD does not have the same meaning and their values can
drastically change according to the dataset. For this reason,
IBDD dynamically updates its thresholds on stable periods
and when a drift is detected.

Before processing the stream examples, we estimate the
initial values for the superior and inferior thresholds using the
data provided as input, assuming that such data are stationary.
We compare the image Iw1 generated from the initial data
against a set of different images obtained by k random per-
mutations of the same data. The superior threshold is defined
by the mean of the observed values plus two times the standard
deviation, while the inferior threshold is defined by the mean
of the observed values minus two times the standard deviation.
The number of permutations k is a hyperparameter of IBDD,
which was fixed on 20 in all experiments. For stationary data,
the variability of the values is small, and a reduced number
of iterations is sufficient for a reasonable estimate.

In stable periods, the superior and inferior thresholds are
dynamically updated following the same rule employed in
the initial estimate, but considering the mean and standard
deviation of the past MSD values since the last update. We

consider stable periods when no drifts were detected in the
last 50 consecutive examples.

IBDD also updates both thresholds ever time a new drift is
detected. The update is needed because the reference image
Iw1 is the same over the entire stream, and after a drift, the
similarity relation between the reference data and the new
concept changes. In this case, if we observe a sequence with m

values above the superior threshold, it is updated with the last
MSD value, which flagged the drift, plus the standard deviation
of the last values since the last update. To update the inferior
threshold, we consider the last MSD value minus the mean
of differences between superior and inferior thresholds in the
past. This updating procedure is analogs when the drift occurs
due to the values below the inferior threshold.

Fig. 3 illustrates the detection of six drifts and the dynamic
thresholds. Each blue circle represents the similarity between
the windows measured by MSD. The example concerns the
Yoga dataset, which will be introduced in the next section.

Fig. 3. Similarity values, drifts detected by IBDD and thresholds updates.

V. EXPERIMENTAL EVALUATION

To support the reproducibility of our work, we have built a
website1 where we made available the codes and data, as well
as additional results.

A. Setup

In general, the evaluation of drift detectors is carried out
considering synthetic data, where the generation follows some
specific distribution, and the type and location of drifts are
known beforehand. Synthetic data allows the use of measures
that consider the rate of true/false alarms and the delay of
detections [17]. Although the evaluation is facilitated, a clear
limitation is that real data and changes are more complex.
Thus, the performance of detectors evaluated on synthetic data
can differ in practice. In this direction, we prioritize the use
of real-world data in our evaluation. Given the lack of ground
truth regarding the drifts’ location, we consider the accuracy of
a classifier updated according to a drift detector as an indirect
performance measure. The assumption is that more precise
detectors help the classifiers to achieve stable results under
changes if the model is updated at the right times. It is essential
to note that we use labeled data only to evaluate our method,
and the detection does not depend on any label.

We compare the performance of a classifier updated with
IBDD against two nonparametric statistical tests which use

1Supporting website: https://sites.google.com/view/ibdd-paper

only the features information for unsupervised drift detec-
tion: i) Incremental Kolmogorov-Smirnov (IKS)2 [2] and ii)
Wilcoxon Rank-Sum (WRS) [5]. In all experiments, we
consider the same significance level employed by [2] of ↵ =
0.001. Two main reasons justify the choice of the statistical
tests to compare our proposal: i) given the simplicity and
effectivity of this approach, it is a well-known and common
choice for drift detection (e.g., [2], [4], [5], [9]); and ii) for
a fair comparison, this approach is the most similar with ours,
being unsupervised and model-independent detectors.

Besides, we also consider the following strategies that
represent the worst and best case for model adaptation:

• Baseline: a static classifier that does not have a detector
and never updates its model. This naive classifier helps
to understand drifts’ impact on predictive performance
when no action is taken to deal with changes;

• Topline: a dynamic classifier that uses a persistent detec-
tor that identifies drift for every stream example leading
to continuous model updates. This approach is the closest
strategy to maintain a classifier updated with the most
recent data over all the time, as well as the most costly.

We consider Random Forest as the base classifier for all
detectors given their high learning performance and the low
number of parameters. The experiments were performed in an
Intel Core i7-9700 @ 3.00GHz, 32GB of memory, running the
Windows 10 64-bit. All algorithms were coded in Python 3.

