
CS 351
Design of Large Programs

Brooke Chenoweth

University of New Mexico

Spring 2025



Contact Info

Instructor: Brooke Chenoweth

Email: bchenoweth@cs.unm.edu

Office: Room 2060 in Farris Engineering Center

Web site: cs.unm.edu/~bchenoweth/cs351

cs.unm.edu/~bchenoweth/cs351


Schedule
• Lectures (required)

• 9:30 am - 10:45 am TR
• Dane Smith Hall 136

• Labs (also required)
• Lab 001: 11:00 am - 11:50 am T
• Lab 002: 11:00 am - 11:50 am R
• Centennial Engineering Center B146A



Office Hours

• Office Hours: TBA
I’ve posted a survey on Canvas to find the
classes preferences for days/times, remote vs in
person, before choosing my office hours. Hours
will be posted on the course website once
determined.

• You may attend regular office hours without an
advance appointment. If you want to meet at
another time, make an appointment by email
or in person.

• TA also has office hours (TBA, check course
website)



Grading
• 85% Projects

• 5 projects
• Initial projects: sequential, individual
• Later projects: concurrent, groups

• 15% Lecture, lab exercises, participation, etc.



Technology
• Programming language: Java

• We will be using JDK 21, in particular the Azul
Zulu build that includes JavaFX

• 21 is a LTS version and it’s good for all of us to be
on the same one.

• GUI library: JavaFX

• IDE: IntelliJ

• Version control: Git

• Project hosting: Github classrooms

• Project grading/testing: CS Linux machines

https://www.azul.com/downloads/?package=jdk-fx
https://www.azul.com/downloads/?package=jdk-fx


Computer Access

• Your projects need to work on a CS Linux
machine.

• Get a CS account (in addition to your UNM
account)

• To work remotely: Use SSH to connect:
• moons.cs.unm.edu
• trucks.cs.unm.edu
• B146 machines

• With a CS computer account you can access
*.cs.unm.edu and use the CS Linux lab in
Farris as well as the CENT B146 lab.



How to Get a CS Account
Email cssupport@cs.unm.edu from your UNM email
account. Include:

• Your full name

• Your UNM ID number

• The CS course(s) you are taking

• A picture of your Lobo ID attached to the email



Project Submission

• Projects will be hosted on Github classroom
from an assignment link posted on Canvas.

• Follow the submission guidelines and coding
standards posted on course website.

• Don’t wait until the last minute to get started

• We’ll see whatever your latest version of the
project is when we look at it, so just make sure
you push your work regularly to Github.



Prerequisite Skills

• Functions and Procedures

• Recursion

• Classes and Objects



Software Development Lifecycle
Requirements Engineering

Software Architecture Design

Implementation and Testing

CS351, CS460

CS460

CS251, CS351, CS460



Course Outline
• Intro

• Object Oriented Design
• Object Oriented Programming

• Sequential Programming
• Abstract data types
• Classes, inheritance, interfaces, specification,

notation
• Complex data structures
• Design patterns

• Concurrent Programming
• Concurrency
• Threads and synchronization

• Distributed Computing
• Client-server model
• Socket programming



Object Oriented Design
• A design paradigm that emphasizes:

• Data and device encapsulation
• Information hiding
• Top-down hierarchical structuring

• The prototypical structure entails:
• One main procedure
• Several subordinate objects

• Highly complex system designs employ the
same basic principles

• Object-oriented design can be employed even
when the underlying programming language is
not object-oriented



Object Oriented Design Pattern

Procedure

Object1 Object2 Object3



Object Oriented Programming
• The concepts of object and class are explicit
programming constructs in the language.

• Objects: instantiated from class definitions
• Classes: have associated code that is executed on

behalf of instantiated objects
• Classes are defined in terms of other classes by

using inheritance

• Object-oriented programming languages
simplify the implementation of object-oriented
designs.

• A given design may have many different and
distinct program representations.

• Use of object-oriented programming languages
does not guarantee clean design and proper
encapsulation.


