
CS 351
Design of Large Programs
Template Method Pattern

Brooke Chenoweth

University of New Mexico

Spring 2025



Human vs Computer Game

• All players play by the same rules

• Human turn needs input from user

• Computer somehow chooses move

• Legality, scoring, updates same for both



Console or GUI Game

• Game logic is the same

• Console game displays text

• GUI game updates graphical display



Preparing Hot Beverages
Tea

1. Boil some water

2. Steep tea in the
water

3. Pour into cup

4. Add lemon

Coffee

1. Boil some water

2. Brew coffee with the
water

3. Pour into cup

4. Add cream and sugar

Steps 1 and 3 are the same

Steps 2 and 4 differ, but serve similar purpose



Preparing Hot Beverages
Tea

1. Boil some water

2. Steep tea in the
water

3. Pour into cup

4. Add lemon

Coffee

1. Boil some water

2. Brew coffee with the
water

3. Pour into cup

4. Add cream and sugar

Steps 1 and 3 are the same

Steps 2 and 4 differ, but serve similar purpose



Preparing Hot Beverages
Tea

1. Boil some water

2. Steep tea in the
water

3. Pour into cup

4. Add lemon

Coffee

1. Boil some water

2. Brew coffee with the
water

3. Pour into cup

4. Add cream and sugar

Steps 1 and 3 are the same

Steps 2 and 4 differ, but serve similar purpose



Hot Beverages in Java
public abstract class HotDrink {

public void prepareDrink () {

boilWater ();

brew ();

pourIntoCup ();

addCondiments ();

}

protected void boilWater () {

System.out.println("Boiling water");

}

protected void pourIntoCup () {

System.out.println("Pouring into cup");

}

protected abstract void brew ();

protected abstract void addCondiments ();

}



Hot Beverages in Java
public class Tea extends HotDrink {

protected void brew() {

System.out.println("Steeping the tea");

}

protected void addCondiments () {

System.out.println("Adding lemon");

}

}

public class Coffee extends HotDrink {

protected void brew() {

System.out.println("Pouring water over grounds");

}

protected void addCondiments () {

System.out.println("Adding cream and sugar");

}

}



The Template Method Pattern
The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps
to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without
changing the algorithm’s structure.



Template Method

• Template method in the abstract parent class
defines algorithm as sequence of steps.

• Can make template method final to stop
subclasses from changing the steps.

• Some steps may be concrete methods defined
in the parent class.

• Some steps are abstract and must be
implemented in the subclasses.

• Some steps may be optional, so parent provides
a hook for the subclass to maybe override.



Hooks

• A hook is a method used in the template
method that has a concrete implementation
that does nothing. (Or some other simple
default)

• Subclasses may override to actually do
something, but don’t have to.



Hot Beverage with a Hook
public abstract class HotDrinkWithHook {

public void prepareDrink () {

boilWater ();

brew ();

pourIntoCup ();

addCondiments ();

}

// boilWater , pourIntoCup

protected abstract void brew ();

protected void addCondiments () { }

}

public class BlackCoffee extends HotDrinkWithHook {

protected void brew() {

System.out.println("Pouring water over grounds");

}

}