B. Time efficiency and complexity

To evaluate the time efficiency of IBDD on high-
dimensional data, we measure the costs varying the number
of features on synthetic data. Fig. 4 shows the time results in
seconds to perform 100 comparisons of windows with 1,000
examples and dimensionality ranging from 10 to 10,000. On
the left side of the figure, we detail the results until 100
features, while on the right side, we have a more general view.

Fig. 4. Time spent in seconds by the detectors to perform 100 comparisons of
windows with 1,000 examples and dimensionality ranging from 10 to 10,000.

IBDD becomes time competitive starting from 25 features.
However, we recommend our detector on high-dimensional
problems with more than 50 features. In such cases, we can
note a considerable advantage of IBDD over the methods.

In terms of time complexity, the two main steps of IBDD
are the image generation from the sliding window and the

2Python implementation provided by the authors.

comparison with the reference image from the training data.
Both steps are performed for each stream example and have
linear complexity according to the number of examples into
the windows and the number of features or O(p ⇥ q), where
p and q are the height and width of the images. For space
complexity, IBDD spends O(w ⇥ d) to store the most recent
d-dimensional examples into the sliding window w2.

C. Results on real-world datasets

We compare the performance of our method on six real-
world benchmark datasets from different domains, prioritizing
problems with high dimensionality. In some cases, we modi-
fied the original data to include concept drifts. However, in
all cases, the changes can be justified in practice. On the
following, we describe the datasets.

Heartbeats [18], [19]. This dataset contains ECG data
from the Sudden Cardiac Death Holter Database (SDDB) of
Physionet [18]. We consider the version previously evaluated
by Ulanova et al. [19] for stream clustering, which uses the
data from a specific patient (subject #51) with high variability.
The dataset contains individual heartbeats extracted about once
every 0.86 seconds of a stream 25 hours long. Each example of
this dataset has 280 values and eight possible classes, such as
normal beat, paced beat by the patient’s pacemaker, premature
ventricular contraction, supraventricular premature beat, and
different beats fusions;

Flying Insects [19]. The task is identifying the species of
flying insects based on the wing-beat information measured
by optical sensors. The data generated by the sensor are
audios recorded when the insects fly through a laser light. It is
possible to recognize different species based on frequency and
harmonics position in the spectrum by converting the audios
to the frequency domain. The dataset has three classes: Ae.

aegypti ⇢, Ae. aegypti ⇡, and Cx. quinquefasciatus ⇡. It is
expected drifts due to variations in environmental conditions,
responsible for changing the flight characteristics of the in-
sects [8], [20], [21] (e.g., see the impact of temperature in Fig.
5). Also, some erratic flights can generate noise examples;

Fig. 5. Wing-beat frequency of Ae. aegypti ⇢ according to temperature [22].

Sensor Posture [23]. These data are from a multi-agent
system for the care of older people. The system provides
flexible activity monitoring, reacting to critical situations as
calling for help in the case of an emergency, and issuing
warnings if unusual behavior was detected. Each example
contains the localization of three wearing tags installed in the

ankle left, ankle right, and chest of a person. The original
data has 164,860 readings obtained from five persons and
does not have drifts. In this work, we consider the modified
version proposed by [2], where the ordering of the examples
has sequences produced by the same person to induce drifts;

StarLightCurves [24]. This is a time series dataset where
each example has 1,024 features representing the brightness
of a celestial object as a function of time. The dataset has pre-
defined training and test sets with 1,000 and 8,236 examples,
respectively. We introduce drifts in the test set multiplying
the values of each instance by -1, starting on the example
2,000. We named this modified version as StarLightCurves-
YReversed. In practice, this change can be justified by a
malfunction in the sensor responsible for the measurements;

UWaveGestureLibraryY [24]. This data contains a set
of eight gestures measured by an accelerometer device in
the y-axis. The dataset has pre-defined training and test sets
with 896 and 3,582 examples, respectively. We introduce
incremental drifts changing the sensor orientation around the
x-axis six times in an angle of 30� each change. We named
this version as UWaveGestureLibY-Incremental. This kind of
drift is justified in practice since motion devices such as a
smartwatch in the user’s wrist can slowly change their position;

