CS 152
Computer Programming
Fundamentals
Searching and Sorting Arrays

Brooke Chenoweth

University of New Mexico

Spring 2025



Find index of value

/% %
* Find location of given wvalue in an array.
* @param = Value to search for
* @param wvalues Array to search 1in
* @return Index of = inm values, or -1 4if nmot present
*/

public static int linearSearch(int x, int[] values) {

for(int i = 0; i < values.length; i++) {
if (x == values[i]) {
return i;
}
}

return -1;



Linear Search Complexity

e If the array has 100 items, how many
comparisons do | need to do to find the value?
® worst case?
® average case?



Linear Search Complexity

e If the array has 100 items, how many
comparisons do | need to do to find the value?

® worst case?
® average case?

e What about if the array has 1000 items?



Linear Search Complexity

If the array has 100 items, how many
comparisons do | need to do to find the value?

® worst case?
® average case’

What about if the array has 1000 items?
The number of comparisons scales linearly with
the size of the array.

You'll sometimes see this written as O(n)
where n is the size of the array.



Linear Search Complexity

If the array has 100 items, how many
comparisons do | need to do to find the value?

® worst case?
® average case’

What about if the array has 1000 items?

The number of comparisons scales linearly with
the size of the array.

You'll sometimes see this written as O(n)
where n is the size of the array.

Can we do better?
What if the array is sorted?



Searching sorted array

public static int binarySearch(int x,
int [] sortedValues) {
int low = O0;
int high = sortedValues.length - 1;
while (low <= high) {
int mid = (low+high)/2;
int midVal = sortedValues[mid];
if (x < midVal) {
high = mid-1;
} else if(x > midVal) {
low = mid + 1;
} else {
return mid;
}
}

return -1;



Binary Search Complexity

® The number of comparisons scales with the
log, of size of the array.

® You'll sometimes see this written as O(log n)
where n is the size of the array.



Binary Search Complexity

® The number of comparisons scales with the
log, of size of the array.

® You'll sometimes see this written as O(log n)
where n is the size of the array.

® Doubling the size of the array only adds one
more comparison!



Binary Search Complexity

The number of comparisons scales with the
log, of size of the array.

You'll sometimes see this written as O(log n)
where n is the size of the array.

Doubling the size of the array only adds one
more comparison!

This is great, but data isn't always sorted when
we get it.

How can we sort the array?



Find index of largest

public static int indexOfLargest(int[] array) {
int largestIndex = O0;

for(int i = 0; i < array.length; i++) {
if (array[i] > array[largestIndex]) {
largestIndex = 1i;
}
}

return largestIndex;

}



Find index of largest in range

public static int indexOfLargest (int[] array, int n)
int largestIndex = O0;

for(int 1 = 0; i < n; i++) {
if (array[i] > array[largestIndex]) {
largestIndex = 1i;
}
}

return largestIndex;

}



Swap two elements

public static void swap(int[] array, int a, int b) {
int temp array [al;
array [a] array [b];
array [b] temp;

}



Selection sort

public static void selectionSort (int[] values) {

for(int i = 0; i < values.length; i++) {
int endIndex = values.length - i - 1;
int maxIndex = index0OfLargest(values,
values.length - 1i);

swap (values, endIndex, maxIndex);

}



Selection Sort Complexity

® How does sorting scale with the size of the
array?



Selection Sort Complexity

® How does sorting scale with the size of the
array?

® The number comparisons scales with the
square of the size of the array.

* You'll sometimes see this written as O(n?)
where n is the size of the array.



Selection Sort Complexity

How does sorting scale with the size of the
array?

The number comparisons scales with the
square of the size of the array.

You'll sometimes see this written as O(n?)
where n is the size of the array.

This sorting algorithm takes quadratic time.

There are better/faster algorithms out there.
(mergesort, quicksort, heapsort, etc.)



