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ABSTRACT
Many cybersecurity problems occur on a worldwide scale, but we
lack rigorous methods for determining how best to intervene and
mitigate damage globally, both short- and long-term. Analysis of
longitudinal security data can provide insight into the effectiveness
and differential impacts of security interventions on a global level.
In this paper we consider the example of spam, studying a large
high-resolution data set of messages sent from 260 ISPs in 60
countries over the course of a decade. The statistical analysis is
designed to avoid common pitfalls that could lead to erroneous
conclusions. We show how factors such as geography, national
economics, Internet connectivity and traffic flow impact can affect
local spam concentrations. Additionally, we present a statistical
model to study temporal transitions in the dataset, and we use a
simple extension of the model to investigate the effect of historical
botnet takedowns on spam levels. We find that in aggregate most
historical takedowns are beneficial in the short-term, but few have
long-term impact. Further, even when takedowns are effective
globally, they can be detrimental in specific geographic regions or
countries. The analysis and modeling described here are based on
a single data set. However, the techniques are general and could
be adapted to other data sets to help improve decision making
about when and how to deploy security interventions.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

Keywords
Spam, takedowns, statistical model

1. INTRODUCTION
Many cybersecurity problems occur at a global scale, involving

nations, corporations, or individuals whose actions have impact
around the world. Despite these global, persistent problems,
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there is limited research on the actual effectiveness of the many
interventions that have been proposed. Most interventions are
based on deep, hands-on experience with specific attacks, and
are never evaluated systematically at a large scale. For example,
there has been little quantitative analysis of the sustained effect
of the many botnet takedowns that occurred over the past decade.
Simple qualitative observation of declines in malicious activity
following a takedown is not sufficient to determine whether the
takedown is effective or causal [19, 31, 33]. Attributing cause is
always problematic, but it is especially difficult when empirical
datasets have high variance as is often the case in security[13,
15]. Moreover, as the scope of cyber-insecurity has increased,
no one security practitioner is able to grasp all of the relevant
details associated with global problems [17]. Thus, there is a
need for more explicit and rigorous methods to determine which
interventions are effective and which are are not.
In this paper, we explore some of the opportunities and im-

pediments to analyzing longitudinal security data, by focusing
on the concrete example of spam, developing statistical models to
describe a large dataset, and using the model to assess the effect
of certain interventions. We ask whether a particular intervention
has a temporary or sustained impact and how interventions play
out geographically. A potential pitfall in longitudinal datasets,
including our dataset, is high variance, and we use careful statis-
tical methods to separate significant effects from noise. A second
issue is the retrospective nature of data-driven analyses, which
makes predicting the future a challenge. Because intervention
methods are often re-used, however, we believe that studying the
existing examples, e.g., a historical botnet takedown, can provide
insight about the likely effect of similar future interventions.

We illustrate our approach by analyzing a spam dataset, com-
prising more than 127 billion spam messages sent from over
440 million unique IP addresses, spread across 260 ISPs in 60
countries. Spam is a global problem, and countermeasures have
never eliminated it completely. Spam plays a key role in the
cyber-crime ecosystem as a vector for various activities such as
stealing login credentials through phishing, distributing malware,
making fraudulent sales, or selling illegal goods [37]. Spam can
be viewed as a proxy for estimating the numbers of infected PCs
and the extent of botnets [83, 70, 26].

To compare spam levels across countries, we study a quantity
called wickedness [25], which can be thought of as the concen-
tration of infected machines sending out spam, either in a single
Internet Service Provider (ISP) or in a geographic region. This
measure allows us to compare spam levels among different coun-
tries or different ISPs, identify how different factors contribute
to the concentration of spam sending computers, and assess what
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effect interventions have across the globe.
Analysis of the data shows that spam concentrations are rela-

tively stable for ISPs from one week to the next but are punctuated
by spikes that often span several orders of magnitude. These
spikes can mask the effect of interventions. Further analysis also
reveals that: (1) Gross Domestic Product (GDP) per capita is neg-
atively correlated with wickedness, with less developed countries
experiencing higher levels; (2) an ISP’s wickedness is correlated
with that of surrounding ISPs, suggesting that there are regional
influences; and (3) an ISP’s network connectivity is correlated
with wickedness.

To further understand the impact of ISP connectivity on spam,
we construct an ISP graph that represents how ISPs are con-
nected to each other. The graph reveals that ISPs with high graph
centrality have lower wickedness, while those on the periphery
suffer higher rates of infection. Adding a simple model of spam
dynamics to the ISP graph shows that spam concentrations at
an ISP are influenced by previous levels, suggesting that spam
could is one driver in spreading infections across the Internet.

In the last decade, a number of approaches have been suggested
and implemented to help fight spam. Of these, the most famous
is the botnet takedown. But, email providers have also adopted
adaptive IP black lists [21], banks have restricted access to credit
card payment processors [29], resources have been devoted to
arresting and prosecuting cyber-criminals [51, 36, 1], and users of
infected computers have been offered free cleanup tools [4]. Some
of these interventions seem to have led to declining spam levels,
e.g., real-time filtering and credit card interventions [71, 50, 29, 68].
We show how modeling can help identify when particular in-

terventions likely began affecting spam concentrations. The best
model of our dataset identifies three distinct time periods or eras,
each corresponding to different dynamics. These eras correlate
roughly with the introduction of new intervention strategies, and
they give some idea of the overall impact of a particular strategy.

When the exact date of an intervention is known (as in the case
of botnet takedowns), we can use the model to analyze its impact
more precisely, both globally and regionally. Model analysis con-
firms the hypothesis that most botnet takedowns are effective only
in the short-term, with spam levels rebounding in the weeks after a
takedown [39]. However, we also find that a few of the takedowns
were globally effective in the long term. A closer look at their re-
gional impact, however, shows that effects vary dramatically across
different geographic areas and individual countries. Takedowns
that are successful globally can be detrimental in specific countries.