Yoga [24]. This is a time series dataset generated from
images with actors performing yoga movements. The problem
is to discriminate between one actor (male) and another
(female). Each image was converted to a one-dimensional
series through the distances among the actor’s contour to the
image center. The dataset has pre-defined training and test sets
with 300 and 3,000 examples, respectively. We introduce drifts
by flipping the x-axis of the series, starting on the example
1,000. We named this modified version as Yoga-XReversed. In
practice, this drift represents a change in the orientation of the
actors performing the yoga movements. To better illustrate, we
show in Fig. 6, five examples from this dataset. In this figure,
it is possible to see the image conversion to time series, and
the effect on data when the actor changes their side.

+

(a) Yoga movements and series (b) Flipped images

Fig. 6. Examples of images from Yoga dataset and corresponding time series
obtained by the distances among the actor’s contour and the image center. A
horizontal flip in the image generates a flip in the x-axis of the time series.

Table I shows the datasets characteristics, where only Pos-
ture does not have a high number of features. We have included
it to evaluate the performance of IBDD with low dimensional
data. We also indicate the size of the initial training data
to build the first model. To standardize our experiments,
we consider the same number of training examples for the
parameter concerning the window size and m = 3 for all
cases.

TABLE I
DESCRIPTION OF THE REAL-WORLD DATASETS. DRIFT KINDS ARE

ABRUPT (A), INCREMENTAL (I), AND OSCILLATING (O).

ID-Abbrev. Dataset Class Examples Feat. |Train| Drift
1-HBeats SDDB Heartbeats (#51) 8 77,904 280 500 O
2-Insects Flying Insects 3 86,400 200 1,000 A
3-Posture Person Activity 11 164,860 3 2,000 I
4-SLCur StarLightCurves-YRev 3 9,236 1,024 1,000 A
5-UWave UWaveGestLibY-Inc 8 4,478 315 896 I
6-Yoga Yoga-XRev 2 3,300 426 300 A

In Table II, we show the average accuracies of the classi-
fiers updated according to detectors and the average ranking
provided by the Friedman test. Given the three detectors, we
highlighted the best result for each dataset. IBDD is ranked
in the first position among the competitors and similar to the
supervised Topline. Specifically for the Yoga dataset, IBDD
slightly outperformed the Topline detector with a drastically
lower number of model updates (6 times vs. 3,000 times) and
labels requested for model update (18.2% vs. 100%). Such
points of updates can be seen in Fig. 3. In Fig. 7, we present
the accuracy over time for Posture and UWave.

TABLE II
ACCURACY RESULTS FOR REAL-WORLD DATASETS.

Dataset IBDD IKS WRS Baseline Topline
1-HBeats 98.72 98.62 98.62 96.67 98.79
2-Insects 95.09 95.03 95.04 61.29 95.22
3-Posture 55.09 53.97 54.91 46.26 55.28
4-SLCur 91.96 91.44 91.06 23.22 92.06
5-UWave 55.08 49.19 48.72 19.29 55.33
6-Yoga 79.83 76.83 77.17 56.23 78.07
Avg. rank 1.833 3.583 3.416 5 1.166

(a) Posture (b) UWave

Fig. 7. Accuracy for Posture and UWave datasets.

We show in Table II that IBDD can provide results slightly
superior to the state-of-the-art unsupervised detectors or even
to the label costly Topline approach which considers contin-
uous updates. However, the main advantage of IBDD is time
efficiency accompanied by accurate results. To better illustrate
the time efficiency of IBDD on real data, Table III shows
the time in seconds spent by the classifier coupled with a
given drift detector to process a whole dataset, as well as the
average time to process each example. As expected, IBDD
loses in time only for Posture dataset, which has three features.
For high-dimensional datasets, such as StartLightCurves with
1,024 features, IBDD was about 10⇥ faster than IKS.

TABLE III
TIME RESULTS IN SECONDS (TOTAL/PER EXAMPLE).

