
CS 152 Computer Programming Fundamentals
Project 7: Dish and Menu Objects

Brooke Chenoweth

Spring 2025

To give you some practice creating and using classes, you are going to write two classes
for this project: Dish and Menu. You will have to create the Dish class from scratch, but
don’t worry, I give a detailed description of what I expect below. For the Menu class, you’ll
be given a skeleton file to fill in, but since it will build on your Dish class, don’t even start
it until you are done with your Dish implementation.1

I am giving you testing code in DishTester.java and DishMenuTester.java2 and a
class containing some constants in the DishConstants.java file. Do not change these files.
Please note: these files will not compile without your classes.

1 Dish class

A Dish represents an item served in in a restaurant. A dish has a name, a price, a menu
section, and some food group classifications.

You will create Dish.java from scratch. Don’t forget to comment all your public methods
and use appropriate access modifiers on your member variables.

1.1 Constructors

Dish has three public constructors:

• Dish() – The default (no parameters) constructor, creates a new Dish with unknown
name, price, and menu section and with empty food groups.

• Dish(String menuSection) – Creates a new Dish with the given menu section, un-
known name and price, and with empty food groups.

• Dish(String menuSection, String name, double price, String foodGroups) –
Creates a new Dish with all member variables initialized with the values given.

1In fact, you won’t even be given the Menu skeleton until you’ve submitted you initial Dish implementa-
tion, so start early.

2You won’t get this file until after you submit Dish for part 1.

1

1.2 Methods

A Dish has at least the following public methods: (You can make more if you feel you need
to, for helping your other methods, but I will be calling and testing these.)

• setName – Takes a String argument and sets the dish’s name. The new name must not
be empty. Returns nothing.

• getName – Takes no arguments and returns the String representing the dish’s name.

• setPrice – Takes a double argument and sets the dish’s price. The new price must
not be negative. Returns nothing.

• getPrice – Takes no arguments and returns the double value representing the dish’s
price.

• setMenuSection – Takes a String argument and sets the dish’s menu section. Returns
nothing

• getMenuSection – Takes no arguments and returns the String representing the dish’s
menu section.

• setFoodGroups – Takes a String argument and sets the dish’s food groups string,
returning nothing. However, we cannot just assign the parameter to the member
variable. We only want to include the known food group characters given in the
DishConstants class, and ignore any other unknown characters. We also want to
ignore any duplicate characters.

So, if we call this method with an argument of “mdvdxmq”, the food groups string
should be set to “mdv”. (Setting food groups to meat, dairy, and vegetable, ignoring
the unknown characters ’x’ and ’q’ and the duplicate dairy and meat.)

• getFoodGroups – Takes no arguments and returns the String representing the dishes
food groups.

• isVegetarian – Takes no arguments and returns true if the dish is vegetarian, false
otherwise. A dish is vegetarian if its food groups do not contain meat.

• isVegan – Takes no arguments and returns true if the dish is vegan, false otherwise.
A dish is vegan if its food groups do not contain meat or dairy.3

• toString – Takes no arguments and returns a String representation of the dish.

– If food groups are empty and price is unknown:

Carrot Cake, Dessert

3Yes, I know this is ignoring other animal products like eggs, but we’re trying not to overcomplicate this
too much. A “real” application could have more detail (full ingredient lists!), which would not necessarily
be harder conceptually to implement, but certainly would be more tedious and time consuming

2

– If food groups are empty and price is known:

Carrot Cake, Dessert: $9.99

– If food groups are given and price is unknown:

Carrot Cake (nvdg), Dessert

– If all fields are known:

Carrot Cake (nvdg), Dessert: $9.99

• toMenuString – Takes no arguments and returns a fancier string representation of the
dish, suitable for printing on a menu. The menu section is not included in this string,
since it is assumed this string will be printed in the appropriate menu section already.
We also will list the food groups (if known) on a second line indented with three spaces
and using the words defined in the DishConstants class, rather than just the character
abbreviations stored in the food groups member variable string.

– If price is unknown and food groups are empty:

Carrot Cake

– If price is known and food groups are empty:

Carrot Cake: $9.99

– If price is unknown and food groups are known:

Carrot Cake

Nuts, Vegetable, Dairy, Grains

– If price and food groups are known:

Carrot Cake: $9.99

Nuts, Vegetable, Dairy, Grains

• isSame – Takes another Dish as an argument and returns true if the two dishes are
the same, false if not.

