
CS 251
Intermediate Programming

Overriding equals and hashCode

Brooke Chenoweth

University of New Mexico

Spring 2025



equals method in Object
public boolean equals(Object obj)

• The Object class provides the equals method to
indicate if some other object is “equal to” this
one.

• Implementation in Object class checks to see if
the two objects are the same object in memory.
(That is, uses the == operator to compare the
references)

• Often want to override to compare fields
instead.

• If you override equals, you generally also should
override hashCode



Requirements for equals
The equals method implements an equivalence
relation on non-null object references.
For any non-null objects x and y

• Reflexive – x.equals(x) returns true

• Symmetric – x.equals(y) iff y.equals(x)

• Transitive – if x.equals(y) and y.equals(z), then
x.equals(z)

• Consistent – multiple calls to equals with same
x and y give the same value (unless the objects
have changed)

• x.equals(null) returns false



Example – 2D Point

public class Point {

private int x;

private int y;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

// equals , hashcode , etc.

}

Want two points to be equal iff x and y are equal.



equals – attempt 1

public boolean equals(Point other) {

return x == other.x && y == other.y;

}

What is wrong?

Not actually overriding equals!
Parameter should be an Object, not a Point, so this
is overloading.



equals – attempt 1

public boolean equals(Point other) {

return x == other.x && y == other.y;

}

What is wrong?
Not actually overriding equals!
Parameter should be an Object, not a Point, so this
is overloading.



equals – attempt 2

@Override

public boolean equals(Object other) {

return x == other.x && y == other.y;

}

What is wrong?

Won’t compile since Object doesn’t have x or y
fields.
We’ll need to cast to a Point to access them.
How can we be sure the cast will succeed?



equals – attempt 2

@Override

public boolean equals(Object other) {

return x == other.x && y == other.y;

}

What is wrong?
Won’t compile since Object doesn’t have x or y
fields.
We’ll need to cast to a Point to access them.
How can we be sure the cast will succeed?



equals – working version

@Override

public boolean equals(Object obj) {

if(obj instanceof Point) {

Point other = (Point)obj;

return x == other.x && y == other.y;

} else {

return false;

}

}

JDK 17 introduced pattern matching in instanceof,
so we don’t need the separate cast line anymore



equals – working version

@Override

public boolean equals(Object obj) {

if(obj instanceof Point) {

Point other = (Point)obj;

return x == other.x && y == other.y;

} else {

return false;

}

}

JDK 17 introduced pattern matching in instanceof,
so we don’t need the separate cast line anymore



equals – shorter version

@Override

public boolean equals(Object obj) {

if(obj instanceof Point other) {

return x == other.x && y == other.y;

} else {

return false;

}

}

I’ll still compare the fields in this version even if I’m
checking if object is equal to itself. Would be nice
to skip that. . .



equals – shorter version

@Override

public boolean equals(Object obj) {

if(obj instanceof Point other) {

return x == other.x && y == other.y;

} else {

return false;

}

}

I’ll still compare the fields in this version even if I’m
checking if object is equal to itself. Would be nice
to skip that. . .



equals – check for self compare

@Override

public boolean equals(Object obj) {

if(obj == this) return true;

if(obj instanceof Point other) {

return x == other.x && y == other.y;

} else {

return false;

}

}



equals – alternate

@Override

public boolean equals(Object obj) {

if(obj == this) return true;

try {

Point other = (Point)obj;

return x == other.x && y == other.y;

} catch (ClassCastException ex) {

return false;

}

}

This version may be faster if cast always will
succeed.



What is a hash code?

• A hash function maps arbitrary data to
fixed-size values. These values are hash codes
In Java, the hashCode method maps this Object
to an int value.

• We use hash codes to index a fixed size table
called a hash table.
In Java, hashtables are used in HashSet, HashMap,
etc.



Requirements for hashCode

• Multiple calls to hashCode on the same Object
should always produce the same int result
(unless the object has been modified)

• If two objects are equal according to the equals
method, they must have the same hashCode
result.

• If two objects are unequal, they do not have to
have different hashCodes, but producing
different results for unequal objects will give
better performance.



Tips for implementing hashCode

• If single field is an int (or small enough to
safely cast to int), just use that value

• If single field is an Object, call hashCode on
field and use that

• If multiple fields, combine hashcode values in a
way that reduces collisions.

• Most IDEs can help you generate reasonable
equals and hashCode implementations.



hashCode

@Override

public int hashCode () {

return 37*x + y;

}

The Objects class has a hash method to get a
combined hashcode for multiple values.

@Override

public int hashCode () {

return Objects.hash(x,y);

}



What about Comparable?
If you implement Comparable, make sure its result is
consistant with your equals method.
public class Point implements Comparable <Point > {

@Override

public int compareTo(Point p) {

if(x == p.x) {

return y - p.y;

} else {

return x - p.x;

}

}

}

Please note: the subtraction trick I used here will
fail if you run into integer overflow. More robust
solution should compare with less than operator.



Avoid coding with records
If your data type is immutable (all the fields are
final), you might prefer to use a record instead.

public record Point(int x, int y) {}

A record provides a constructor, accessors for all
fields, and default implementations for equals,
hashCode, and toString. (You can override these
and/or add more methods, but all fields will be
final.)