Dataset IBDD IKS WRS Baseline Topline
1-HBeats 1,650/0.021 28,917/0.375 7,703/0.100 349/0.004 6,887/0.089
2-Insects 2,255/0.026 18,327/0.215 7,212/0.084 372/0.004 22,158/0.259
3-Posture 1,633/0.010 976/0.006 1,114/0.007 709/0.004 17,438/0.107
4-SLCur 728/0.088 7,735/0.939 3,345/0.406 36/0.004 3,679/0.447
5-UWave 96/0.027 1,125/0.314 473/0.132 16/0.004 972/0.271
6-Yoga 56/0.019 551/0.183 410/0.137 13/0.004 363/0.121

The relation between time and error is illustrated in Fig. 8.
In this image, each point represents a dataset (also represented
by their ID), different markers distinguish the detectors. The
best results are located close to the origin (0, 0).

Fig. 8. Relation between time and error. Each point is a dataset, markers
represent detectors and the best results are located close to the origin (0, 0).

D. Parameter sensitivity

IBDD has two parameters: i) the number of examples into
the windows to perform the image comparisons and ii) the
number of MSD values above/below the threshold to indicate
a drift (m). In our experiments, we set the window size with
the same size as the initial training set for each dataset and
m = 3. To show the impact of such parameters, we perform
an experiment varying their values.

For the window size parameter, we were varying the values
from 20% to 100% of the training set size, according to the
|Train| previously reported in Table I, and set m = 3. In
Fig. 9, we show the accuracy results varying the window size.

Fig. 9. Accuracy results varying the window parameter.

The most impacted datasets were Yoga and UWave, in
which the accuracy had changed from 72.87% to 79.83%
and from 54.86% to 58.40%, respectively. For Yoga, the
worst accuracy was observed in small windows with only 60
examples. For UWave, the best result was achieved with a
small window containing 179 examples.

Although the window size slightly impacts the accuracy for
most cases, this parameter affects the number of drifts detected
and the runtime. In Fig. 10, we can note that the number of
drifts detected, and consequently, the number of false-positive
detections, are reduced with larger windows, while the average
time to process each example increases.

Fig. 10. Number of drifts detected and average time of IBDD to process each
example varying the window size.

Concerning the number of consecutive MSD values above or
below the drift threshold, we were varying the values of ✏ from
1 to 9. In general, a small value allows a higher number of false
drifts detected due to the occurrence of noise or outliers. On
the other hand, a higher value can delay true drifts detection. In
Fig. 11, we show the impact of ✏ on the accuracy and number
of drifts detected. For most cases, ✏ = 3 can avoid a higher
number of detections.

Fig. 11. Accuracy and number of drifts detected by IBDD given the variation
of parameter m.

E. Distance measures

An essential part of our solution is the similarity measure-
ment between the two-dimensional images that represent the
multidimensional data over the stream. At this point, we have
shown that a simple approach such as MSD can be a fast and
accurate measure for IBDD. However, the employment of a
different measure is an open choice of our proposal.

In this section, we present the performance of IBDD us-
ing different measures. Specifically, we compare MSD with
two other measures: Structural Similarity Index (SSIM) [25]
and CK-1 [26]. The SSIM is a well-known measure mainly
employed for evaluation of image quality by modeling image
distortion as a combination of three factors: loss of corre-
lation, luminance distortion, and contrast distortion. CK-1
is a Kolmogorov complexity-based distance that uses video
compression algorithms to estimate image similarity. Although
the original proposal of CK-1 employs the first generation of
MPEG video codec for compression (MPEG-1), we consider
the fourth generation (MPEG-4) in our experiments. In Ta-
ble IV, we show the accuracy results of this experiment.

TABLE IV
ACCURACY OF IBDD WITH DIFFERENT DISTANCE MEASURES.

Dataset MSD SSIM CK-1
1-HBeats 98.72 98.68 98.60
2-Insects 95.09 95.11 95.05
3-Posture3 55.09 – – – –
4-SLCur 91.96 80.85 80.84
5-UWave 55.08 37.41 52.79
6-Yoga 79.83 57.86 56.23

VI. CASE STUDIES

In this section, we present three case studies on public
health, political science, and medical science. These domains
represent problems with abrupt, oscillating, and incremental
changes in data with thousands of features.

