CS 251
Intermediate Programming
Regular Expressions

Brooke Chenoweth

University of New Mexico

Spring 2025

Regular Expressions

A regular expression is a sequence of characters
that forms a search pattern.

Abbreviated regex or regexp
Used to search, edit, manipulate text & data
Search commands like grep use them

Many programming languages provide regex
support

Java Regular Expressions

Supported by java.util.regex
Pattern — compiled representation of regex

Matcher — engine that interprets the pattern
and performs the matches

Can use these classes directly to manipulate
text.
Other classes use them “under the hood"

® String has matches and split methods
® Scanner's delimiter is a Pattern

Simple examples

® foo — matches literal text foo

® [a-z]at — matches bat, cat, hat, rat, etc. A
letter from a to z followed by at

String Literal

® Most basic pattern is a string literal.

e Match will find identical string.
e API also includes metacharacters, which have
special meaning.
® They are <([{\"==$![]1}) 7*x+.>
® Force to be treated as ordinary character by
preceding with a backslash.

Backslash mania

® Backslashes in regular expressions

e Backslashes within Java strings must be
escaped.

® To match a literal backslash, you would use

A\

Character Classes

[abc] — a, b, or ¢ (simple class)

[“abc] — Any character except a, b, or ¢
(negation)

[a-zA-Z] — a through z, or A through Z,
inclusive (range)

[a-d [m-p]] — a through d, or m through p:
[a-dm-p] (union)

[a-z&&[def]] —d, e, or f (intersection)
[a-z&&["bc]] — a through z, except for b and
c: [ad-z] (subtraction)

[a-z&& ["m-pl] — a through z, and not m
through p: [a-lg-z] (subtraction)

Predefined Character Classes

. — Any character

\d - A digit: [0-9]

\D — A non-digit: [~0-9]

\s — A whitespace character:

[\t\n\xOB\f\r]

\S — A non-whitespace character: [~\s]
\w — A word character: [a-zA-Z_0-9]
\W — A non-word character: [~\w]

Quantifiers

Greedy | Reluctant | Possessive | Meaning

X? X7? X7+ X, once or not at all

X* X*7 X+ X, zero or more times
X+ X+7 X++ X, one or more times
X{n} X{n}~? X{n}+ X, exactly n times
X{n,} X{n,}? X{n,}+ X, at least n times
X{n,m} | X{n,m}? X{n,m}+ X, at least n but not more

than m times

Greedy, Relucant, and Possessive

® Greedy - attempt to match the entire string
first, then match progressively shorter strings
® Reluctant - attempt to match as short a string

as possible, then match progressively longer
strings

® Possessive - attempt to match the entire string
(once)

Boundary Markers

~ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final
terminator, if any

\z The end of the input

Interactive Demo Program

public static void main(Stringl[] args) {
Scanner in = new Scanner (System.in);
while (true) {
System.out.print ("Enter regex: ");

String regexStr = in.nextLine ();

System.out.print ("Enter test string: ");
String testStr = in.nextLine();

Pattern pattern = Pattern.compile(regexStr);
Matcher matcher = pattern.matcher (testStr);

boolean found = false;
while (matcher.find()) {

System.out.format ("I found the text \"}s\" starting at " +
"index %d and ending at index %d.%n",
matcher.group (),
matcher.start (), matcher.end());

found = true;

}
if (! found) { System.out.format("No match found.%n"); }