Two dishes are the same if they both have unknown names, or if they have the same
name, price, menu section, and food groups (in any order).

2 Menu class

I am providing a skeleton of Menu.java for you to fill in after you submit your initial Dish
implementation.

The member variables and constructor have been provided for you, but you will have to
fill in the following methods to complete the class and pass the tests.

Do not change the member variables provided, just initialize them in the constructor and
use them in the methods.

3

2.1 Member Variables

• The name of the menu is stored in a string.

• An array of Strings holds the names of the menu sections.

The order of the sections in this array corresponds to the order of the section informa-
tion stored in the next two arrays.

• An array of integers stores how many dishes are currently in each section.

• An array of arrays of dishes holds the dishes for each section.

This is a “ragged” array, where each row in the array may be of a different length. The
capacity of each section is specified in the constructor.

2.2 Constructors

Menu has one public constructor:

• Menu (String name, String[] sectionNames, int[] sectionCapacity) – Initial-
ize an empty menu with the given name and sections, with ability to hold number of
dishes in each section as specified by the capacity array.

2.3 Methods

Menu has the following public methods for you to implement.

• getSize – Get the total number of dishes in this Menu.

• getName – Get the name of the menu.

• setName – Set the menu’s name. Name must not be empty.

• addDish – Add a dish to the menu in the appropriate row for its menu section. If the
dish is already present, do not add a duplicate. If the dish is new, add it after the
existing dishes in its section.

Returns a string to denote success or failure, one of the following:

Section not found

Ignoring known dish

Menu section full

New dish added

• addDishes – Add an array of dishes to the menu. Return an array of status strings as
described in addDish to indicate success or failure for each dish.

• getAllDishes – Get an array of all the dishes on the menu.

4

• toString – Get a string representation of the menu, consisting of the menu name on
the first line, followed by all the dishes using their toString() format.

For example:

Summer Menu

Pad Thai (nvdmg), Main: $17.99

Cashew Chicken and Rice (dngmv), Main: $17.99

Vegetable and Nut Pilaf (nvdg), Main: $14.99

Pad See Ew (mvg), Main: $16.99

Clam Chowder (mvd), Soup: $14.99

Beef Stew (mvd), Soup: $8.99

Vegetable Stew (vgd), Soup: $7.99

Winter Salad (vgn), Side: $7.99

Vegetable Fried Rice (vgd), Side: $8.99

Southwest Salad (nvdmg), Side: $8.99

• getFullMenu – Get a string of the entire menu, grouped by menu section and using
Dish’s toMenuString() format, as follows:

*** Summer Menu ***

Main:

- Pad Thai: $17.99

Nuts, Vegetable, Dairy, Meat, Grains

- Cashew Chicken and Rice: $17.99

Dairy, Nuts, Grains, Meat, Vegetable

- Vegetable and Nut Pilaf: $14.99

Nuts, Vegetable, Dairy, Grains

- Pad See Ew: $16.99

Meat, Vegetable, Grains

Soup:

- Clam Chowder: $14.99

Meat, Vegetable, Dairy

- Beef Stew: $8.99

Meat, Vegetable, Dairy

- Vegetable Stew: $7.99

Vegetable, Grains, Dairy

Side:

- Winter Salad: $7.99

Vegetable, Grains, Nuts

- Vegetable Fried Rice: $8.99

Vegetable, Grains, Dairy

- Southwest Salad: $8.99

Nuts, Vegetable, Dairy, Meat, Grains

• getVegetarianMenu – Create a menu of only the vegetarian dishes in the same format
as getFullMenu, but indicate vegan dishes with an asterisk, as follows:

5

*** Summer Menu ***

Main:

- Vegetable and Nut Pilaf: $14.99

Nuts, Vegetable, Dairy, Grains

Soup:

- Vegetable Stew: $7.99

Vegetable, Grains, Dairy

Side:

* Winter Salad: $7.99

Vegetable, Grains, Nuts

- Vegetable Fried Rice: $8.99

Vegetable, Grains, Dairy

• removeDish – Bonus problem! This method deletes a dish entirely from the menu, if
it exists. It must correctly update all relevant member variables to not leave a hole in
a menu section or break any other bookkeeping.

Returns true if dish was removed and false if it was not found.

3 General Notes

3.1 Invalid Values

When trying to run a setter method with an unallowable variable, you should leave the
previous value unchanged. Printing error messages when this happens is a good idea, however
the text of them is up to you.

