
CS 351
Design of Large Programs

Coding Standards

Brooke Chenoweth

University of New Mexico

Spring 2025



CS-351 Coding Standards

• All projects and labs must follow the great and
hallowed CS-351 coding standards.

• These standards do not necessarily represent
the best nor the only good way to write Java
code.

• If you have experience programming, then
these standards may not be the standards you
are used to using.

• However, in this class, these are the standards
we will use.



Primary Reasons for Defined Standard

1. A standard makes it easier for the instructors
to read your code.

2. A class standard makes it easier for a grader to
recognize when a program does not use a
consistent standard.
Often when each student is allowed to define
his or her own standard, students switch
standards multiple times in a single project. It
is tedious for a grader to deduce each person’s
standard and then check for self-consistency.

3. It is good practice to learn to follow a standard.



Coding Standard: Naming
• Multi-word names are generally written in
mixed-case (also known as camelCase).
Internal words start with a capital letter.

• All variables not declared final shall begin with
a lowercase letter.

• Static variables that do not ever change value
(that is, constants) shall be declared final and
shall be all uppercase with words separated by
underscores.

• All class and member variables (non-local
variables) will be given descriptive names.

• Never use the single letter l nor the single letter
O as a name.



Coding Standard: Naming

• Method names must be descriptive (usually
verbs) and start with a lowercase letter.

• All class and interface names shall be
descriptive (usually nouns) and begin with an
uppercase letter.



Coding Standard: Indenting

• Code blocks will be indented to show the block
structure with four spaces per level.
(Note: I often use only two spaces in order to
fit on the slides. Do as I say, not as I do.)

• Tab characters shall not be used for indenting.

• All statements within a block must be indented
to the same level.

• You should be able to configure your text
editor to use spaces to indent to the correct
level when you type a tab. (IntelliJ IDEA uses
spaces by default.)



Coding Standard: Curly Braces
• Open brace is last non-space character on a
line.

• Closing brace begins a line and is indented to
the beginning of the block.

• Exceptions: Empty/single statement
class/method body.

public class ExampleClass {

private int myNumber;

public static void main(String [] args) {

// statements go here

}

private void emptyMethod () {}

private void singleStatementBody () { myNumber ++; }

}



Coding Standard: Blocks and { }
Whenever a structure spans more than one line,
curly braces must be used. For example:

/* OK */

if (x == 5) y=y+1;

/* OK */

if (x == 5) { y=y+1; }

/* OK */

if (x == 5) {

y=y+1;

}

/* Not CS -351 standard */

if (x == 5)

y=y+1;



Comments
• At the top of every .java file, there must be a
Javadoc comment block with your name, a
description of the what the class/interface is
used for and how to use it.

• Before every public method, there must be a
Javadoc comment block describing what the
method does, its parameters, and its return
value. (You may comment non-public methods,
too, if you wish.)

• There must be a Javadoc comment describing
any public variables, enums, nested classes, etc.
(Again, good idea to comment non-public stuff
too.)

• For more information on writing Javadoc
comments, see the Javadoc conventions online.

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html


Coding Standard: 80 Character Line Max

• No line shall be more than 80 characters.

• The best way to avoid overly long statements
is by not doing too much in a single statement.

• Use temporary variables to break up large
expressions.

• If you must keep a long statement, the
statement should be broken in a logical place
and each line over which the long statement is
continued must be indented at least as much
as the first line of the statement. (Use more
indentation if it improves readability.)



Principle of Least Privilege
In computer science, the Principle of Least Privilege
requires that in a particular abstraction layer of a
computing environment, every module must be able
to access only such information and resources that
are necessary for its legitimate purpose.

• Variables used in only one method shall be
local variables.

• Don’t make a non-final instance or class
variable public without good reason. (Note: “I
couldn’t make it work otherwise” is not a good
reason!)



Access Modifiers

• All methods, variables, nested classes, etc.
contained within a class shall have an explicit
access modifier.

• In other words, do not use package-private
access in this course.

• Package-private access sometimes has a place
in complex projects, but in this course, it is
generally a sign that you forgot the access
modifier.



Getters and Setters

• In Java, when outside access is needed for a
field, the class should provide a getter and/or
setter for the field.

• DO NOT blindly auto generate a getter and
setter for every field in your class.

• Only create a getter or setter when there is
actually a use for that getter or setter.



Package Names
• With the complexity of the projects you will
write in this course, your code should be
organized into named packages.

• Package names should be all lower case.

• Do not use long chains of sparsely populated
directories
edu.unm.cs.cs351.spring2024.project1.gui.abc.xyz.Foo.java

• Don’t make a separate package just to hold a
single class. (Unless the entire project exists in
one class.)

• Initially, you’ll probably just have your entire
project in one package.



Write Self-Documenting Code

• Self-documenting code uses well-chosen names
and has a clear style.

• The program’s purpose and workings should be
obvious to any programmer who reads the
program, even if the program has no
comments.

• To the extent that is possible, strive to make
your programs self-documenting.



Clean up Debug Output

• When your program is run, it is okay if a few
lines of status/debug info is displayed. For
example, if the user resizes the window, you
might want to have your program print the new
window size.

• However, your program should not be printing
pages of debug spew.

• Either comment out your debug statements or
protect them with: if (DEBUG_GUI) or some
equivalent. Be sure to turn in a version with all
the debug flags set to false.



Java Code Conventions
For examples of how to format specific constructs
and guidance on issues not covered in these slides,
see Java code conventions online.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

