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Abstract

This thesis outlines, discusses, and presents several artificial neural network archi-

tectures that are amenable to execution on a Graphical Processing Unit. Traits

are identified that lead to good or poor performance of the artificial neural network

simulation.
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Chapter 1

Introduction

There is nothing more difficult to take in hand, more perilous to conduct

or more uncertain in its success than to take the lead in the introduction

of a new order of things.

Niccolo Machiavelli “The Prince” 1532

1.1 Overview

Artificial neural networks have held the attention of researchers for over 60 years

because of their simplicity, robustness, and similarity to biological structures present

in our own brains. Over the years, researchers have applied neural solutions to many

fields; from medicine to weather forecasting, autonomous airplane control systems

and simplistic robot controls.

Over the past 30 years, graphics cards have become useful and powerful processors

found in most commercial off the shelf computers. These computers can range from
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Chapter 1. Introduction

console game systems to a commodity desktop, and if applied correctly are currently

capable of serious computation.

A GPU can be defined as a single chip processor used for processing two and

three dimensional transform and lighting operations in the context of computer

graphics. These processors are typically moderately parallel and contain several

ALUs (Arithmetic Logic Units), several pixel pipelines (around 16), several vertex

pipelines (around 6), and fast access to a relatively small amount of on card memory

(32 to 512 MB). Modern 3-D graphics cards typically contain one or more of these

GPUs.

In this thesis, simulation of artificial neural networks (ANN) on commodity graph-

ics processor units (GPU) is explored, measured, and analyzed to provide some

general observations about characteristics that make an ANN well or ill-suited to

simulation on the GPU.

1.1.1 The Problem

Graphics processing units are being considered for many fields of computation due to

their many attractive traits. One example field is ANNs. Artificial neural networks

offer some attractive solutions to many real world problems. The field of artificial

neural networks is an area of computation that has been by in large unexplored in

comparison to other fields of GPU application. Because of these facts, the marriage

of ANNs and the GPU would seem to be a worth-while area of research; to establish

or invalidate particular architectures amenability to GPU simulation, to provide a

fair and unbiased comparison of CPU and GPU execution of these architectures, and

to establish some general traits that make ANNs more or less amenable to simulation

on a GPU.

In this thesis, a brief history of GPUs and Artificial Neural Networks is presented.

2



Chapter 1. Introduction

Introductions to both GPUS and ANNs provide a basic overview of the information

needed to understand the application of ANNs on GPUs. A survey of current GPU

and CPU programming languages with ANN supporting features is presented and

briefly discussed. Finally, a comparison between several ANNs implemented on both

the CPU and the GPU are presented, allowing analysis and generalization about the

applicability of ANNs on GPUs.

3



Chapter 2

Background

2.0.2 History of the Artificial Neural Network

In the early 1940s, researchers began investigating computational models that mimic

the neural connections present in all animals. If creatures as simple as flat worms can

perform complex tasks with seemingly simplistic and relatively small (in comparison

to Homo sapiens ) neuronal connections, why couldn’t this design be mimicked in

silico?

In 1943 Warren McCulloch and Walter Pitts published the seminal paper, “A

Logical Calculus of Ideas Immanent in Nervous Activity”[13] in which they outline

ten theorems and a propositional calculus explanation for the functionality of the

biological neuron network. They also show that their neural network propositions

are Turing complete, and as a result so are biological entities. They note from

observation that neurons exhibit differential behavior when repeatedly fired, or when

neighboring neurons are repeatedly fired[13, 28, 27]. This behavior would go without

plausible explanation for another 6 years until Donald Hebb published his book

entitled The Organization of Behavior [9]. In his book Hebb presented his theory
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Chapter 2. Background

on learning involving the strengthening and weakening of neural weights in response

to coordinated or uncoordinated firing (respectively)[9, 22]. These three researchers

together established the neuron as the atomic unit of computation within the brain,

and as a result solidified the use of artificial neurons as a valid approach.

In the mid 1950s the first simulations of artificial neural networks began to appear.