Our work uses one particular dataset to illustrate how robust
statistical techniques can be applied to study spam trends and the
effect of interventions—globally, regionally, and by individual coun-
try. Because we studied data taken from a single data source, and
focused only on email spam, our conclusions are only as good as the
data—a pitfall of any statistical analysis. The methods, however,
could readily be applied to other sources of spam and even other
security data, as they become available. Additional datasets would
certainly improve our confidence in the conclusions of the analysis,
and section 2 discusses the idiosyncrasies of our particular dataset.
In summary, statistical analysis of global longitudinal data is

a promising approach to understanding the security landscape.
This paper makes the following contributions:

1. It presents a robust statistical analysis of longitudinal, global
security data, showing how to analyze high variance time se-
ries, identify correlations with external factors, and identify
the effects of interventions, both when the deployment date
is unknown (filters) and when it is known exactly (botnets).

2. It identifies statistically significant correlations between
spam concentrations and various risk factors, including
GDP, nearby spam concentrations, and ISP connectivity
in the ISP graph. Traffic dynamics on this graph influence

future wickedness, suggesting that spam is used to spread
malware infections.

3. Identification of three statistically distinct eras within the
ten-year data set. Although spam levels are highly variable
in all eras, the overall concentration of spam declines during
the last two eras. These declines may be related to historical
events that are outside the scope of our study, and they
may have caused discernible shifts in the data.

4. Analysis of the global impact of historical botnet takedowns:
only a few of the studied takedowns had lasting impact,
while most had only a transient effect, in all eras.

5. Geographic impacts of takedowns. We find that even when
a takedown is effective globally, it often results in an increase
in wickedness in particular regions or countries.

2. COLLECTING AND MAPPING SPAM DATA
TO WICKEDNESS

In this section we describe our dataset, and the wickedness
metric. We show that wickedness has interesting statistical
properties, and identify significant changes in wickedness over time.

2.1 Spam Data
Our spam dataset is based on that used by Van Eeten et al. [73]

but greatly expanded. We collected additional data, doubling the
timespan covered, and studied the data on a weekly basis. The
original study examined spam trends only on a quarterly basis.
This dataset was collected from a spam trap—an Internet domain
designed specifically to capture spam with e-mail addresses that
have never been published or used to send or receive legitimate
email. Spam traps have been used successfully to identify malware
infected hosts, and to measure the extent of botnets, because
botnets often send spam [83, 70, 26]. Over the past decade, our
spam trap received more than 127 billion spam messages, sent
from 440 million unique IP addresses.
In order to make comparisons among different ISPs and ge-

ographic regions, the ISP which owns each IP address and the
country in which that ISP operates must be identified. To do
this we used the following procedure:

1. Each IP address was linked to an ASN (Autonomous System
number) using historical BGP data.

2. Each ASN was then manually linked to an administrating
entity using historical WHOIS records.

3. Industry reports and news media were consulted to connect
the administrating entities to the main ISPs in 60 countries,
as identified in Telegeography’s GlobalComms database.
The database also provides us with accurate subscriber
numbers for each ISP.

4. Each (part of an) ASN was mapped onto a country using
MaxMind’s GeoIP database [47].

The manual mapping of ASNs to ISPs prevented us from iden-
tifying all possible ISPs which sent spam to our trap. However,
we were able to map 659 ASNs to 260 ISPs in 60 countries. These
ISPs account for over 80% of the major broadband markets in
those countries. These countries also compose the entirety of the
Organisation for Economic Co-operate and Development(OECD)
and European Union, along with several other major spam sending
nations.

This procedure produced two time series for each ISP: a count
of spam messages and the number of unique IP addresses that
sent spam per day. Some ISPs provide dynamic IP addresses with
short lease times to their customers. This could lead to a single
infected host being associated with two IP addresses. To help
correct for this potential source of overcounting, we use average
daily counts of IP addresses over the course of a week to obtain
an estimate of the number of infected machines associated with



(a) (b)

Figure 1: Two views of global spam. (a) uses a logged vertical axis to show the high variance in the spam data. The black points
indicate global wickedness, and the shaded area shows the range of values for individual ISPs. (b) uses a linear vertical axis to show
the qualitative changes in wickedness between different eras.

an ISP in a given week. This produces slightly coarser granularity
data but removes some of the churn caused by dynamic addresses.
Our data was collected from a single spam trap and is only

a sample of all the spam sent globally, and it is possible that
our data reflects the activity of only a few unsophisticated spam
gangs. It is difficult to exactly compare our data to other pub-
licly available spam reports because most reports rely on relative
measures such as fraction of total email that was classified as
spam or percentages relative to a peak. However we were able to
make some qualitative comparisons to other sources. A subset of
the data from 2006 and 2009 was previously found to correspond
with industry reports, both in terms of spam volume over time
and geographical distribution of sources [73].
Comparing post 2010 trends to longitudinal data available

from Spamhaus [66], our data on global wickedness qualitatively
matches theirs until mid-2012. After that, however, Spamhaus
shows a brief rise in spam, though not to previous levels, while
our data show a continued downward trend (Figure 1). Symantec
reports a small overall decline in annual average spam in 2013 [69],
and Kaspersky also reported a small decline in the percentage
of spam email compared to legitimate email in 2013 [23]. Our
data also shows declines in these two years. The discrepancies
between our data and Spamhaus likely reflect changes in tactics
of spammers over time that are not captured by our spam trap.
However, in this paper we emphasize the procedure used to analyze
the data over the exact conclusions drawn from the analysis, which
in future work could be verified by analyzing other datasets.