A. Abrupt drift detection for classification of Malaria vectors

Malaria is a disease transmitted by infected mosquitoes
which kills more than 600,000 people yearly, the majority
being African children under 5 years of age [27]. The identifi-
cation of mosquito species is a crucial task for the estimation
of Malaria transmission dynamics, surveillance, and evalua-
tion of interventions [28]. Identifying species is challenging
because some species can only be distinguished by molecular
analysis, given their high morphological similarity [29]. For
example, Anopheles gambiae and Anopheles funestus are two
very similar species of mosquitoes that constitute the bulk
of malaria transmission in Africa. An accurate method to
distinguish them is the Polymerase Chain Reaction (PCR),
which is time-consuming and expensive, being unpractical in
field conditions and for large-scale analysis [30].

Recently, Gonzalez-Jimenez et al. [28] showed that mid-
infrared spectroscopy (MIRS) is a fast (few seconds per
mosquito), practical, and cost-effective method for mosquito
analysis without any molecular identification. In this spec-
troscopy technique, the light interacts with the fundamental
vibrations of the biomolecules present in the mosquito’s
cuticle, creating an absorption spectrum of discrete well-
delineated bands in the mid-infrared region (400-4,000 cm�1).

3SSIM and CK-1 require images with a minimum size for all dimensions.
As Posture has only three features, both measures were not able to compare
the small generated images for this dataset.

In Fig. 12, we illustrate the mid-infrared absorption spectra
for two examples of malaria mosquitoes from the species
Anopheles gambiae and Anopheles arabienses.

Fig. 12. Mid-infrared absorption spectra of two malaria mosquito species.
To perform the automatic identification of the species, we

use a spectrum composed of 3,600 observations as input for
a classifier. Besides being a high-dimensional data, the mid-
infrared spectral bands are affected in non-trivial ways by the
development of the mosquito and the changing composition
of the cuticle over time [28]. Thus, this problem requires an
adaptive approach to provide accurate predictions under these
changes. To maintain the speed advantage provided by the
mid-infrared spectroscopy, the mechanism for drift detection
and model update need to be efficient.

Based on the public data provided by Gonzalez-Jimenez
et al. [28], we use the meta-information related to the age
of the mosquitoes to build a streaming dataset with abrupt
changes. This data contains 4,260 examples from malaria
vector species Anopheles gambiae and Anopheles arabi-

enses with age varying from 1 to 17 days. In our stream
dataset, we consider an initial training set composed only by
mosquitoes with age between 8 and 9 days (486 examples).
In the test set, we consider the following sequence of age
for the arrival of the 3,774 remaining examples from the
stream: (17, 16, 3, 4, 15, 14, 5, 6, 13, 12, 1, 2, 11, 10, 7), where
each color transition represents an abrupt concept drift.

For this data with abrupt changes, a static classifier shows
an accuracy of 69.61%, while the use of a drift detector can
improve this result in about 12%. Table V shows detailed
results achieved by the evaluated detectors, where IBDD
(m = 1) presents the best accuracy result, spending about
8⇥ less time than WRS, and 29⇥ less time than IKS.

TABLE V
ACCURACY AND TIME FOR THE MALARIA MOSQUITO SPECIES

PREDICTION CASE STUDY.

IBDD IKS WRS Baseline Topline
Accuracy 81.37 80.23 79.70 69.61 82.33
Time (sec.) 560 16,722 4,504 17 1,611

In Fig. 13, we show the accuracy over different age groups,
where is possible to see that a classifier trained on 8- and 9-
day-old mosquitoes have difficulty in identifying 1-, 2-, 3-, 4-,
and 7- day-old mosquitoes.

B. Oscillating drift detection on tweets

Twitter distributes short posts via a streaming API. One
can receive tweets as fast as fifty tweets-per-second. Drifts in

Fig. 13. Accuracy for malaria mosquitoes prediction according to age.

tweets can indicate a sudden or gradual change in the trending
topics and change in the type (e.g., political orientation) of
posters. Detecting such drifts can be time-critical when sudden
events as an earthquake or terrorist attack happen.