Theoretical work still had a great lead on the actual implementation of networks. In

1969 Minsky and Papert published their book Perceptrons [15] which seemed to place

significant limitations on the functionality of the perceptron. They even went as far in

their condemnation as to say that there was no reason to believe that the limitations

found in the single layer perceptron would be overcome by a multi-layer solution.

This book dealt a great blow to the entire field of connectionist networks and is often

cited as one of the instigators of the connectionist counterrevolution. In the 1980s

the credit assignment problem was solved, and Minsky and Papert’s prognostication

about multi-layer perceptrons was proven false[8]. Multi-layer perceptrons could

indeed solve more complex problems than were possible to solve with the single layer

perceptron, and credit or blame could be appropriately spread through the network

with some simple calculus.

In spite of the blow dealt by Minksy and Papert, theoretical work continued and

resulted in several interesting models including self-organizing maps and adaptive

resonance theory. In 1982 John Hopfield presented his ideas on using energy functions

from physics to compute recurrent networks. Initially known as “auto-associative

networks” they are now commonly known as “Hopfield Networks”[8, 24].

While this is only a very brief history of artificial neural networks, it should serve

as a good synopsis of the high points in history that have motivated this research.

Many important innovations have occurred between 1982 and the present, however

few (if any) are of importance to the direction of this research.

5



Chapter 2. Background

2.0.3 Anatomy of a Artificial Neuron

The artificial neuron is based in large on the structure of a biological neuron (Figures

2.1 & 2.2). It consists of connections - analogous to the axon and dendrites, an

activation potential - analogous to the soma, and a threshold function - analogous to

the axon hillock. Like their biological counterparts the activation threshold is most

commonly some non-linear function (tanh, logistic, atan), although it can be any

function of choice.

Figure 2.1: Biological neuron, image courtesy of U.S. National Cancer Institute’s Surveil-
lance, Epidemiology and End Results (SEER) Program

Artificial neurons, like their biological counterparts, are most often composed into

networks of neurons (Figure 2.3). Each neuron will have connection weights that

indicate the propensity for that particular neuron to be excited or suppressed by the

neurons that are sending signals to it. It is through the intelligent composition of

these neuron networks that artificial neural networks are able to perform their tasks.

6
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Figure 2.2: Artificial neuron

Some of the benefits of neural networks include: nonlinearity, input-output map-

ping, adaptivity, evidential response, contextual information, fault tolerance, unifor-

mity of analysis and design, and the neurobiological analogy[8]. These benefits are

discussed briefly below:

• The non-linear (or linear) nature allows the networks to process signals that

are produced by some underlying non-linear process, such as a speech signal[8].

• The input-output mapping allows networks to make a literal mapping from

given inputs to a desired output through either supervised or unsupervised

learning. This mapping is obviously needed for classification problems, since

to classify any input we must map the input to a given (or discovered) class[8].

• Adaptivity means that the network is able to adapt to the environment it exists

within. This adaptivity is quite useful when the network is to be employed in

7
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Figure 2.3: Example of a artificial neural network designed as part of a simulator robot
control system. This network utilizes “Pi” (multiplication) neurons instead of the “Sigma”
(summation) neurons used in this thesis research.

an environment in which all possible inputs can not be specified at the design

stage[8].

• Evidential response allows the network to respond not only with a classification

for a given input, but a confidence measure. This style of response can be useful

for dealing with ambiguous inputs which might otherwise be misclassified, or

result in more certainty being placed in an uncertain response[8].

• Contextual information refers to the network’s natural encoding of information

at a global scale. Because each neuron is potentially affected by the activity

of every other neuron in the network, contextual information is in some sense

inherently included[8].

• Because networks are composed of distributed neurons, each with its own piece

of the body of knowledge, the performance can be called fault tolerant. If one

8
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neuron or small group of neurons is for some reason disabled, the performance

of the entire network will degrade gracefully[8].

• Uniformity of analysis and design refers to the neuron being the basic unit of

computation present in most neural networks. This uniformity allows research

and methods to be shared among various architectures, advancing larger por-

tions of the field at once[8].