2.2 Estimating Wickedness From Spam Data
We calculate wickedness in terms of IP addresses sending spam.

The two time series establish the total number of spam sending
hosts within an ISP, but they do not account for the total number
of IP addresses actively used by each ISP, i.e. the number of
customers. We focus on wickedness rather than the absolute
number of spam sending hosts to allow valid comparisons between
ISPs, countries, and regions in the world. We use data from Tele-
Geography’s Globalcomm database to establish the number of sub-
scribers for each ISP. These data, available quarterly, allowed us
to compute the concentration of malicious hosts per customer (the

wickedness) and the number of spam messages sent per customer.1

Using linear interpolation, we inferred the number of customers
each week to match the time granularity of the data for malicious
hosts. We calculate the wickedness of an ISP i at time t as:

Wi(t)=
Ai(t)

Ci(t)
. (1)

where Ai(t) refers to the number of spam-sending IP addresses
and Ci(t) refers to the number of customers for ISP i at time
t. The global wickedness is defined over all ISPs, i.e. W(t)=∑
iAi(t)/

∑
iCi(t). Figure 1 shows the global wickedness over

time calculated from our dataset.
In these data, which capture a sample of the total population

of spam-emitting hosts worldwide, between 0.00091% and 0.33%
of hosts are sending spam at any given time. However, individual
ISP infection rates vary widely as shown by the shaded area in
Figure 1a, with some ISPs as high as 80% and others with 0%.
Moreover, a single ISP’s infection rate often varies by several
orders of magnitude from one week to the next. For example, in
April, 2011 an ISP in Pakistan experienced a more than 800-fold
increase in wickedness in a single week. Previous work has also
observed highly dynamic infection levels in IP space [6, 65].

In spite of this large variation, our analysis shows that wicked-
ness at the individual ISP level is highly autocorrelated, i.e. the
correlation between wickedness in any given week and the previous
week is high (Kendall’s τ=0.93). Kendall’s τ is a non-parametric
measure of statistical dependence. Unlike the more widely used
Pearson’s r, Kendall’s τ does not assume a linear relationship be-
tween the data, and is therefore better able to identify non-linear
relationships, which abound in our data [32].2 This counterin-
tuitive result is explained by the fact that in the vast majority
of cases week-to-week variation is small, even though a minor-
ity of cases break this pattern by varying over several orders
of magnitude. Such high variance can often lead to erroneous

1Alternatively, wickedness could be defined using messages per
customer. We have analyzed the data both ways (data not shown),
with essentially identical results.
2Measures of linear correlation between the lnWi(t) and lnWi(t−1)
are exceptionally high (Pearson’s r=0.990), suggesting a nonlinear
relationship similar to a power law. This informs the construction
of our model in section 4.



Figure 2: Correlation between wickedness and ISP graph topology.
The vertical axis in all plots shows the Kendall’s τ between
wickedness and the topological measure for the corresponding
week on the horizontal axis. Red indicates significant correlations
at the p<.05 level.

conclusions about data. Many statistical methods require that
data have limited variance, and using such methods might indicate
significant changes when none exist [15].

Figure 1b shows several possible qualitative changes in spam vol-
ume, and in subsection 4.2 we find that spam exhibits statistically
significantly different behavior during these periods.
Era 1 : Beginning in 2005, spam increased dramatically until

the botnet takedowns began in 2008. During this era spam levels
were volatile, punctuated by sharp increases and decreases both
globally and at the ISP level.
Era 2 : In mid 2010, spam levels began to drop dramatically.

We find a statistically significant effect in late 2010.
Era 3 : In mid 2012, a spike is observed in the data, followed by

further decline in wickedness. The variance in global wickedness
also decreases.

These three eras are highlighted in Figure 1b. In subsection 4.2
we use maximum likelihood techniques to pinpoint when statis-
tically significant transitions occurred and discuss possible causes
of these transitions.

3. RISK FACTORS
The previous section defined wickedness and examined its prop-

erties in our dataset. Next we ask if certain external “risk factors”
are related to an ISP’s level of wickedness. In this section, we
consider demographic factors, the effect of geography, network
effects, and traffic dynamics.

3.1 Demographic Factors
Previous work identified correlations between spam concentra-

tions and measures of development, such as Internet use per capita
or education [73, 82]. We find similar results using gross domestic
product per capita (GDP). GDP data were obtained from the
World Bank, which produces annual data on a per-country level
for multiple demographic factors [3]. We use GDP per Capita
because recent data is readily available, but other measures of
development such as unemployment or corruption within insti-
tutions might also be instructive. We used linear interpolation
to infer weekly values from the annual data.

For each week of data, we compute τ between ISP wickedness
and the GDP of the country in which each ISP was operating.

Figure 3: Correlation between wickedness and GDP (top panel),
wickedness and traffic (middle panel), and wickedness and
average regional wickedness (bottom panel). The vertical axis
in all plots is Kendall’s τ between wickedness and traffic during
the week shown on the horizontal axis. Red indicates significant
correlations at the p<.05 level.

The top panel of Figure 3 shows these correlations over the course
of 520 weeks, and indicates that GDP is consistently negatively
correlated with wickedness, in agreement with results from pre-
vious studies [73, 82]. In subsection 4.1 we calculate the size of
this effect. The correlation decreases in the later portions of the
data, which could indicate that infection rates are becoming less
tethered to development, as technology levels rise across the globe.

3.2 Geographic Clustering
Qualitatively, we observe that wickedness levels cluster in cer-

tain geographic regions during specific periods. For example,
during January, 2011 high levels of wickedness are observed in
Eastern European countries. Roughly a year later, wickedness
declined in Eastern Europe but increased in Southeast Asia3.
To study this geographic clustering, we divide the world into

14 regions, defined by the United Nations [56], and measured the
correlation between the wickedness of an ISP and the average
wickedness of all other ISPs in the same region (excluding the
original ISP) in the previous week.

