CS 251
Intermediate Programming

Java |/O - File I/O

Brooke Chenoweth

University of New Mexico

Spring 2025



Paths

Most file systems store files in a hierarchical
structure.

The top of the directory tree is a root node (or
more than one). Root node on Linux is /, on
Windows is a drive letter, such as C:\

Root directory contains files and directories,
directories can contain subdirectories, and so
on.

A file is identified by its path through the file
system.

Directory names separated by system-specific
delimiter. (Windows uses backslash, most
others use forward slash)



Absolute vs Relative Paths

An absolute path always starts at the root.
® /home/sally/javacode

® C:\home\sally\javacode
All info needed to locate file is contained in
absolute path.
Relative path is relative to another path.

® bob/foo
Relative path needs to be combined with
another path to locate a file.



The Path class

New in Java SE 7
Located in java.nio.file package
Represents a path in the file system.

Just a path, does not guarantee that
corresponding file or directory actually exists.



Creating a Path

Create Path object by using methods in the Paths
helper class.

Path pl
Path p2

Paths.get ("/tmp/foo");
Paths.get ("/", "tmp", "foo");



Path Operations

toString — string representation

getFileName — get file name (last element in
sequence)

getParent — path of parent directory
getRoot — get root of path (null for relative
paths)

toAbsolutePath — convert path to absolute
path relative to current working directory.
resolve(otherpath) — combine this path
with another

relativize(otherpath) — create path from
this path to other path



The Files class

® A Path object represents a file or directory, but
says nothing about whether that file exists.

® The Files class provides methods access the
file system and examine and manipulate files.



Existence and Accessibility

Files.exists(path) and
Files.notExists(path) verify if particular
Path exists or not. Possible for both to return
false if file's status is unknown.

isRegularFile, isDirectory — What sort of
file is this?

isReadable, isWritable, isExecutable —
what can we do with the file?

isSameFile — Do two paths refer to same file?



Deleting Files

e Files.delete(path) — deletes file or throws
exception if it fails.

e Files.deleteIfExists(path) — deletes file,
doesn’'t complain if file isn't there



Copying Files

Use Files.copy(source, target,
copyOptions) to copy a file.

Directories can be copied, but files inside are not
copied. (Use walkFileTree to recursively copy.)
Copy takes zero or more CopyOption arguments.

® REPLACE_EXISTING — If target file exists, replace it
instead of throwing FileAlreadyExistsException

® COPY_ATTRIBUTES — Try to give target same attributes
(access permissions, last modified time, etc.) as source.

® NOFOLLOW_LINKS — If source is a symbolic link, copy the
link itself, not the file the link refers to.

Files also has copy methods to copy from an input
stream to a file and from a file to an output stream.



Moving Files

® Use Files.move(source, target) to move
(or rename) a file or directory.

® Source and target paths should not refer to
same file.



Using Stream 1/O with Files

Files.newInputStream creates a new byte
input stream from a file path.

Files.newOutputStream creates a new byte
output stream from a file path.

These methods provide unbuffered streams.

For text files, use Files.newBufferedReader
and Files.newBufferedWriter.



Input Stream From a File

Path file = Paths.get("myfilename");

try (InputStream in = Files.newInputStream(file);
BufferedReader reader =
new BufferedReader (new InputStreamReader (in))) {

String line = null;
while ((line = reader.readLine()) != null) {
System.out.println(line);

}

} catch (IOException x) {
System.err.println(x);

}



Creating Files

Path file = Paths.get("myfilename");

try {
// Create empty file with default permissions, etc.
Files.createFile(file);

} catch (FileAlreadyExistsException x) {
System.err.format("file named %s" +
" already exists¥%n", file);

} catch (IOException x) {
// Some other sort of failure, such as permisstions.
System.err.format ("createFile error: %s%n", x);



Creating Temporary Files

try {
// null Path creates file in system temp directory
Path tempFile = Files.createTempFile(null, ".junk");
System.out.format ("The temporary file" +
" has been created: Y%s%n", tempFile);
} catch (IOException x) {
System.err.format ("IOException: %s%n", x);

3



Walking the File Tree

® Files.walkFileTree(path, fileVisitor)
will visit all files in the directory given by path
and perform operations specified by
fileVisitor.

e File tree is walked depth first, but you cannot
make any assumptions about order that
subdirectories will be visited.



File Visitor

® The FileVisitor interface has four methods

preVisitDirectory — Invoked before a
directory’s entries are visited.
postVisitDirectory — Invoked after all the
entries in a directory are visited.

® visitFile — Invoked on the file being visited.
® yigsitFileFailed — Invoked when the file cannot

be accessed.

® The FileVisitor methods return
FileVisitResult

CONTINUE — Continue walking the tree.
SKIP_SIBLINGS — Continue without visiting
siblings of this file or directory.

SKIP_SUBTREE — Continue without visiting entries
in this directory.

TERMINATE — Stop walking the tree.



Example: Printing File Sizes

public class PrintFiles
extends SimpleFileVisitor <Path> {

public FileVisitResult visitFile(Path file,
BasicFileAttributes attr) {
System.out.println(file + " (" + attr.size() + "bytes)")
return FileVisitResult.CONTINUE;
}

public FileVisitResult postVisitDirectory(Path dir,
I0Exception exc) {
System.out.format ("Directory: Y%s%n", dir);
return FileVisitResult.CONTINUE;
}

public FileVisitResult visitFileFailed(Path file,
I0Exception exc) {
System.err.println(exc);
return FileVisitResult.CONTINUE;



Example: Copy File Tree

// source, target are Path objects
Files.walkFileTree (source, new SimpleFileVisitor<Path>() {

public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) throws IOException {

Path targetdir = target.resolve(source.relativize(dir));
try {

Files.copy(dir, targetdir);
} catch (FileAlreadyExistsException e) {

if (!Files.isDirectory(targetdir)) {

throw e;

}
}
return FileVisitResult.CONTINUE;

public FileVisitResult visitFile(Path file,
BasicFileAttributes attrs) throws IOException {
Files.copy(file, target.resolve(source.relativize(file)));
return FileVisitResult.CONTINUE;
}
b



Dealing with Old API

Before Java 7, most file 1/0O used
java.io.File

Lots of legacy code out there.

Can convert between old and new APl with
File.toPath and Path.toFile methods.

Consult the Java I/O tutorial for more
information.



