
CS 251
Intermediate Programming

Java I/O – Streams

Brooke Chenoweth

University of New Mexico

Spring 2025



Basic Input/Output

• I/O Streams – mostly in java.io package

• File I/O – mostly in java.nio.file package



What is an I/O Stream?

• A stream is a sequence of data.

• Represents an input source or output
destination. (Files, devices, other programs,
etc.)

• Support different kinds of data (Bytes,
primitive data types, characters, objects)

• Some streams simply pass on data, others
transform it in useful ways.

• An input stream reads data from a source, one
item at a time.

• An output stream writes data to a destination,
one item at a time.



Byte Streams

• Byte streams perform input and output of 8-bit
bytes.

• All byte stream classes extend InputStream or
OutputStream

• Very primitive – usually won’t use directly

• All other stream types are built on byte
streams.



Byte Stream Example
import java.io.*;

public class CopyBytes {

public static void main(String [] args)

throws IOException {

FileInputStream in = null;

FileOutputStream out = null;

try {

in = new FileInputStream("infile.txt");

out = new FileOutputStream("outfile.txt");

int c;

while ((c = in.read ()) != -1) {

out.write(c);

}

} finally {

if (in != null) { in.close (); }

if (out != null) { out.close (); }

}

}

}



Character Streams

• Character streams read/write characters.

• Automatically translates to/from local
character set.

• Character stream classes descend from Reader

and Writer



Character Stream Example
import java.io.*;

public class CopyCharacters {

public static void main(String [] args)

throws IOException {

FileReader in = null;

FileWriter out = null;

try {

in = new FileReader("infile.txt");

out = new FileWriter("outfile.txt");

int c;

while ((c = in.read ()) != -1) {

out.write(c);

}

} finally {

if (in != null) { in.close (); }

if (out != null) { out.close (); }

}

}

}



Wrapping Byte Streams

• Character streams are often “wrappers” for
byte streams.

• For example, FileReader uses
FileInputStream to actually read the data,
and then translates the bytes into characters.

• If you have a byte stream, but no character
stream class (when using sockets for
networking, for example), use general-purpose
byte-to-character “bridge” streams:

• InputStreamReader
• OutputStreamWriter



Buffered I/O
• With unbuffered I/O streams, each read/write
request is handled directly by underlying OS.

• Inefficient
• Expensive

• Better approach – buffered I/O streams.
• Uses a buffer in memory to reduce calls to system.
• Buffered input streams read data from a buffer,

only call the native input API when the buffer is
empty.

• Buffered output streams write data to a buffer, and
only call native output API when the buffer is full.

• Buffered streams also let us work with more
data at once. Lines instead of characters, for
example.



Line I/O Example
import java.io.*;

public class CopyLines {

public static void main(String [] args)

throws IOException {

BufferedReader in = null;

PrintWriter out = null;

try {

in = new BufferedReader(new FileReader("infile.txt"));

out = new PrintWriter(new FileWriter("outfile.txt"));

String line;

while ((line = in.readLine ()) != null) {

out.println(line);

}

} finally {

if (in != null) { in.close (); }

if (out != null) { out.close (); }

}

}

}



Always Close Streams

• Always close a stream when it is not longer
needed.

• Avoids resource leaks.

• Need to close even if an error occurs. Use
finally or try-with-resources.



try-with-resources Statement

• Java 7 introduced try-with-resources statement.

• A try statement that declares one or more
resources.

• A resource is an object that must be closed
when program is done with it.

• Any object that implements
java.lang.AutoCloseable can be used as a
resource.

• I/O Streams implement java.io.Closeable,
which extends AutoCloseable



Line I/O Example with try-with-resources
import java.io.*;

public class CopyLines {

public static void main(String [] args)

throws IOException {

try (

BufferedReader in =

new BufferedReader(

new FileReader("infile.txt"));

PrintWriter out =

new PrintWriter(

new FileWriter("outfile.txt"))) {

String line;

while ((line = in.readLine ()) != null) {

out.println(line);

}

}

}

}



Standard Streams
Java automatically defines three standard streams.

• Standard Input – System.in

• Standard Output – System.out

• Standard Error – System.err

• System.out and System.err are
PrintStream objects.

• System.in is a byte stream. Wrap with
InputStreamReader if you want to read
characters.



Breaking up input with Scanner

• Construct Scanner by wrapping an
InputStream

• The Scanner breaks down input into tokens.

• By default, tokens are separated by whitespace.

• Use useDelimiter method to specify different
delimiter (argument is a regular expression)

• Can recognize and parse primitive types.

• Be sure to close when done!



Split Words Example
import java.io.*;

import java.util.Scanner;

public class SplitWords {

public static void main(String [] args)

throws IOException {

try (Scanner s =

new Scanner(

new BufferedReader(

new FileReader("words.txt")) {

while (s.hasNext ()) {

System.out.println(s.next ());

}

}

}

}



Sum Numbers Example
import java.io.*;

import java.util.Scanner;

public class SumNumbers {

public static void main(String [] args)

throws IOException {

double sum = 0;

try (Scanner s =

new Scanner(

new BufferedReader(

new FileReader("numbers.txt")) {

while (s.hasNext ()) {

if(s.hasNextDouble ()) {

sum += s.nextDouble ();

} else {

s.next ();

}

}

}

System.out.println(sum);

}

}



Formatting

• Wrap a PrintWriter around an
OutputStream to write formatted output.

• The print and println methods output
single value after converting with toString

method.
• The format method formats multiple
arguments based on a format string.

• Inspired by C’s printf function.
• Can specify numeric precision and alignment.
• Can also format date/time.
• See API for details.



Formatting example

public class RootDemo {

public static void main(String [] args) {

int i = 2;

double r = Math.sqrt(i);

System.out.format("Sqrt %d is %f.%n", i, r);

System.out.format("Sqrt %d is about %.2f.%n", i, r);

}

}

Sqrt 2 is 1.414214.

Sqrt 2 is about 1.41.



Data Streams

• Data streams support binary I/O of primitive
types and Strings.

• All data streams implement DataInput or
DataOutput

• Wrap a byte stream with DataInputStream or
DataOutputStream

• Use readInt, readDouble, etc. for input.

• Use writeInt, writeDouble, etc. for output.



Object Streams

• Object streams support binary I/O of objects.

• Objects that can be serialized implement
Serializable interface.

• Object stream classes are ObjectInputStream
and ObjectOutputStream.

• Use readObject and writeObject to
read/write objects.

• Object stream classes extend data stream
classes, so can also read/write primitives.