We find significant positive correlations between this value and
wickedness throughout most of the data (see Figure 3). We study
this result more in depth in section 4.

3.3 Autonomous System Topology
Another possible risk factor is an ISP’s position in the topologi-

cal structure of the Internet at the Autonomous System (AS) rout-
ing level. To investigate the strength of this effect, we measured
the correlation between wickedness and several popular topological
metrics [14]. This is not straightforward because our data were col-
lected at the ISP level, and connectivity between ISPs is not identi-
cal to Autonomous System connectivity. We address this problem
by constructing a hybrid network that reflects both topologies.
We constructed this new network by beginning with the AS

level, retrieving AS network data from the Internet Research
Lab’s Internet AS-Level Topology Archive.4 The archive collects
daily and monthly snapshots of AS-level topology from a number
of different sources and, at the time of download on February 11,

3Map not shown due to space constraints.
4http://irl.cs.ucla.edu/topology/ipv4/daily/.
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2015, was one of the most complete publicly available sources of
the AS-level Internet topology [58]. We construct the ISP graph
using the following steps:

1. Aggregate nodes: Combine all ASNs owned by a single ISP
into a single node. This produces a graph that contains
both ISP and ASN nodes.

2. Aggregate edges: If there are multiple edges between two
nodes, combine them into a single weighted edge, with
weight equal to the number of connections between the
nodes.

3. Remove stubs: Remove ASN nodes that are not directly
connected to an ISP and have degree equal to one.

4. Combine the daily version of the graph into a weekly snap-
shot by taking the graph union.

We remove stub ASes because they likely have little real-world
influence on traffic flow in the ISP graph [48].
Using this hybrid graph, we investigated the correlation be-

tween ISP wickedness and a number of popular measures of graph
topology [14]. In total we tested eight different measures.
Figure 2 shows the correlation between wickedness and the

six of the eight topological features we tested. Three features
are significantly correlated with wickedness throughout the study
period (top two panels, and middle right panel): an ISP’s location
within the Internet hierarchy (Core Number and Average Shortest
Path Length) and centrality (weighted degree). Weighted degree
is correlated for the majority of time steps (middle right panel),
excluding the early part of the time series, a few weeks in 2010
and 2011, and late in the data. By contrast, betweenness central-
ity and clustering coefficient do not show significant correlation
throughout the time series, while page rank is correlated roughly
one third of the time. The correlations that do exist show that
in general ISPs with high centrality (degree), tend to have low
wickedness, while ISPs on the periphery of the network (low core
number, high average shortest path length), have higher wicked-
ness values. It is not clear why this is the case; one possibility
is that ISPs on the edge of the network tend to be smaller and
thus have fewer resources to counter infections.
ASNs are often categorized by the type of services they pro-

vide [11], and this could influence their level of wickedness. We
did not include this factor in our analysis because each ISP could
be an aggregation of multiple ASNs, making clear categorizations
of the services provided by an ISP difficult to ascertain. Moreover,
since our data on subscriber numbers is at the ISP level, we
cannot easily allocate it to different ASNs.

3.4 Network Traffic Dynamics
Traffic dynamics affect the concentration of malicious hosts [25],

but appropriate network traffic datasets are not publicly available.
Numerous models of traffic flow have been proposed for the AS
network, ranging from simple [64] to elaborate [5], and for this
study we adapted Roughan et al.’s gravity model [64] to simulate
malicious traffic between nodes in the ISP graph. In the gravity
model, the traffic received by node i from j is expressed as:

rij=
CiCj
d2ij

(2)

where Ci is the number of customers for ISP i, and dij is the
shortest path length between the two ISPs in the ISP graph.
We assume that malicious traffic is proportional to the total
traffic received by an ISP i, and then calculate the expected per
customer rate of malicious traffic:

Ri=

∑
j 6=iRijWj

Ci
(3)

where Wj is the concentration of spam-emitting IP addresses at
ISP j and Rij is fraction of j’s traffic destined for i (normalized

rij). Normalizing by Ci allows us to interpret Ri as the expected
fraction of malicious traffic received by each customer of ISP i.

We test whether this calculated value correlates with wickedness
in the same way we did for the topological factors, except we
consider time by introducing a one time-step lag between the
two series. This allows us to identify possible causal relationships
between traffic and wickedness[22], as shown in the top panel of
Figure 3. The figure shows that there is a statistically significant
positive correlation through time. This indicates that the flow
of malicious traffic, in particular, the amount of malicious traf-
fic received per customer in the previous week, correlates with
increased wickedness in the next week.

4. MODELING
In the previous section we identified external factors that are in-

dividually correlated with wickedness. In this section, we develop
an autoregressive model that incorporates and combines these
factors. We then use the model to explore the relative strengths
of these effects and identify the transitions between spam eras.

4.1 Autoregressive Model
An autoregressive model is a type of linear regression, which

uses previous values in a time series to predict future values.
We have already discovered in subsection 2.2 that our dataset is
highly autocorrelated, which justifies this model selection, and
we include the external risk factors identified in section 2.

Visual inspection of the data reveals an obvious decline in
wickedness levels somewhere after 2010. We incorporated this
observation into the model by hypothesizing up to three distinct
temporal eras. In each era y, the wickedness of ISP i at time t
is modeled as:

ln(Wi,y(t))=β0,yln(Wi(t−1))+β1,yln(Ri(t−1))+

β2,yln(Gi(t−1))+β3,yln(Ei(t))+

β4,yPi(t)+β5,yln(Di(t))+εy

(4)

Each symbol in Equation 4 is described in Table 1. In sub-
section 3.3 we found that both average shortest path length and
core number are correlated with wickedness. However, these two
measures are highly correlated with each other, and including
both metrics in the model could cause estimates of βx,y to be
incorrect [79], so we selected average path length.

