
CS 152
Computer Programming

Fundamentals
More Control Structures

Brooke Chenoweth

University of New Mexico

Spring 2025



While and If

• Branching – use if/else

• Loops – use while

• In theory, you could use only these two control
structures for your programs.

• However, it is often convenient to use other
structures as well.



while

while (booleanExpr) {

// statements to repeat while booleanExpr is true

}

A while loop tests the continuation condition first,
then executes the statements in the body.



do..while

Sometimes it is more convenient continuation
condition at the end of the loop, instead of the
beginning.

do {

// body of loop

} while(booleanExpr );



while vs do..while
Having two types of loops doesn’t actually make the
language more powerful. We can write one in terms
of the other.
do..while rewritten as while

do {

loopBody

} while (testExpr );

loopBody

while (testExpr) {

loopBody

}

while rewritten as do..while

while(testExpr) {

loopBody

}

if(testExpr) {

do {

loopBody

} while (testExpr );

}



break out of loops
Sometimes you want to break out of a middle of a
loop.

Scanner sc = new Scanner(System.in);

int n; // holds user number

while(true) { // oh no , an infinite loop!

System.out.println("Enter an integer");

if(sc.hasNextInt ()) {

// user actually entered a number. Yay!

n = sc.nextInt ();

// Use break to jump out of the loop

break;

} else {

// Give user another chance to get it right

System.out.println(sc.next() + " isn’t an integer!");

}

}

// program continues here after break



for loops
Many while loops have the general form:

init

while(testExpr) {

body

update

}

We can use a for loop to combine initialization,
continuation testing, and updating in the first line.

for(init; testExpr; update) {

body

}

We don’t get any new power by adding for to the
language, but for some kinds of problems, it can be
easier to use.


