
CS 251
Intermediate Programming

Methods and Classes

Brooke Chenoweth

University of New Mexico

Spring 2025

Methods

• An operation that can be performed on an
object

• Has return type and parameters
• Method with no return type (void) is often called

procedure in other languages.
• Method that has a return type, may be called

function in other languages.
• In Java - They are all called methods

• Can be overloaded. What does that mean?

• Many already available methods. . . (See JDK
API)

What is Overloading?

• A method is identified by its name, and the
types of its arguments. You can declare several
methods with the same if the argument types
differ.

• Argument order is important!

• It is not possible to declare two methods that
only differ in the return type. (Why?)

• Can not declare one method circleArea with the
radius as argument, and one circleArea with the
circumference, unless radius and circumference
have different types.

Overloading Example
public class OverloadExample {

public static void writeType(int x) {

System.out.println("int");

}

public static void writeType(char c) {

System.out.println("char");

}

public static void writeType(String s, float f) {

System.out.println("String + float");

}

public static void main(String [] args) {

writeType (1);

writeType(’a’);

writeType("Hello", 3.1415);

}

}

The static keyword

• Static methods and Static variables

• Mixing static and non static
• Programming style - use a small main

• Only contain method calls

Static variables

• Constants - public final static

• Variables - public static

• When do we use them? Why?

• Static vars in other classes. How to use them?

Static methods

• What is a static method?

• When do we want to use them?

• main is always static

• Example: Math class

Put a main in any class!

• May be something new.

• Very useful for testing

• No need to compile “whole” program, just class

• Remember previous slide. Instantiate object to
test it.

• Other reasons for multiple main methods?

Nonstatic from static

• Problems with calling non-static methods from
a static method. Why?

• Solution 1: Instantiate an object and invoke
method with it.

• Solution 2: Add a parameter to take object of
object type and use it. (Won’t work for main)

Wrapper classes

• Integer, Character, & Double

• Has many useful static methods.

• Initialization and casting between primitive

• Autoboxing and unboxing

What is an object?
Each object has certain data and behavior
• An example: student

• Data: age, endurance, intelligence, . . .
• Behavior: code, drink, workout, sleep, . . .

• Another example: car
• Data: power, top-speed, shape, color, etc. . .
• Behavior: start, accelerate, break, turn

What is a class?

• A class is a blueprint from which objects are
created.

• An object created from a class is an instance of
that class.

Example class
public class Student {

private int age , endurance , intelligence;

public Student (int age , int endurance , int intelligence) {

this.age = age;

this.endurance = endurance;

this.intelligence = intelligence;

}

public void drink (String what) {

if (what == "milk") {

endurance ++;

} else if (what == "alcohol") {

if (age >= 21) {

intelligence = intelligence - 5;

} else {

System.out.println("You are too young to drink!");

}

} else {

System.out.println("Don’t drink " + what + "!");

}

}

}

Find mistakes!

• What’s wrong with the program on previous
page?

The String trap

• Why shouldn’t you compare two strings with
the == operator?

• Reference types!
• A reference to a place in memory - a comparison

with the == operator compares addresses of
memory.

• Are the two references both refering to the same
object?

• When comparing two objects, usually want to
use equals method.

Example class revisited
public class Student {

private int age , endurance , intelligence;

public Student (int age , int endurance , int intelligence) {

this.age = age;

this.endurance = endurance;

this.intelligence = intelligence;

}

public void drink (String what) {

if (what.equals("milk")) {

endurance ++;

} else if (what.equals("alcohol")) {

if (age >= 21) {

intelligence = intelligence - 5;

} else {

System.out.println("You are too young to drink!");

}

} else {

System.out.println("Don’t drink " + what + "!");

}

}

}

Class vs Instance variables
Instance variables

• Non-static fields

• Every object has
its own

• Need instance to
use

Class Variables

• Static fields

• Associated with
class, not a
particular object

• Can be
manipulated
without an
instance

Class and Instance Variable Example

public class Student {

// These are instance variables

private String name;

private int id;

// This is a class variable

private static int numberOfStudents = 0;

public Student (String name) {

this.name = name;

// Give each student a unique ID

this.id = ++ numberOfStudents;

}

// More methods here ...

}

Access Modifiers

public Accessible to all

private Only this class

protected Only this class and its subclasses1

package-private No modifier.2 This class and others
in same package.

1and also same package
2Students usually use this by accident when they forget the modifier.

Access Modifier Tips

• Don’t expose your guts!

• Use private unless you have a good reason
not to.

• Avoid public fields except for constants. (Use
getter/setter)

Encapsulation - Creating an API

• API = Application Programming Interface

• Define a set of rules for an object (i.e., what
public methods should be available)

• A well defined API will help in large projects

• Will reduce time for redesign and integration

• Is what we will strive to achieve

• Will require a certain design component in later
programming projects

How to think object orientation
• Look at problem description – Identify the
following:

• Verbs (possible methods)
• Nouns (possible objects - or instance variables)

• Think early on how these objects will interact -
Diagrams!

• What information (possibly objects) will need
to be passed between them

• Then what? Put the design to test - have
someone else critique it.

• Revise your design - Start Implementation

Creating the API
• First part of implementation is to realize the
API

• Create all classes, with method stubs only
• Write initial documentation for each object and

method - This way you clearly know what each
method is supposed to do, and might find flaws in
the design when you think about it more.

• Use Javadoc for your comments – Creates nice
webpages for the API automatically.

Encapsulation Guidelines

1. Place comment in front of class to define how
to think about the class.

2. All instance variables should be declared
private

3. Provide mutator and accessor methods for
state change

4. Use comment before each method, describing
it’s use

5. Make all helper methods private

6. Use /** */ comments for API comments and
// for implementation details

Writing javadoc comments. (Page 1)
/**

* A class to demonstrates the usage of javadoc documentation

* features.

* @author Brooke Chenoweth

* @version 1.1

*/

public class JavadocDemo {

private String name; // Name of the object

private int desc; // Description of object

/** The constant number of the democonstant. */

public static final int DEMOCONSTANT = 5;

/**

* The default constructor. Defines the empty JavadocDemo

* class with default values set. Typically implicitly

* called by subclasses.

*/

public JavadocDemo () {

}

Writing javadoc comments. (Page 2)
/**

* Preferred constructor.

* @param desc Describes the entity in the object.

* @param name Names the entity in the object.

*/

public JavadocDemo (int desc , String name) {

this.name = name;

this.desc = desc;

}

/**

* Changes the name of the object and makes sure name is valid.

* @param name Proposed new name for object

* @return True if name accepted , false if not.

*/

public boolean changeName (String name) {

if (name.equals(this.name)) {

return false;

}

this.name = name;

return true;

}

}