All autoregressive models include a distribution of error terms,
here represented by ε, and they are usually assumed to be nor-
mal [79]. In our case, given the high variance of the data (section 2),
we assume εy ∼T(ν,σ), where T(ν,σ) is the non-standardized
Student’s T distribution, which is considered to be more appro-
priate when a dependent variable has high variance [79] which
we observed in section 2.

In the model some variables are log transformed because prelim-
inary inspection revealed that their functional relationships were
non-linear in particular ways (i.e. roughly linear on log/log plots).5

4.2 Identifying Model Transitions
In section 1 we noted that the data appear to experience qualita-

tive changes, which might correspond to changes in spam tactics or
the development of new spam fighting tools. However, it is unclear
exactly when these changes might have occurred. Rather than
pre-define transitions between eras based on industry reports or
qualitative evaluations of the data, we used the model to determine
the most likely dates when significant changes in spam concentra-
tions occurred, testing for zero, one, or two significant transitions.

5We speculate that the log/log relationship between Wi(t) and
Wi(t−1), may arise from an underlying growth or decay process in
malware infected hosts.



Table 1: Coefficients for the autoregressive model. Range indicates the range of possible values for each variable. Bold coefficients
are statistically significant at the p<0.01 level.

Era 1 Era 2 Era 3
Variable Symbol βi,y Range Jan 2005-Dec 2010 Dec 2010-June 2012 June 2012-Dec 2014

Log Prev Wickedness ln(Wi(t-1)) β0,y [-18.1,0.26] 0.994 0.991 0.976
Log Prev Wicked Traffic ln(Ri(t-1)) β1,y [-29.4,-10.4] 0.0002 0.0003 0.0145
Log Prev Region Wickedness ln(Gi(t-1)) β2,y [-13.3,-2.1] -0.0039 -0.0158 -0.0188
Log GDP per capita ln(Ei(t)) β3,y [6.5,11.7] -0.0080 -0.0255 -0.0359
Shortest Path Length Pi(t) β4,y [0.0,8.2] 0.0052 0.0109 0.0658
Log Weighted Degree ln(Di(t)) β5,y [2.7,4.9] -0.00009 -0.0006 0.0175

R2 0.985 0.975 0.937

For each possible combination of two transition dates, we use
maximum likelihood estimation (MLE) to estimate the values for
all βx,y and their standard errors. We then selected transition
dates which gave the model the highest likelihood.

To measure whether dividing the data into three eras is justified,
we compared the model to one with a single division into two
eras, and one with no divisions. We used the Akaike Information
Criteria (AIC)[79], which is a measure of goodness of fit based
on likelihood that penalizes more complex models. We found
a statistically significant improvement between the model with
two divisions and models with a single or no divisions. It is also
possible that there are more statistically significant transitions
in the data than we were able to test for due to computational
constraints. We leave this topic for future investigation.
The first change identified by our methodology begins in De-

cember 2010, after which we see a steady decline in spam levels.
This may be due to improvements in adaptive, real-time filtering,
which were first deployed at companies such as Google as early
as 2006 [71]. There is evidence that improved filtering forced
spammers to adopt new more costly methods of spamming, such
as large-scale account hacking [21]. Filtering even affected delivery
of legitimate bulk email in the first half of 2011 [59]. Microsoft’s
Security Intelligence Report attributes the decline in 2011 to both
more sophisticated filtering techniques, and to the takedown of
the Cutwail and Rustock botnets [50].
We identify a second transition beginning in June 2012. In

May, 2011 Kanich et al. published a paper which identified a
handful of banks that were responsible for processing most of the
payments made by spam victims [29]. Shortly after the paper
was published, Visa tightened requirements for merchants, and
effectively disrupted many spammers’ revenue streams [76]. Seven
months after the announcement of these requirements, spammers
reported difficulty maintaining reliable credit card processing [41]
and spam volume dropped significantly, e.g. Symantec’s Internet
Security Threat Report from 2012 notes a significant drop in
pharmaceutical spam [68].

4.3 Model Results
Table 1 gives the MLE values for the βx,y. Examining Table 1

we see that the autoregressive term has the largest influence on
future wickedness. Surprisingly, one of the other terms (regional
wickedness during the previous week) in all eras has an opposite
effect from what was reported in section 3 (Figure 3). This is an
example of Simpson’s Paradox [63], indicating that in the presence
of other variables, high levels of wickedness in neighboring ISPs
actually reduce future wickedness. One possible explanation is
that spammers initially try to infect as many machines in a region
as possible, and then concentrate on vulnerable ISPs as they
discover them, reducing attacks on the less vulnerable ISPs. This
factor and the other variables identified in section 2 are statis-
tically significant, but at low levels. This simple model accounts
for the vast majority of the variance in our data, with a combined

coefficient of determination of R2=0.980 for data in all eras.6

It is possible that more sophisticated models might provide more
predictive power than our simple linear, autoregressive model.
We tested support vector machines, feed forward neural networks,
decision tree regression, and gradient tree boosting, and found that
none outperformed our model (measured by R2) or had similar
explanatory power. Moreover, our robust statistical approach
can determine statistical significance without computationally
expensive procedures, such as cross validation.

