
CS 351
Design of Large Programs

The Builder Pattern

Brooke Chenoweth

University of New Mexico

Spring 2025



Example: Car Class

public class Car {

private int doors;

private int wheels;

private int seats;

public Car(int doors , int wheels , int seats) {

this.doors = doors;

this.wheels = wheels;

this.seats = seats;

}

// getters , other methods , etc.

}



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

• Car c2 = new Car(4, 4, 5);

• Car c3 = new Car(4, 4, 7);

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

• Car c3 = new Car(4, 4, 7);

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.

• Car c3 = new Car(4, 4, 7);

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.

• Car c3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.

• Car c3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.

• Car c3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?

• Car c4 = new Car(4, 7, 4);



Let’s make some cars!

• Car c1 = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.

• Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.

• Car c3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?

• Car c4 = new Car(4, 7, 4);

A 4-door car with seven wheels and four seats?
Arguments of the same type are easy to
confuse.



Problems with Constructors

• Too many arguments – easily confused

• Optional arguments – overload constructors
with defaults?

• Too many constructors



Use setters instead?

Car car = new Car();

car.setWheels (4);

car.setSeats (2);

• We forgot to set the doors!

• Do we have reasonable default values?

• What if we didn’t finish configuring the object?

• Does it even make sense to change the number
of wheels after the Car is constructed?



Use setters instead?

Car car = new Car();

car.setWheels (4);

car.setSeats (2);

• We forgot to set the doors!

• Do we have reasonable default values?

• What if we didn’t finish configuring the object?

• Does it even make sense to change the number
of wheels after the Car is constructed?



The Builder Pattern
Use the Builder Pattern to encapulate the
construction of a product and allow it to be
constructed in steps.



CarBuilder
public class CarBuilder {

private int doors;

private int wheels = 4;

private int seats;

public void setDoors(int doors) {

this.doors = doors;

}

public void setWheels(int wheels) {

this.wheels = wheels;

}

public void setSeats(int seats) {

this.seats = seats;

}

public Car getCar () {

return new Car(doors , wheels , seats);

}

}



Let’s make a Car!

CarBuilder cb = new CarBuilder ();

cb.setDoors (2);

cb.setSeats (4);

Car car = cb.getCar ();

• We can build up a complex object with a step
by step approach.

• We could add error checking before actually
constructing the Car object to make sure we’ve
properly configured all the fields.

• We could use a builder to create an immutable
object.



CarBuilder with Fluent Interface
public class CarBuilder {

private int doors;

private int wheels = 4;

private int seats;

public CarBuilder setDoors(int doors) {

this.doors = doors;

return this;

}

public CarBuilder setWheels(int wheels) {

this.wheels = wheels;

return this;

}

public CarBuilder setSeats(int seats) {

this.seats = seats;

return this;

}

public Car getCar () {

return new Car(doors , wheels , seats);

}

}



Fluent Interface
The Builder pattern is often implemented with a
fluent interface, where each method in the builder
returns a reference to the builder object itself so we
can easily chain the methods together.

Car car = new CarBuilder (). setDoors (2)

.setSeats (4)

.getCar ();

This coding idiom of returning this and method
chaining is independent of the Builder pattern, but
crops up often enough that it’s worth mentioning
here.