• The neurobiological analogy is convenient because it allows researchers in arti-

ficial and biological neural networks to look towards each other for explanation

and inspiration[8].

2.0.4 Similarity of Artificial and Biological Neurons

The structural components of the biological neuron have simplistic counterparts in

the artificial models, but the similarities would appear to end there. The human

brain has approximately 2× 1012 neurons, whereas the largest artificial networks are

typically many orders of magnitude smaller. Biological networks engage in several

modes of asynchronous parallel computation simultaneously through both axon firing

locally and more global chemical reactions which alter the overall function of the

brain.

While some researchers such as Rodney Brooks have offered up comparisons of the

computational power of modern computers and their biological counterparts (Table

2.1), these claims are by and large misleading and probably mistaken. It has been

argued that the brain has about 2×1012 neurons and the relaxation time of a neuron

(time from firing to the ability to fire again) is about 10 milliseconds, the brain has

a clock speed of approximately 100 Mhz. Using these figures results in a estimate of

2 × 1014 logical operations per second[25]. As a comparison, the Pentium4 running

SSE2 instructions can churn out about 1.6×1010 operations per second. Even though

9
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the Pentium4 performance is only slightly more than a factor of 1000 times slower,

it would seem to be a great mistake to assume that we are even within a factor of

1000; not because human brains are some mythical supreme computational medium,

but rather because the brain has had millions of years of evolutionary force behind

its highly parallel and distributed architecture. The fact that we do not understand

much of the brain’s function at a low level makes these comparisons in computational

power unfounded.

Neuron Count By Species
Rotifers and Nematodes less than 300 neurons
C. elegans 959 somatic neurons and

301 neurons
ANNs examined in this research 1024 to 6148 neurons
Drosophola 350,000 neurons
Small mammals 30 million neurons
Common Octopus 30 million neurons
Human 85 billion neurons
Whale and Elephant over 200 billion neurons

Table 2.1: A small chart of some of the more commonly studied animals neuron
counts

“Soma” is Greek for “Body”. There are two main definitions for “soma” in the

context of neuroscience. The first refers to the main body of the neuron which

contains among other components the nucleus. The second definition refers to the

function of the neuron, namely it refers to neurons that control the functions (mainly

motor and sensory) of the body of the organism. In table 2.1 “soma” refers to this

second definition, implying that the somatic neurons are mainly (but almost certainly

not exclusively) involved in body control.

10



Chapter 2. Background

2.0.5 History of the GPU

The modern GPU is a descendant of the Geometry Engine, a very large scale inte-

gration (VLSI) based graphic card solution, and post-script raster processors in laser

printers of the 1980s. By the early 1990s 2-D accelerated raster controllers had been

successfully designed, marketed, and integrated into most people’s graphics cards.

These cards were capable of simplistic operations, constrained to 2-dimensional desk-

top type operations such as BitBlt (bit-blitting). High performance computing com-

panies like Silicon Graphics (now SGI), HP, and Sun all had 3-D acceleration support

for OpenGL by 1996; but these solutions were prohibitively expensive for the mass

market. These cards generated a desire for accelerated 3D performance among the

computer gaming community. In 1994 3dFX Interactive was incorporated and set

out to design a graphics card that the masses could afford. In 1997, following a

drastic drop in EDO RAM prices, 3dFX released their “Voodoo Graphics” chipset

(later to be known as Voodoo 1). The Voodoo chipset was repackaged by industry

leaders onto daughter cards that subsumed the traditional 2D graphics cards, per-

forming acceleration only when running 3D applications. Due to the success of this

chipset 3dFX released the Voodoo 2 a year later, to similar fanfare. Seeing the suc-

cess of 3dFX, other industry leaders started formulating solutions to compete in this

growing market. By late 2000 3dFX underwent one of the most renowned demises

in the computer graphics industry, due to litigation delaying the release of lines, a

shift from reselling chips to producing the full graphics card, and the release of the

NVIDIA GeForce[23]. The spark of interest created by their early successes went on

to fuel a very competitive market[23]. The new NVIDIA GeForce processor shifted

much of the work from the CPU to the GPU and was the first GPU capable of useful

and speedy GPU computation.