5. THE EFFECT OF TAKEDOWNS
Section 4 presented a statistical model that accurately assesses

the relative contribution of a variety of factors on spam levels over
almost a decade. This section shows how the model can be used
to study the impact of interventions such as botnet takedowns.
Although spam levels typically drop immediately following a

takedown, there is anecdotal evidence that this effect is short-
term, often returning to previous levels within a few weeks [43,
75, 62]. Given the high variance in the data, however, quantifying
the short-term and long-term effects is challenging, and requires
rigorous statistical testing. With only a small extension to the
model, we can conduct such tests and consider the impact of
takedowns on different regions of the world.

5.1 Modeling Takedowns
Wemodel takedowns, which are a discrete event at the timescale

of our data, by adding binary variables to the model:

Bk(t−j)=
{

1 takedown k occurred j weeks ago
0 otherwise

(5)

Each Bk(t− j) is incorporated into the model with its own
coefficient, and the autoregressive model becomes:

Equation 4+
∑
k

l∑
j=0

βkjBk(t−j) (6)

βkj is the coefficient associated with Bk(t − j). Using the
log/linear form of Equation 6, we can estimate the general effect
of a takedown using the estimates of βkj. For each takedown,
the fractional change in wickedness associated with the takedown
during week j is eβkj−1. This process can be repeated to give

e
∑l

j=0βkj−1, which estimates the cumulative effect of the take-
down over the time period l. If the MLE of any one of the βkj is
not statistically significant it is assumed to be 0. The statistical
significance of the estimated coefficients provides a rigorous test
of a takedown’s effect.

We incorporated 12 different historical botnet takedowns into
the extended model. We considered most major takedowns of

6The autoregressive term is mostly responsible for the high R2 in the
model. However, without the autoregressive term the model still has
an R2=0.58, indicating moderate explanatory power.



Table 2: Effect of 12 historical botnet takedowns in the model. The recorded dates are the first date in our data set after the intervention. In
column two Communications Disruption is the severing of communication between bots and the command and control (C&C) infrastructure,
C&C Takeover refers to when control of the C&C infrastructure is gained without physical access, Seizure refers to the physical confiscation
of C&C infrastructure, and Arrest refers to the arrest of individuals. The percent change columns report the percent change in global
wickedness in the first week after the takedown (column three) and six weeks later including the first week of the takedown (column 4).

Botnet takedown (Date) Takedown Method Initial % Change 6 Week % Change

McColo (November 11, 2008) Communication Disruption [35] -17.4 44.6
Mariposa (December 24, 2009) C & C Takeover [9] 35.8 34.8
Waledac (March 5, 2010) Communication Disruption [38] Not significant -3.5
Spamit.com (October 1, 2010) Self Shutdown [77] Not significant 6.1
Bredolab/Spamit.com (October 29, 2010) Seizure and Arrest [16] -11.8 -17.2
Rustock (March 19, 2011) Seizure [31] -20.2 -13.9
Coreflood/Rustock (April 16, 2011) Communications Disruption [40] -7.3 13.8
Kelihos (September 17, 2011) Communication Disruptions [20] 6.4 31.6
Kelihos Variant (April 1, 2012) Communications Disruption [12] Not Significant 30.1
Hermes-Carberp (June 24, 2012) Arrest [57] 21.4 9.0
Grum/Hermes-Carberp (July 22, 2012) Communications Disruption [52] -11.3 49.4
Virut (January 22, 2013) Communications Disruption [42] -21.7 113.8

botnets in the time span of our dataset that sent large amounts
of spam. We allow i to vary from 0 (the week of the takedown) to
l=6 weeks. Beyond this time, we find no further statistically sig-
nificant changes that can be attributed to the takedown, implying
that the time horizon for the effect of a takedown is at most six
weeks. In some cases, two botnet takedowns overlap the six-week
windows, and we cannot separate the effect of the two takedowns.7

When this occurs we include both the initial effect of the first
takedown and the combined effect of the second takedown.

The results are given in Table 2, which shows that the global
effectiveness of these botnet takedowns varies significantly. Some
takedowns were effective in the short run (6 out of 12), but over
the six-week window only three showed any persistent significant
decrease in spam.

The table shows that two takedowns (Bredolab and Rustock)
had a relatively large long-term impact on spam in the six weeks
following the takedown, while the third (Waledac) had a rela-
tively minor impact. Both the Bredolab and Rustock takedowns
involved physical seizure of infrastructure by law enforcement. Al-
though this may not be directly related to the effectiveness of the
takedowns, it is notable and is likely correlated with other external
factors that have more lasting effect. Four takedowns that used
communications disruption to shutdown the botnet reduced spam
concentration in the short-term (i.e. McColo [35], Coreflood [40],
Grum [52], and Virut [42] ) are followed by long-term increases in
wickedness. The rest of the takedowns, such as the self shutdown
of spamit.com [77], seemed to have little positive impact either
initially or in the long-term. These values provide evidence that
other interventions were likely the main driver of the decline in
overall spam volumes, not botnet takedowns. We note that the
two most effective takedowns occurred at the end of era 1 and
beginning of era 2 respectively, however, without more data we
cannot to draw further conclusions about the relationship between
takedown effectiveness and the era in which they occurred.
In the case of Mariposa, our results may reflect the historic

details of the takedown. Shortly after the original takedown in
December, during which control of command-and-control servers
was obtained, attackers managed to regain control of the botnet
and launched denial-of-service attacks against numerous ISPs [9],
which could be related to the increased spamming activity.

5.2 Regional effects of botnet takedowns
7An overlap results in two binary variables with the same value being
included in the model (perfect collinearity), which would cause an
ill-defined maximum likelihood calculation [79].

Figure 4: Regional effect of botnet takedowns. For each historical
takedown studied the top panel shows the immediate effect by
geographic region, and the bottom panel shows the effect after
six weeks for the same geographic regions. The color shows the
percent change in wickedness as indicated by the legend.

