
CS 251
Intermediate Programming

Regular Expressions

Brooke Chenoweth

University of New Mexico

Spring 2025

Regular Expressions

• A regular expression is a sequence of characters
that forms a search pattern.

• Abbreviated regex or regexp

• Used to search, edit, manipulate text & data

• Search commands like grep use them

• Many programming languages provide regex
support

Java Regular Expressions

• Supported by java.util.regex

• Pattern – compiled representation of regex

• Matcher – engine that interprets the pattern
and performs the matches

• Can use these classes directly to manipulate
text.

• Other classes use them “under the hood”
• String has matches and split methods
• Scanner’s delimiter is a Pattern

Simple examples

• foo – matches literal text foo

• [a-z]at – matches bat, cat, hat, rat, etc. A
letter from a to z followed by at

String Literal

• Most basic pattern is a string literal.

• Match will find identical string.
• API also includes metacharacters, which have
special meaning.

• They are <([{\^-=$!|]})?*+.>
• Force to be treated as ordinary character by

preceding with a backslash.

Backslash mania

• Backslashes in regular expressions

• Backslashes within Java strings must be
escaped.

• To match a literal backslash, you would use
"\\\\"

Character Classes
• [abc] – a, b, or c (simple class)
• [^abc] – Any character except a, b, or c
(negation)

• [a-zA-Z] – a through z, or A through Z,
inclusive (range)

• [a-d[m-p]] – a through d, or m through p:
[a-dm-p] (union)

• [a-z&&[def]] – d, e, or f (intersection)
• [a-z&&[^bc]] – a through z, except for b and
c: [ad-z] (subtraction)

• [a-z&&[^m-p]] – a through z, and not m
through p: [a-lq-z] (subtraction)

Predefined Character Classes

• . – Any character

• \d – A digit: [0-9]

• \D – A non-digit: [^0-9]

• \s – A whitespace character:
[\t\n\x0B\f\r]

• \S – A non-whitespace character: [^\s]

• \w – A word character: [a-zA-Z_0-9]

• \W – A non-word character: [^\w]

Quantifiers
Greedy Reluctant Possessive Meaning
X? X?? X?+ X, once or not at all
X* X*? X*+ X, zero or more times
X+ X+? X++ X, one or more times
X{n} X{n}? X{n}+ X, exactly n times
X{n,} X{n,}? X{n,}+ X, at least n times
X{n,m} X{n,m}? X{n,m}+ X, at least n but not more

than m times

Greedy, Relucant, and Possessive

• Greedy - attempt to match the entire string
first, then match progressively shorter strings

• Reluctant - attempt to match as short a string
as possible, then match progressively longer
strings

• Possessive - attempt to match the entire string
(once)

Boundary Markers

• ^ The beginning of a line

• $ The end of a line

• \b A word boundary

• \B A non-word boundary

• \A The beginning of the input

• \G The end of the previous match

• \Z The end of the input but for the final
terminator, if any

• \z The end of the input

Interactive Demo Program
public static void main(String [] args) {

Scanner in = new Scanner(System.in);

while(true) {

System.out.print("Enter regex: ");

String regexStr = in.nextLine ();

System.out.print("Enter test string: ");

String testStr = in.nextLine ();

Pattern pattern = Pattern.compile(regexStr);

Matcher matcher = pattern.matcher(testStr);

boolean found = false;

while (matcher.find ()) {

System.out.format("I found the text \"%s\" starting at " +

"index %d and ending at index %d.%n",

matcher.group(),

matcher.start(), matcher.end ());

found = true;

}

if(!found) { System.out.format("No match found.%n"); }

}

}

