
CS 152 Computer Programming Fundamentals
Project 8: Particle Simulation∗

Brooke Chenoweth

Spring 2025

In this project, you’ll create a particle simulation program. The software resembles a paint
program, except that the user is painting particles into the world. The software simulates the
physical behavior of those particles, which may move (perhaps falling like grains of sand),
change, clone, disappear, interact, etc.

1 The ParticleSimGUI class

The ParticleSimGUI class will display your simulation and capture mouse input from the
user. You will not change this class.

• public ParticleSimGUI(String title, int numRows, int numCols, String[] toolNames)

The constructor creates a display object from a given window title, an array of strings
to use as names for the tool selection buttons, and the number of rows and columns
for the display.

• public void setColor(int row, int col, Color color)

Sets the cell at given (row, col) location to the specified color. Row 0 is at the bottom,
column 0 is on the left side, and coordinates increase going up and right. Does not
actually repaint the screen. (see refresh, below)

The java.awt.Color class has many predefined color constants for you to to choose
from. If you aren’t satisfied with the existing colors, you can call the constructor,
specifying red, green, and blue values ranging from 0 to 255.

Color(int red, int green, int blue)

• public void refresh()

Repaints the screen with the current colors.

• public ParticleSimGUI.Location getMouseLocation()

Returns an object holding the row and column of the last mouse click location.

∗This project is based on the project at http://nifty.stanford.edu/2017/feinberg-falling-sand/

1

http://nifty.stanford.edu/2017/feinberg-falling-sand/


• public String getSelectedTool()

Gets the currently selected tool string. Tool names were specified in the constructor.

• public int getSpeed()

Get the current speed selected by the slider at the bottom of the window.

2 What you have to do: Edit the ParticleSimulator

class

To start off, compile and run ParticleSimulator. This will run ParticleSimulator’s main
method, which constructs a new ParticleSimulator and calls its run method. You should see
a window pop up. On the left side is a black rectangular canvas which will soon be inhabited
by particles. On the right side there is one button for each tool you will be able to paint
with: Empty (for erasing) and Metal (for creating metal particles). You can’t actually paint
now, because you haven’t written the code yet.

Inside the ParticleSimulator.java class, you’ll see I have defined an enum type Particle
to represent the different particle types. Initially, it only contains two values, but you will
add more as you proceed with the project.

You’ll see that a ParticleSimulator object has two member variables:

• grid – a 2-dimensional array of Particle values that represent the type of particle found
at each location

• display – the ParticleSimGUI used to show the particles on the screen

Work through the following exercises to implement the particle simulation.

2.1 Constructor

The ParticleSimulator constructor already initializes the display field to refer to a new Par-
ticleSimGUI with appropriate dimensions and tool names. Insert code to initialize the grid
field to refer to a 2-dimensional array of the same dimensions filled with empty material.
(You won’t be able to test this code yet.)

2.2 updateFromUser

The updateFromUser method is called (by the run method) after the user clicks on some
part of the canvas. The selected tool string (Empty, Metal, etc.) is passed to the method.
Store the corresponding Particle value in the corresponding position of the grid array. (You
won’t be able to test this code yet.)

2



2.3 setDisplayColors

The setDisplayColors method is called (by the run method) at regular intervals. Its job is to
draw each particle (and empty space) found in grid onto the display, using ParticleSimGUI’s
setColor method. Complete this method so that empty locations are shown in one color
(probably black) and metal locations are shown in another color (probably gray).

Test that you can now paint metal particles and erase them.

2.4 Sand

Modify your program so that you can also paint with sand particles (probably in yellow).
For now, these particles won’t actually move.

2.5 updateRandomLocation

The updateRandomLocation method is called (by the run method) at regular intervals. This
method should choose a single random valid location. (Do not use a loop.) If that location
contains a sand particle and the location below it is empty, the particle should move down
one row. (Metal particles will never move.) This code should only modify the array. Do not
set any colors in the display. Test that your sand particles fall now.

Tip: If particles fall too quickly or too slowly, the speed can be adjusted by adjusting
the slider in the display or by changing the dimensions passed to the ParticleSimulator
constructor (from main).

Note: Because the updateRandomLocation method picks a single random particle to
move (or act in some way) each time it is called, it is possible that some sand particles
will move several times before others have the chance to move at all. In practice, the
updateRandomLocation method is called so rapidly that you are unlikely to notice this
effect when you run the code.

2.6 Water

Modify your program so that you can also paint with water particles, which move in one of
three randomly chosen directions: down, left, or right.

In the updateRandomLocation method, when the randomly chosen location contains a
water particle, pick one of three random directions. If the location in that randomly chosen
direction is empty, the water particle moves there. (Look for ways to minimize duplicate
code in your updateRandomLocation method. You will not receive full credit if you copy
large amounts of code instead of using helper methods to organize your implementation.)

Test that the water behaves roughly like a liquid, taking the shape of a container.

2.7 Dropping Sand Into Water

What happens now when you drop sand particles into water? Right now, sand is only allowed
to move into empty spaces. Modify your code so that a sand particle can also move into
a space containing a water particle (by trading places with the water particle). (Look for

3



ways to minimize duplicate code in your updateRandomLocation method.) Test that you
can drop sand into water now (without destroying the water).

2.8 Sliding Sand

In real life, sand doesn’t form vertical stacks, but falls into piles. Modify your code to have
the sand sliding sideways a little so that it forms a more natural looking pile. It should still
fall down into empty space (and water!), but if the particle is sitting on top of something
solid, pick randomly between left and right, and if that location and the location beneath it
is empty (or water, etc.), swap the sand into it.

So, if the sand is right on the edge of a solid surface, it’ll sometimes randomly slip off
(and later fall down), but in the middle of something solid, it’ll stay put.

2.9 Add Another Liquid: Oil

Oil particles will behave much like water, falling through empty space and interacting with
solids like sand and metal in a similar way, but you must consider how oil interacts with
water to make it float (since it is less dense). Also, oil is more viscous than water, so it is less
likely to spread horizontally. Instead of choosing randomly from the down, left, and right
with equal probabilities (like with water), you will pick down 80% of the time, left 10% of
the time, and right 10% of the time.

Don’t just copy your water code for this. Make some helper methods for the common
functionality. You will not receive full credit if you copy large amounts of code!

2.10 Additional behaviors

Now implement other behaviors. Get creative!
I want to see at least 3 new behaviors beyond the original metal, sand, water, and oil.

Document the expected behavior of each of the material types you include in your program
so we know what to look for when testing it. (Just add more description to the class comment
at the top of the file.) You will not receive full credit without proper documentation!

There’s the opportunity for some bonus points here if you go above and beyond with
your additional functionality, so have fun and be creative!

Here are some ideas to get you started.

• Other solids besides sand and metal. Should they fall and/or spread out with different
rules than sand?

• Other liquids besides water and oil. Acid that destroys metal, liquids with different
densities that can form interesting layers, etc.

• Chemical reactions. Acid/base interactions, freeze/boil (adding heat/cold?)

• Gasses. Steam, clouds?

• Life. Plants that grow, animals that move and eat, death and decay?

4



3 Turning in your assignment

Submit your ParticleSimulator.java file on Canvas. Do not attach .class files or any
other files.

5


	The ParticleSimGUI class
	What you have to do: Edit the ParticleSimulator class
	Constructor
	updateFromUser
	setDisplayColors
	Sand
	updateRandomLocation
	Water
	Dropping Sand Into Water
	Sliding Sand
	Add Another Liquid: Oil
	Additional behaviors

	Turning in your assignment