Bots are not uniformly distributed geographically [53], suggest-
ing that takedowns might have different effects throughout the
world. To investigate this hypothesis we re-applied our modeling
approach, but at the regional level. Rather than creating a single
model for all ISPs globally, we constructed one model for each
geographic region defined in subsection 3.2, using only the ISPs
in that region. We included regions that have at least two ISPs
in our dataset to avoid over-fitting [79].

All takedowns showed varying effects for different regions (Fig-
ure 4). Some takedowns have effects regionally that resemble
the global effect seen in Table 2, while others have differentiated
behavior. For example, the McColo takedown initially appears
successful, but in the long term wickedness increases across nearly
all regions (blue colors, upper panel in Figure 4, and red colors,
lower panel in Figure 4, respectively), similar to the global effect.
In contrast, two of the takedowns led to mixed effects throughout
the world. Six weeks after the Hermes Carberp takedown, wicked-
ness in Australia/New Zealand, Eastern Asia, and South-Eastern



Figure 5: Country-specific effect of botnet takedowns in Eastern
Europe. For each historical takedown studied, the top panel shows
the immediate effect for each country, and the bottom panel shows
the effect after six weeks for the same country. The color shows
the percent change in wickedness as indicated by the legend.

Asia decreased, but most other regions experienced increases.
Similarly, six weeks following the Grum takedown, wickedness
in South America had declined significantly, but the rest of the
world experienced increases. These differentiated regional effects
occur predominately in the second and third eras.
We can further analyze the effect of botnet takedowns on

individual countries by constructing one model for each country,
using the same procedure as we did for regions. Once again, we
consider only countries with more than two ISPs in our dataset to
avoid overfitting. Figure 5 shows the effect of various takedowns
only on countries in Eastern Europe due to space constraints. We
focus on Eastern Europe because it shows interesting variation
among its countries. However, most other regions also showed
significant variation.
Consistent with the earlier analyses, there are many coun-

tries for which a takedown initially has a positive effect, but
where, in the long term, wickedness actually increases. One
prominent example is the Czech Republic following the Bredolab/
Spamit.com takedowns, which did not experience a significant
change in wickedness the week of the takedown, but wickedness
nearly doubled after six weeks. Country-by-country there is little
correspondence with the global takedown effect. For example, the
McColo takedown initially reduced wickedness globally, but was
followed by an increases in spam on both a global and regional
level. However, at the country level the results are mixed, with
Belarus benefiting from the takedown while Romania, Hungary,
and Russia experience increases at 6 weeks.

These regional results raise the interesting possibility that bot-
nets can migrate in response to takedowns. That is, by reducing
the number of infected hosts in one region, a takedown creates
incentives for botnets to find new vulnerable hosts, thus moving
the problem elsewhere. More advanced modeling techniques,
such as vector autoregressive models [2], could shed light on this
intriguing possibility.

6. RELATED WORK
This paper builds on the dataset of Van Eeten et al. [73], which

investigated ISPs as control points for mitigating the spread of
malware, using a comprehensive worldwide spam dataset. Here,
we updated the dataset with 6 more years of data. The Van

Eeten et al. analysis revealed that a country’s development level
is correlated with spam volume, and it analyzed how public
policy initiatives might reduce infections. We extend this work
by developing a data-driven statistical model, which estimates
the effect of different spam interventions and identifies temporal
transitions in the dataset.

Other work locates infected hosts in IP address space. Moura et
al. identified IP ranges with high concentrations of spam sending
hosts [53]. Similarly Ramachandran et al. examined the network-
level behavior of spammers, and showed that spam is concentrated
in relatively small IP ranges [61]. Stone-Gross et al. studied ISPs
with persistent malicious behavior [67], Chen et al. investigated
malicious sources on the Internet over IPv4 [6], and Wilcox et al.
studied the stability and availability of address space in spam and
non spam networks [78]. Kokkodis and Faloutsos showed that
spamming botnets have become more widely and thinly spread
over IP space, a potential problem for filtering [33]. However,
to our knowledge none of this work explores which topological
features of the AS network correlate with infected hosts. Addi-
tionally, our model shows that previous regional concentrations of
wickedness and malicious traffic correlate with future wickedness.

Collins et al. define uncleanliness as the probability that a host
is vulnerable [8], while wickedness measures the concentration of
active malicious hosts. They find that a network’s past behavior
is strongly correlated with its future behavior, which agrees with
our finding that wickedness is autocorrelated.

Another related area proposes using economics to control mal-
ware and spam [28, 55, 44]. The idea of disrupting spammers’
income by targeting the small number of banks that handle credit
card payments [49, 29] may have helped reduce global spam levels.
A related approach is the publication of infection rates of ISPs
(measured by spam volumes) to provide incentives to control
compromised customers in their networks [70].

There are few models of global malware dynamics. Venkatara-
man et al. model malicious activity as a decision tree over IP
address space and infer the dynamics of the decision tree [74].
Their work focuses on IP address ranges rather than ISPs, but
it reports some similar results as those observed in our model,
for example, high variance in the data. Zhang et al. find that
mismanagement of networks correlates with malicious behavior
(measured using a quantity similar to our wickedness) in Au-
tonomous Systems [82], but do not focus on how this behavior
might evolve over time. Liu et al. use support vector machines
trained on data from reputation blacklists to predict security
incidents [46]. These predictions could be incorporated into our
model to better predict some of the large changes in wickedness
over time. A model of global malware dynamics was also proposed
by Hofmeyr et al., which used an agent-based model to investigate
the dynamics of malicious traffic flowing across the Internet at
the AS level [25]. This model was significantly more abstract
than ours, and did not incorporate actual data about spam, ISPs,
demographic features, or intervention events such as takedowns.
Nadji et al. analyze botnet takedown efficacy [54], and other

work considers raw measurements of spam volume [20]. Nadji et al.
investigated three historical takedowns, performing post mortem
analysis of each takedown’s effectiveness, by measuring which
malicious domains could still be resolved in the Domain Name
Service (DNS). Contrary to our results, this work recommends
DNS takedowns for a large fraction of current botnets. However,
their results rely on relatively short time scales (two weeks), and it
only considers the DNS, which may not be sufficient to identify re-
bounds once attackers establish new communication channels [18].