It is necessary to distinguish between the GPU (Figures 2.5 & 2.7) and the

graphics card (Figures 2.4 & 2.6) that the GPU is integrated to. The GPU is simply

11



Chapter 2. Background

the processor utilized in many of the graphical operations performed by the computer,

whereas the graphics card implements the full suite of graphical operations through

the integration and utilization of many components including the GPU, memory, and

often a suite of other small co-processors dedicated to video encoding and decoding,

two dimensional operations, and other graphics related operations.

Figure 2.4: GeForceFX board (graphics card)

The early graphics architectures offered minimal computational ability. The

processors were under-engineered in comparison to CPUs of the time, computations

were limited to 8 bit precision, and more importantly the graphics pipeline was very

rigid (Figure 2.8). The graphics pipeline will be discussed in more detail in section

2.0.6 but in brief in can be considered a streamlined series of processors capable of

very efficiently performing specific special purpose operations on the vertex and pixel

data, much like an assembly line in an auto manufacturing factory.

12
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Figure 2.5: GeForceFX chip (GPU)

As the market has strengthened these issues have been addressed; GPU engineer-

ing has produced processors capable of well outperforming CPUs on linear algebra

(Table 2.2) (in spite of Intel and AMD’s attempts to integrate streaming instruction

set math (see section 2.2.2 for further discussion)), current GPUs now support 16-bit

floating point operations directly and 32 (NVIDIA) or 24 (ATI) bit floating point

operations via additional programming, and NVIDIA, Microsoft, and eventually the

architecture review board (ARB) (the industry organization responsible for control-

ling the OpenGL standard) have established standards that allow programmers much

more access to the underlying hardware. As a result it allows much more flexibility

in the graphics pipeline (Figure 2.10). It was this added functionality in the graph-

ics pipeline first through the use of “extensions” then eventually through “shaders”

coupled with increased performance and increased precision that gave GPUs their

final push towards being a real option for computing.

Shaders are simple program kernels that are meant to allow the programmer to

specify how the vertex and pixel handling are performed, but are flexible enough to

be used in some general computation applications. Shaders can be written in high-

13
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Figure 2.6: ATI Radeon X850 board (graphics card)

level programming languages and mapped onto underlying hardware and virtual

machine by vendor specific compilers. The high-level language implementation and

compilation approach allows developers to write code once, compile it to all future

hardware revisions, and permits them to take advantage of new hardware innovations

as they arrive without re-writing code.

2.0.6 What is a pipeline?

A pipeline (Figures 2.8 & 2.10) is an architecture that has risen out of the advances

made in VLSI technology in order to facilitate higher throughput of data. Consider

the operation z = αw + y. Examining the work performed, there is 1 multiply

performed and 1 addition. Now consider the execution of this formula x times on

two different platforms, a serial processor and a pipelined processor. On the serial

processor the multiplication is performed, then the sum. After this first result is

returned the same execution occurs again; the multiplication first, then the sum. If

14
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Figure 2.7: ATI Radeon X850 chip (GPU)

each operation takes 1 clock step, it is simple to see that the total time for execution

of this formula is 2x clock steps. Now consider the pipelined processor. On the

pipelined processor this formula can be broken into two steps that run independently;

the multiply and the sum (see figure 2.9 for an example of this operation). This allows

the pipelined processor to begin the multiplication of the next formula immediately

after finishing the first multiplication and before the sum is completed. Now examine

the result this has on the running time of the formula: the first result is returned

after two time steps, but every successive time step has a result generated (total

running time: 1x + 1)! This is a great speedup as long as the operations performed

are able to be decomposed into these independent computational steps.