3.2 Uninitialized Values

There are a series of constants provided for you in the DishConstants class. You should use
these variables for dish properties that have not yet been set.

3.3 Access Modifiers

The member variables for your classes should be private. The methods and constructors
listed above should be public. If you make any additional methods, it is up to you which
access modifier you use, but do pick one. Consider if anyone outside of your class might need
access to your helper method.

4 Testing Your Code

4.1 Writing Your Own Tests

The provided test code will not compile until you have implemented the Dish and Menu

classes. I strongly suggest that you create your own main method in each of these two

6

classes to test your methods as you are developing them. Java will allow you to put a main
method into any class you like, so have at it!

4.2 Provided Test Code

The graders will use the DishMenuTester class4 to test your code.5

The expected output if you pass all the tests looks like the following. (There may be ad-
ditional output if you printed some error messages for invalid values, but it will be something
like this.)

*** TESTING DISH IMPLEMENTATION ***

Attempting constructors:

- Constructors seem functional: 7/7

- toString before setters: 2/2

- isSame before setters: 2/2

Attempting setters and getters:

- setName & getName: 4/4

- setMenuSection & getMenuSection: 2/2

- setFoodGroups & getFoodGroups: 4/4

- setPrice & getPrice: 4/4

Attempting other methods:

- toString: 5/5

- toMenuString: 5/5

- isSame: 3/3

- isVegetarian: 3/3

- isVegan: 4/4

Dish implementation score: 45/45

*** TESTING MENU IMPLEMENTATION ***

Attempting initialization:

- Initialization seems functional: 3/3

Attempting setters and getters:

- getMenuSize: 3/3

- getDishes: 3/3

- setName and getName: 2/2

- adding to empty menu: 2/2

Attempting other methods:

- addDish: 7/7

- addDishes: 2/2

- getFullMenu: 6/6

- getVegetarianMenu: 6/6

- toString: 6/6

- *Bonus* removeDish: 5/5

4Provided after you submit part 1 on Canvas
5They will use DishTester for testing your part 1 submission

7

Menu implementation score: 45/40 (max 45)

5 Project Submissions

To make sure you start early enough, this project is split into two submissions.

5.1 Part 1 – Dish Functionality

This part is to make sure your Dish implementation is functioning with enough time to
implement the Menu class afterwards. You won’t be graded on following coding standards
here, so if you’re still missing a few javadoc comments, don’t worry about it and just make
sure you add them to the file before your Part 2 submission.

After submitting Dish.java to Part 1 on Canvas, you will be given access to the
Menu.java skeleton, the DishMenuTester.java test file, and the Part 2 assignment.

5.1.1 Turning in your assignment

Submit your Dish.java file to Canvas Do not attach .class files or any other files.

5.1.2 Grading Rubric (total of 5 points)

0.5 points File submitted to Canvas was named Dish.java.

4.5 points 0.1 points per point in score from dish test in DishTester

Note: you may not get the full points for these tests if examination of your code
indicates that you hard-coded answers to these specific test cases or otherwise did not
actually implement the class as specified.

5.2 Part 2 – Full Project

This is the full project with your final versions of both Dish and Menu. Even if you haven’t
changed your Dish implementation since part 1, make sure you remember to submit both
files.

You will not be able to submit Part 2 without first submitting Part 1.

5.2.1 Turning in your assignment

Submit your Dish.java and Menu.java files to Canvas. Do not attach .class files or any
other files.

5.2.2 Grading Rubric (total of 95 points + 5 bonus)

-5 points File submitted to Canvas was not correctly named.

-5 points The code did not compile without errors or warnings.

8

-5 points Menu implementation does not work with my version of Dish.

10 points The code adheres to the coding standard specified on the course website.

45 points Score from dish test in DishMenuTester

40 points (+ possibly 5 bonus) Score from menu test in DishMenuTester

Note: you may not get the full points for these tests if examination of your code
indicates that you hard-coded answers to these specific test cases or otherwise did not
actually implement the class as specified.

9

	Dish class
	Constructors
	Methods

	Menu class
	Member Variables
	Constructors
	Methods

	General Notes
	Invalid Values
	Uninitialized Values
	Access Modifiers

	Testing Your Code
	Writing Your Own Tests
	Provided Test Code

	Project Submissions
	Part 1 – Dish Functionality
	Turning in your assignment
	Grading Rubric (total of 5 points)

	Part 2 – Full Project
	Turning in your assignment
	Grading Rubric (total of 95 points + 5 bonus)