Mechanistic botnet models, e.g. [34, 80, 10, 7, 30], focus on spe-
cific infection mechanisms, while our model considers the security
problem from a global perspective, with botnets being just one
component. We find that most botnet takedowns have limited



and transient impacts on global wickedness. This result agrees
with other research, which found that botnets are surprisingly
resilient [81], and in many cases recover after a short time [54].
Other work has modeled malicious websites, noting the high vari-
ance of cybersecurity data, and investigates interventions through
modeling [13].
Traffic filtering is an important intervention for reducing the

number of infected hosts. There has been research into the effec-
tiveness of various filtering techniques, e.g. [45, 27, 60], however
this work focuses on the success of the filter itself and not whether
the filter actually reduces the global distribution of infected hosts.
Incorporating filtering interventions into our model is an area we
plan to explore in future work.

7. DISCUSSION
Data-driven models such as the one presented here can po-

tentially yield interesting and important insights, which in turn
can inform policy makers about the utility of interventions or
even how to prepare vulnerable regions of the world before they
are applied. However, there are several pitfalls that a statistical
modeling approach needs to acknowledge.
First, the model is built around statistical correlations, but

it ignores mechanisms, e.g. by what process does a country’s
development and an ISP’s position in the ISP network influence
wickedness? Second, statistical models such as ours cannot deter-
mine causality, so detailed understanding of the data is needed to
attribute cause and effect. Third, high variance data can hide sig-
nificant changes, and also make it appear that significant change
has occurred when it has not. Modeling global data is a powerful
tool to address this issue, but the modeling methodology must
take into account the variance (e.g., averages can be misleading).
We were careful to use appropriate methodology to avoid this
pitfall. Finally, any conclusions drawn from a statistical model
depend on the quality of the data (although techniques do exist
to help compensate for certain classes of data problems).

Any model is necessarily a simplification of reality. For example,
our traffic model is simplistic given the complexity of the Internet.
Future work could incorporate more realistic models, especially
because our model shows that the traffic component is significant
only during the third era. It could be that spam email was more
likely to be used to spread infection during this era, whereas
earlier it was used primarily for advertising, e.g. gray market phar-
maceuticals. Similar to the traffic component, if other important
features are identified, such as the type of service provided by an
ISP, this information could easily be included in the model.
This paper focused on spam itself, but spam data have also

been used to estimate the numbers of infected PCs [83, 70, 26].
By applying our methodology to other measures of infection, it
should be possible to develop models that provide insight into the
dynamics and global distribution of these other types of infections.
In general, we are interested in the distribution of all malicious
behavior (or wickedness), regardless of its source. In some cases,
the definition of wickedness could be expanded, e.g to include the
relative value of hosts in different regions—an infected machine
in the US may be more valuable than one in India.

Cybersecurity is often viewed as an arms race, which complicates
the task of predicting the impact of today’s interventions against
tomorrow’s attackers. At least, however, we should evaluate the
likely effect of new methods before embracing large-scale deploy-
ments or policy directives that enforce certain interventions, and
models such as the one described here are one way to approach this.

We have studied the impact of botnet takedowns in some detail,
but there are other interventions that would also be interesting to
explore. For example, the traffic model provides a way to analyze
the effect of blacklisting offending ISPs or different filtering strate-
gies [24]. There is evidence that national and international initia-

tives against cybercrime can reduce wickedness [73]. Our model
could, for example, be used to assess whether countries that are sig-
natories to agreements such as the London Action Plan or Council
of Europe’s Convention on Cybercrime actually experience lower
wickedness levels after ratifying the agreements. This could be
studied by incorporating this information as an additional variable.

By looking for differential effects of takedowns geographically,
we can identify at risk ISPs or countries, i.e. those that are likely
to see little initial effect from the takedown but which could expect
an increase in wickedness in the medium term. Our results to date
have not identified any single factor that is consistently correlated
(at a statistically significant level) with increased wickedness after
a takedown. However, if we could identify at-risk countries and
ISPs, they might make good candidates for targeted interventions,
for example, ISPs on the periphery of the AS network which
may have inadequate spam-fighting resources and lack automated
methods to help customers clean up malware. Government in-
terventions could focus on providing resources to those ISPs (or
even countries), an approach that might prove more cost-effective
than existing methods.

8. CONCLUSION
With unprecedented numbers of people now connected to and

depending on the Internet (three billion in 2014 [72]), it is im-
perative that we understand and mitigate global cybersecurity
threats. Further, we need to understand regional variations, and
why some parts of the world and some corners of the Internet
are disproportionately affected.
In this paper we studied an abstract quantity called wicked-

ness (concentration of spam sending hosts) and showed that it
clusters regionally, correlating with national demographics and
certain properties of the ISP graph. Through the use of statistical
modeling combined with a large dataset, we studied some of the
factors affecting spam, a large-scale security problem distributed
around the world. Leveraging a long-term historical view of data
produced interesting insights about the effectiveness of certain
cybersecurity interventions. We found that takedowns are only
marginally effective in many cases, and in fact may be harmful
to certain countries and ISPs.
Our model could serve as a starting point to predict future

wickedness and test the likely effect of new interventions, both for
spam and other similar problems. Our ultimate goal is to provide
researchers and policy makers objective means to test intervention
strategies and decide how best to mitigate global wickedness.
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