CS 251
Intermediate Programming

Postfix to Infix

Brooke Chenoweth

University of New Mexico

Spring 2025

Converting Postfix to Infix

. Create a stack to hold intermediate infix
expressions.

. For each token in the postfix expression:

® |f token is an operand, push onto stack

® |f operator, pop two subexpressions from stack,
combine with operator to make new infix
expression, push that onto stack

. The item left on stack after postfix expression
is processed is the final infix expression.

But what about parentheses?

® First subexpression is 1 + 2
e Second subexpression is 3 * 4

e What happens if | combine them with a
multiplication operator?

But what about parentheses?

First subexpression is 1 + 2

Second subexpression is 3 * 4

What happens if | combine them with a
multiplication operator?

Naive answer is 1 + 2 *x 3 % 4, but that's
not what we wanted!

But what about parentheses?

First subexpression is 1 + 2
Second subexpression is 3 * 4

What happens if | combine them with a
multiplication operator?

Naive answer is 1 + 2 *x 3 % 4, but that's
not what we wanted!

Could add parentheses around every
subexpression, but that's overkill.

Adding parentheses only when needed

e Compare subexpression operator precedence
with current operator

e |f subexpression operator has lower precedence
than current operator, add parentheses to
subexpression before combining.

® + has lower precedence than *, so previous
example would result in (1 + 2) * 3 *x 4

Example

Postfix Expression: 1 2 * 3 4 *x + 5 %
° 1

Stack

Example

Postfix Expression: 1 2 * 3 4 *x + 5 %
° 1
° 2

Stack

Example

Postfix Expression: 1 2 * 3 4 *x + 5 %
° 1
° 2
° x

1 % 2
Stack

Example

Postfix Expression: 1 2 * 3 4 *x + 5 %
° 1
° 2
° x

3

1 % 2
Stack

Example
Postfix Expression: 1 2 * 3 4 *x + 5 %

° 1
° 2
° x
® 3
° 4

4

3

1 x 2

Stack

Example
Postfix Expression: 1 2 * 3 4 *x + 5 %

[)
¥ D W O *x N -~

3 % 4
1 % 2
Stack

Example
Postfix Expression: 1 2 * 3 4 *x + 5 %

[
+ ¥ PH W *x N =

1 2+ 3 x4
Stack

Example
Postfix Expression: 1 2 * 3 4 *x + 5 %

1 *x 2+ 3 % 4
Stack ¢

[
g+ x P W ¥ N =

Example
Postfix Expression: 1 2 * 3 4 *x + 5 %

(1 *x2+3%x4) x5
Stack ¢

[
X O + X P W ¥ N =

How can we implement in Java?

What do we need?
® Need to break up postfix expression into tokens.
e Need a stack of intermediate expressions.
® Need to know operator precedence.

