CS 251
Intermediate Programming

Java I/O — Streams

Brooke Chenoweth

University of New Mexico

Spring 2025



Basic Input/Output

® |/O Streams — mostly in java.io package
® File I/O — mostly in java.nio.file package



What is an /O Stream?

A stream is a sequence of data.

Represents an input source or output
destination. (Files, devices, other programs,
etc.)

Support different kinds of data (Bytes,
primitive data types, characters, objects)
Some streams simply pass on data, others
transform it in useful ways.

An input stream reads data from a source, one
item at a time.

An output stream writes data to a destination,
one item at a time.



Byte Streams

Byte streams perform input and output of 8-bit
bytes.

All byte stream classes extend InputStream or
OutputStream

Very primitive — usually won't use directly

All other stream types are built on byte
streams.



Byte Stream Example

import java.io.x*;
public class CopyBytes {
public static void main(Stringl[] args)
throws IOException {
FileInputStream in = null;
FileOutputStream out = null;

try {
in = new FileInputStream("infile.txt");
out = new FileOutputStream("outfile.txt");
int c;
while ((c = in.read()) != -1) {
out.write(c);
}
} finally {
if (in != null) { in.close(); 1}
if (out != null) { out.close(); %}



Character Streams

e Character streams read/write characters.

e Automatically translates to/from local
character set.

® Character stream classes descend from Reader
and Writer



Character Stream Example

import java.io.x*;
public class CopyCharacters {
public static void main(Stringl[] args)
throws IOException {

FileReader in = null;
FileWriter out = null;
try {
in = new FileReader ("infile.txt");
out = new FileWriter ("outfile.txt");
int c;
while ((c = in.read()) !'= -1) {
out.write(c);
}
} finally {
if (in !'= null) { in.close(); }
if (out != null) { out.close(); %}



Wrapping Byte Streams

e Character streams are often “wrappers” for
byte streams.

® For example, FileReader uses
FileInputStream to actually read the data,
and then translates the bytes into characters.

e |f you have a byte stream, but no character
stream class (when using sockets for
networking, for example), use general-purpose
byte-to-character “bridge” streams:

® InputStreamReader
® (JutputStreamWriter



Buffered |/O

e With unbuffered | /O streams, each read/write
request is handled directly by underlying OS.
® |nefficient
® Expensive
® Better approach — buffered | /O streams.
® Uses a buffer in memory to reduce calls to system.
e Buffered input streams read data from a buffer,
only call the native input APl when the buffer is
empty.
® Buffered output streams write data to a buffer, and
only call native output APl when the buffer is full.

e Buffered streams also let us work with more
data at once. Lines instead of characters, for
example.



Line I/O Example

import java.io.*;

public class CopyLines {
public static void main(Stringl[] args)
throws IOException {

BufferedReader in = null;
PrintWriter out = null;
try {
in = new BufferedReader (new FileReader ("infile.txt"));
out = new PrintWriter (new FileWriter("outfile.txt"));
String line;
while ((line = in.readLine()) !'= null) {
out.println(line);
}
} finally {
if (in !'= null) { in.close(); }
if (out !'= null) { out.close(); }
}



Always Close Streams

® Always close a stream when it is not longer
needed.

® Avoids resource leaks.

® Need to close even if an error occurs. Use
finally or try-with-resources.



try-with-resources Statement

Java 7 introduced try-with-resources statement.
A try statement that declares one or more
resources.

A resource is an object that must be closed
when program is done with it.

Any object that implements
java.lang.AutoCloseable can be used as a
resource.

|/O Streams implement java.io.Closeable,
which extends AutoCloseable



Line I/O Example with try-with-resources

import java.io.x*;

public class CopyLines {
public static void main(Stringl[] args)
throws IOException {
try (
BufferedReader in =
new BufferedReader (
new FileReader ("infile.txt"));
PrintWriter out =
new PrintWriter (
new FileWriter ("outfile.txt"))) {
String line;
while ((line = in.readLine()) != null) {
out.println(line);
}
¥




Standard Streams

Java automatically defines three standard streams.

Standard Input — System.in
Standard Output — System. out
Standard Error — System.err

System.out and System.err are
PrintStream objects.

System.in is a byte stream. Wrap with
InputStreamReader if you want to read
characters.



Breaking up input with Scanner

Construct Scanner by wrapping an
InputStream

The Scanner breaks down input into tokens.
By default, tokens are separated by whitespace.

Use useDelimiter method to specify different
delimiter (argument is a regular expression)

Can recognize and parse primitive types.
Be sure to close when done!



Split Words Example

import java.io.x*;
import java.util.Scanner;

public class SplitWords {
public static void main(Stringl[] args)
throws IOException {

try (Scanner s =
new Scanner (
new BufferedReader (
new FileReader ("words.txt")) {

while (s.hasNext()) A{
System.out.println(s.next ());
}



Sum Numbers Example

import java.io.x*;
import java.util.Scanner;
public class SumNumbers {
public static void main(String[] args)
throws IOException {
double sum = 0;
try (Scanner s =
new Scanner (
new BufferedReader (
new FileReader ("numbers.txt")) {
while (s.hasNext()) {
if (s.hasNextDouble ()) {
sum += s.nextDouble();
} else {
s.next ();
}
}
}
System.out.println(sum);

}



Formatting

e Wrap a PrintWriter around an
OutputStream to write formatted output.

® The print and println methods output
single value after converting with toString
method.

® The format method formats multiple
arguments based on a format string.

Inspired by C's printf function.

Can specify numeric precision and alignment.
Can also format date/time.

See API for details.



Formatting example

public class RootDemo {
public static void main(Stringl[] args) {
int 1 = 2;
double r = Math.sqrt(i);

System.out.format ("Sqrt %d is %f.%n", i, r);

System.out.format ("Sqrt %d is about %.2f.%n", i, r);

¥
}

Sqrt 2 is 1.414214.
Sqrt 2 is about 1.41.



Data Streams

Data streams support binary 1/0O of primitive
types and Strings.

All data streams implement DataInput or
DataQutput

Wrap a byte stream with DataInputStream or
DataOutputStream

Use readInt, readDouble, etc. for input.
Use writelInt, writeDouble, etc. for output.



Object Streams

Object streams support binary 1/0 of objects.

Objects that can be serialized implement
Serializable interface.

Object stream classes are ObjectInputStream
and ObjectOutputStream.

Use readObject and writeObject to
read /write objects.

Object stream classes extend data stream
classes, so can also read/write primitives.



