CS 251
Intermediate Programming
Keyword Roundup

Brooke Chenoweth

University of New Mexico

Spring 2025

So many keywords!

static

final

abstract

public, private, protected

class, interface, enum

extends, implements

this, super

instanceof

try, catch, finally, throw, throws

boolean
byte
char
double
float
int
long
short

Primitive Types

Literal values: true, false, null

e true, false, and null are not actually keywords!,
they are literals

e Still can't use them as identifiers in your
programs

Lsplitting hairs here

var for type inference

e Java 10 introduced a reserved type name? for
inferring types of local variables.

® Only works when initializing a local variable to
something non-null

e Can make more readable code by eliminating
redundant type information. Instead of

BigUglyLongTypeName a = someMethod () ;
AnotherUglyType b = new AnotherUglyType(a);
oneMoreMethod (b) ;

We can use

var a = someMethod ();
var b = new AnotherUglyType(a);
oneMoreMethod (b);

%not technically a keyword, so code with variables named var still OK

void

e Use void when declaring/defining methods to
specify method has no return type.

public void myMethod () {
}

® void is not a type. (Can't have a void
reference, unlike C or C++)

Control Flow

break
case

continue
default?
do

else

for

if

return
switch

while

3Also can allow interface to provide implementation of a method

new

Use new to create new objects.
® Color col = new Color(5,5,5);

® Block[] blocks = new Block[20];

static
If a member is static, it belongs to the class, not a
particular instance.
® Variables
Methods
Nested classes

Nested interfaces
® Nested enums

final

If something is final, it cannot be changed.
e A final variable cannot be reassigned.
® Final member variable is initialized once when
object is constructed.
® Final parameter is not assigned within method.
® Final local variable will not be reassigned.
® |ocal class method referencing local variable or
parameter insists on final.

e A final method cannot be overridden.
e A final class cannot be extended.

abstract

® An abstract method is declared without an
implementation.

e |f a class has abstract methods, it must be
declared abstract. (May also declare class
abstract without abstract methods.)

e An abstract class cannot be be instantiated.

this

® Access member variables.
e Call one constructor from another.

public class Point2D {
protected double x, y;
public Point2D(double x, double y) {

this.x = x;
this.y = y;

}

public Point2D () {
this (0, 0);

}

}

super

e (Call parent constructor from child’s
constructor.
® Must be first statement in child constructor.
® |f omitted, default (no argument) parent
constructor is called.
® Access parent methods when child overrides.
® Access hidden parent fields. (Tip: Don't hide

fields. It's confusing!)

public class Point3D extends Point2D {
protected double z;
public Point3D(double x, double y, double z) {
super (x, y);
this.z = z;

Access Modifiers

private Only this class

package-private No modifier. This class and others
in same package

protected This class and its subclasses, plus same
package

public Accessible to all

package

e Use packages to group related types.

package mypackage;
public class MyClass {
X

e Companies use reversed internet domain name
to begin package names.
® com.example.mypackage
¢ |f no package statement, your type will be in
an unnamed package.

® Package structure and directory structure
usually must match.

import

e Can use package member with fully qualified
name without importing.
® mypackage.MyClass

® java.awt.Color

e Can import specific member

’import mypackage.MyClass;

e Can import entire package with wildcard.

’import java.awt . *;

class, interface, enum

A class is a template for a type of object.

An interface is contract defining public
behaviour.

An enum is a special kind of class that defines
a fixed set of constants.

All can be top-level or nested.

record classes for plain data

As of JDK 16, we have a new keyword record to
define a simple object type to hold a few fields of
immutable data.

‘public record Rectangle (double length, double width) { }

is equivalent to

public final class Rectangle {
private final double length;
private final double width;

public Rectangle(double length, double width) {

this.length = length;
this.width = width;

double length() { return this.length; }
double width() { return this.width; }

// equals (), hashCode(), toString using fields

extends vs implements

® A class extends its parent class.

® An interface possibly extends another
interface.

e A class implements an interface.

instanceof

e Sometimes, you really need to know if an
object is an instance of a particular type. You
can use instanceof to find out.

e Reconsider your design if you are using lots of
instanceof expressions. Polymorphism is
better!

e Common use of instanceof is when
overriding equals

Pattern matching with instanceof

Let's assume with have a shape interface,
implemented by Rectangle

if (shape instanceof Rectangle) {
Rectangle r = (Rectangle)shape;
// do Rectangle stuff here

}

The instanceot check tells us we can safely cast.

Pattern matching with instanceof

Let's assume with have a shape interface,
implemented by Rectangle

if (shape instanceof Rectangle) {
Rectangle r = (Rectangle)shape;
// do Rectangle stuff here
}
The instanceot check tells us we can safely cast.
As of JDK 17, we can simplify this test plus cast

like so:

if (shape instanceof Rectangle r) {
// do Rectangle stuff here
}

Exception Handling

try — clause for testing potential exception
code.

catch — catching the exceptions, if they
happen

throws — used in method headers to indicate
method might cause exception

throw — used by a method to “throw" (cause)
an exception

finally — code executed after the try-catch
clauses, regardless of whether exception
happened or not.

Other Keywords — not used in this course

transient — used to exclude field from
serialization

synchronized — used in multithreaded
programs

volatile — used in multithreaded programs

const, goto — not actually used, but are
reserved words

assert — used to test assumptions (disabled
by default)

assert

If you want to programmatically test your
assumptions, you can add assert statements
to your program.

assert booleanExpr;

By default, does nothing, but if you run with
the -ea flag to enable assertions, will throw an
AssertionError If booleanExpr is false.

You would only use this in testing, not for

actual program control. (Since they can be
disabled.)

