
CS 351
Design of Large Programs
Creating Executable Jar

Brooke Chenoweth

University of New Mexico

Spring 2025



Jar Files

• The Java Archive (JAR) file format bundles
multiple files into a single archive file.

• Uses ZIP file format

• Contains class files and auxiliary resources.

• May hold a library or standalone application.



Jar Command

• The jar command allows you to create and
manipulate jar files.

• Common options:

f Specify jar file name
v Be more verbose
c Create a jar file
e Specify entry point
t View table of contents
x Extract files

• https://docs.oracle.com/javase/

tutorial/deployment/jar/index.html

https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html


Creating Executable Jar

1. Compile your classes.

2. Make sure you have all resources needed
(sounds, images)

3. Create jar file. If all files needed are in current
directory, easiest to use wildcard:
jar cvfe MyProgram.jar MyMainClass *

4. Make sure program runs from the jar.
Use the -jar option with java.
java -jar MyProgram.jar



Extracting Files from Jar

• Use jar xvf MyProgram.jar to extract all
files.

• Use jar xvf MyProgram.jar filename to
extract specific file(s).



Loading Resources from Jar

• Regular file operations will be looking for files
relative to the current program directory.

• Use ClassLoader to look for files relative to
class location (even inside a jar)

• getClass().getClassLoader()

.getResourceAsStream(resourceFileName)

will give an InputStream which you can use in
other IO operations.

• Run jar in new location to make sure you are
properly loading resources.



Configuring Executable Jar with IntelliJ
IDEA

• File → Project Structure. . .

• Project Settings → Artifacts

• Click Add Icon (green plus)
• Select JAR → From modules with
dependencies. . .

• Select Main Class
• Select extract to target JAR
• Click OK

• Add source code to jar as well as compiled files
• Click Add Icon on Output Layout
• Select Directory Content
• Browse to src directory



Building Executable Jar with IntelliJ IDEA
• Build → Build Artifacts

• Select Build.
• Once it’s done building, the jar file will be located

inside of your out folder:
out/artifacts/project jar/project.jar (or
whatever you named the project and jar)

• If this is a version of the jar that you are
submitting, move the file to the top level of
your project, add it to git, commit, and push.



Loading Resources from Jar

• Regular file operations will be looking for files
relative to the current program directory.

• Use ClassLoader to look for files relative to
class location (even inside a jar)

• getClass().getClassLoader()

.getResourceAsStream(resourceFileName)

will give an InputStream which you can use in
other IO operations.

• Run jar in new location to make sure you are
properly loading resources.



Setting resources folder

• Images, sounds, and other files to be included
in the jar belong in the resources folder

• Right-click on folder and “Set as resources
root”

• Now you’ll be able to load files with the class
loader using just the file name relative to this
resource folder.

• Make sure you include resources when building
the jar!