In this case study, we consider 10,841 political tweets
related to the 2016 U.S. Presidential Election from November
4 to November 13, 2016 [31]. The election was held on
November 8. The 200 most active users generated the collected
data. Each tweet is represented in an embedding space pre-
trained on 2B tweets of GLoVE4 word-embedding, totaling
a feature vector with 2,000 dimensions and without class
labels. To detect drifts on this unsupervised problem, we apply
IBDD with the following parameters: the reference window
(w1) comprises 2,251 tweets generated on the first 48 hours,
the sliding window (w2) has the same size of the reference
window, and m = 4. Since the data is unlabeled, this case
study is an example where a model-independent detector is
required to identify changes. Fig. 14 shows the drifts points.

Drift #1
Nov 07, 16 - 21:01

Drift #2
Nov 08, 16 - 16:11

Drift #3
Nov 09, 16 - 05:30

Drift #4
Nov 12, 16 - 14:34

Election day Trump's victory speech
Nov 09, 16 - 02:45

“Anti-Trump protesters
gear up for weekend
demonstrations across
the US” - The Guardian
Nov 12, 16 - 12:00

Fig. 14. Four drifts detected in the Twitter data and their description.

We identify four drift points. The drifts mark i) the evening
before the election day, ii) the time when voting was on, iii)
the time of the victory speech by President Donald Trump,
and iv) the time when thousands of protesters marched to
Trump Tower in New York in a rally planned in the social
networks5. The drifts identify changes in discussion topics

4https://nlp.stanford.edu/projects/glove/
5https://bit.ly/39cy83O

from campaigns to exit polls to election results to protest -
an oscillating drift that captures the oscillation in the political
orientation of the tweets on discussion topics. For comparison,
IKS and WRS also have found drifts in similar positions.
However, while IBDD spent 53 minutes, IKS spent 6 hours
and WRS 2 hours and 30 minutes.

C. Incremental drift detection for skin lesion classification

Skin cancer is the most common malignancy in the world,
affecting men and women of all ages and skin colors [32].
According to the World Health Organization, 2 to 3 million
cases of non-melanoma and more than 132,000 cases of
melanoma are diagnosed each year.

When detected early, the 5-year survival rate for melanoma
is 98%, but 23% for late stage detection [33]. In this direction,
the automatic prediction of skin diseases using dermoscopic
images represents an important and low-cost tool for prelimi-
nary diagnoses and early intervention.

In this case study, we consider 10,015 dermatoscopic images
of pigmented lesions from a public dataset HAM10000 [34].
This dataset contains data collected over a period of 20 years
from different sites. A feature vector with 2,353 dimensions
representing the mean pixel value of the RGB channels of the
images describes each example. The dataset has seven classes
according to the disease categories: actinic keratoses, basal
cell carcinoma, benign keratinocyte lesions, dermatofibroma,
melanoma, melanocytic nevus, and vascular lesions. Fig. 15
illustrates four real examples from the dataset.

(a) Mel (b) Bcc (c) Akiec (d) Nv

Fig. 15. Examples from the HAM10000 dataset. The diagnoses are: Mel
(Melanoma), Bcc (Basal cell carcinoma), Akiec (Actinic keratosis), and Nv
(Melanocytic nevi).

To build a streaming data with incremental drifts over time,
we sort the arrival order of the examples according to the
patient’s age. Aging is directly responsible for changing the
characteristics of the skin, such as texture, color, among others.
The risk of skin cancer due to the accumulated sun exposure
over the years increases with age [35]. Thus, the classes are
impacted by the age of the patient as well as the age of
the disease. The dataset has images from patients with ages
ranging from 0 to 85 years. In our stream dataset, we consider
an initial training set composed only by images from patients
with age between 75 to 85 years (1,312 examples). In the test
set, the arrival sequence follows a decreasing trend in the age
from 75 to 0 (7,944 examples).

For this data with incremental age changes, a static classifier
shows 64.20% of accuracy, while the use of a drift detector
can improve the result in about 13%. Table VI shows detailed
results. Besides the best accuracy, IBDD (m = 3) is 10⇥ faster
than IKS and 4⇥ faster than WRS.

In Fig. 16, we show the data similarities output by IBDD as
well as the position of the 29 drifts detected by our method.

