
CS 351
Design of Large Programs

Architectural Design Patterns

Brooke Chenoweth

University of New Mexico

Spring 2025



Software Development Revisited
1. Specification

• precisely define the problem to be solved
• validate one’s understanding of the problem

2. Design
• outline a solution path
• plan the implementation

3. Implementation
• build the software
• use the constructs available in the programming

language



Implications for this Course
Skill development with a focus on design and implementation
Specific skills to be acquired:

• ability to understand and conceptualize a problem

• ability to lay out a coherent and complete design that
solves the problem

• ability to plan an implementation targeted to a specific
programming language

• ability to deliver fully functioning code incrementally

Pragmatic and systematic application of agile programming
approach

• weekly delivery of functioning versions of the program
under development



Is Our Perspective Unique?
Specification/Design/Implementation paradigm is
not specific to software
• kitchen
• landscape
• electronic device
• mechanical device

In software engineering as well as in other
engineering disciplines, the specification/design
cycle is applied recursively
• system
• subsystem
• component
• subcomponent



Software Architecture
The design of a software system is captured by a
Software Architecture Design

• an abstract description of the system’s
structure and behavior

• not an exact reflection of the code organization

The level of abstraction is chosen such that:

• all critical design decisions are apparent

• meaningful analysis is feasible

• implementation plans can be developed

• all interfaces are precisely defined



Why Bother?
No major engineering achievement is possible
without design and analysis

• home building without plans

• car manufacturing without precise part
specifications

• radiation treatment machine without precise
analysis

• moon shot by trial and error

Teamwork demands a common plan of action and
coordination



Design Diagram
A typical software architecture is specified by a
combination of:

• design diagrams

• component specifications

• external interface specifications

A design consists of two types of entities:

• components – code modules relevant to the
overall design

• connectors – suggestive of the interactions
among components



Notation: Components

• Passive
• procedure
• object

• Active
• task
• active object

• Organizational
• package

• External
• devices and

interfaces

Procedure Object

Task Active Object

Package



Notation: Connectors
Architecture diagrams may use a wide range of
connector types:

• standard (widely used in the literature)

• custom (defined specifically to meet the needs
of a particular system)

Basic connectors:

• aggregation – structural abstraction

• reference – behavioral constraint



Connector: Aggregation
The aggregation connector captures structural
properties of objects

• constrains the scope of object definitions

• constrains the method invocation pattern



Connector: Aggregation
Aggregation is a relation between

• an object and lower level objects to which is
has exclusive access

• the scope of the subordinate objects is limited
to the object above

• subordinate objects are often instances of some
general class

• may have an independent existence
• may be used in different settings

Aggregation makes object composition possible



Illustration: Aggregation
public class Monitor {

private Temperature temp;

private ADConverter converter;

private ValidRange range;

public void update () {

// Updates monitor with current reading from the ADConverter.

}

public void setMinValue(Temperature temp) {}

public void setMaxValue(Temperature temp) {}

public boolean inRange () {}

public void clearHistory () {

// Clears the list of readings that are out of range.

}

}

Monitor

A/D Converter Temperature Valid Range



Connector: Reference
The reference connector captures run time object
usage pattern

• constrains the method invocation pattern

Reference is a relation between:

• a procedure and the objects it accesses

• an object and lower level objects it accesses



Illustration: Reference
public void regulateTemp () {

long updateInterval = 500;

timer.setInterval(updateInterval );

while (!timer.timedOut ()) {

monitor.update ();

if(! monitor.inRange ()) {

// ...

}

// sleep (10) ...

}

}

Monitor

A/D Converter Temperature Valid Range

Regulation

Timer



Static vs. Dynamic Systems
A system is static in nature if its structure does not
evolve at runtime

• design diagrams are also static in nature – a
good match

A system whose structure evolves during runtime
execution is dynamic

• new components are created

• connector patterns change



Static Diagrams for Dynamic Systems
The use of static design diagrams is made more
difficult when designing a dynamic system

• capture the most representative structure
statically

• capture one or more representative structures

• explain the system evolution rules separately



A Static System
Consider a board game called LiveChess:

• standard chess board

• pieces are creatures with a mind of their own

• a fixed set of pieces are used

• a configuration file defines the initial placement
of pieces

• pieces are given turns to move according to
some set of rules

• each piece selects a move which is executed
only if valid



A Static System

Enforcer

Game Rules Board Creature(j)

j=1..k

Init Positions

Config File



A Dynamic System
Consider a new version of LiveChess:

• the board may change in size over time – no
impact on the diagram

• creatures may be born and may die – variable
set of objects

• new worlds may be created as additional board
games – variable set of objects

• a wizard may materialize from time to time –
typical configuration should include it



A Dynamic System

Enforcer

Game Rules Board(k) Creature(j) Init Positions

Config File

Wizard

volatile



Architectural Patterns
An architectural pattern may be defined as a generic design
which

• has some desirable property
• solves some frequently encountered problem
• offers a good starting point for a solution
• provides a reusable structure applicable to some problem
domain

Meta-level considerations are not immediately explicit in the
structure alone – they may be need to be considered

The basic object-oriented design is such a pattern. When
used properly it promotes:

• information hiding
• encapsulation



Functional Decomposition
• Functional decomposition may be employed in
order to encapsulate policy decisions and to
control the complexity of:

• the processing logic
• non-trivial methods

• The relation defining the interactions among
procedures is a reference, which constrains who
can invoke whom



Functional Decomposition Example

Elevator Control

Control MovementSelect Destination Handle Door

Rapid TravelApproach Alignment



Nested Objects
Nested objects are constructed strictly through the
use of aggregation (tree structure)

• each object can reference only its
subcomponents

• it is desirable for sibling objects to be of similar
complexity and level of abstraction

Message

Packed Message FieldsStatus

Bitstream Bitmap



Shared Resources
Object sharing is highly undesirable
When sharing cannot be avoided it should be
minimized, structured, and made uniform

Timer 1 Timer 2 Timer 3

Clock



Transparent Sharing

• Object sharing occurs when two or more
objects have an acquaintance (reference) in
common

• Transparent sharing occurs when none of the
objects involved can detect that sharing takes
place

• This is often the case when one physical
interface supports several logical interfaces



Layered Objects

• A layered object consists of a hierarchically
organized set of objects

• An object at one level can reference all objects
on the level below

• Sharing is not transparent

• The level of abstraction decreases with depth



Layered object example

• Dynamic restructuring

• One panel is active at a time

Display Manager

Panel 2Panel 1 Panel 3

Background Field[i] Button[k] Speaker



Mutation

• Mutation is an abstraction pattern that relates
two object layers

• It involves a change in the encapsulation of the
composite state of the lower level in response
to the needs of the upper levels in the design

• It is especially helpful for restructuring low level
physical interfaces into more abstract ones

• The sharing of the lower level objects must be
transparent



Mutation Example

• Consider pair of objects in motion

• Know absolute motion, would prefer relative

Relative Motion A System Motion Relative Motion B

Absolute Motion A Absolute Motion B



Shared Implementation

• Performance considerations often require
objects which are essentially independent to be
encapsulated in a single object managing their
implementation

• The desire for generality may also lead to
shared implementations



Object Veneer

• Legacy code need not be an impediment in the
application of object-oriented design

• Existing code can be encapsulated as a set of
objects which are available to the remainder of
the system