To think of the pipelined architecture in a more abstract metaphor, think about

an automotive assembly line. On the assembly line (invented by Henry Ford in 1914)

a car moves from one station to the next, having a set of parts added or modified

at each station. Each car has other cars in front of and behind it, so that there
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Figure 2.8: Diagram of the fixed pipeline architecture

is immediately another car for the employee at each station to work on as soon as

they are done with the car currently at their station. In the same light, a pipelined

processor (when correctly used) has data ready to be processed by each processing

unit (like an employee at a station) as soon as it is done with its current operation.

If the pipeline architecture is also parallelized (as it is in GPUs), operations like

−→z = α−→w + −→y can be greatly sped up. For example consider a pipelined processor

with 4 parallel pipelines. If the vector from the above formula is a vector with height
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α
+

y

* z
x

Figure 2.9: Diagram of pipeline arithmetic

4, this formula can now be run repeatedly in total running time 1x + 1! Compare

these results to a serial processor (4× 2x) and the savings can be tremendous.

2.0.7 Vertex and Fragment processors

The two components of the graphics pipeline that are most heavily utilized during

GPU computation are the vertex and fragment processors.

The vertex processor is the first transformation processor that a geometric prim-

itive sent from the application encounters in the graphics processor. Basically the

vertex processor takes in vertices from the host application then performs transform

and lighting (T&L) operations on the vertex before passing it along to the rasterizer.

At the moment very limited texture access operations are permitted at the vertex

processing stage.

Once a vertex has been transformed (scaled, rotated, translated, converted into

different coordinate systems, etc), the vertex is grouped into a primitive object and

the primitive is rasterized. While rasterization is an important step, at the moment

there is no programmable function in the raterizer and it is used very lightly in most

GPU based applications.

Once the vertices have been rasterized into discrete geometric shapes in memory,
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the fragment processor is invoked on the “fragments”. A fragment can be thought of

as a “potential pixel”. The term potential is used because there is no guarantee that

the pixel will actually finally be displayed. The fragment processor has much more

flexibility in its operations than the vertex processor has. Particularly the fragment

processor is the location where texture access, texture manipulation, and blending

typically occurs.

Application


Vertex

Processor


Rasterize


Fragment

Processor


Video Memory


Graphics State


CPU


GPU


Figure 2.10: Diagram of the programmable pipeline architecture
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Performance of popular processors
Processor Peak Performance Memory Bandwidth
3 GHz Intel Pentium 4 CPU rated 12 GFlops 6 GB/sec
3 GHz Intel P4 CPU dual core rated 24.6 GFlops 6 GB/sec
400 MHz NVidia 6800 GPU measured 53.4 GFlops 36 GB/sec
430 MHz NVidia 7800 GPU measured 165 GFlops 38.4 GB/sec
500 MHz ATI Radeon X800 GPU measured 63.7 GFlops 32GB/sec

Table 2.2: A performance chart of some of the more popular processors

2.0.8 Moore Power: Programmable Graphics Hardware

A common usage of Moore’s law states that transistor count (and hence computa-

tional power) will double every 18 months (Gordon E. Moore actually predicted a

doubling every 2 years, but common use has now quoted his prediction as 18 months).

Modern GPUs have been able to not only double in performance every 18 months,

but have actually been increasing 5 fold every 18 months.

Pipelining allows the processor to handle data without extensive caching. CPUs

access memory in a much less predictable pattern than the GPU, so they need caches.

Because the GPU is able to reduce the number of on-chip caches, they are able to use

that chip space to put in additional computational units or communication channels.

Not only is the processor pipelined and parallel, but the memory is also pipelined

and parallel. This pipelining allows for very efficient access to large amounts of

memory and helps to address the main issue affecting modern memory access, latency.

Within the pipeline processor there are two main classes of processor: vertex

processors and fragment processors. Vertex processors are Multiple Instruction Mul-

tiple Data (MIMD) processors capable of performing all of the transformation oper-

ations required for geometry manipulation. At the moment the vertex processors are

utilized very lightly for general purpose GPU programming. The fragment processors

19



Chapter 2. Background

Figure 2.11: Graph of GPU vs CPU performance increases. This graph shows the max-
imum number of gigaflops attainable by two leading GPUs and the Pentium 4 compared
to Moore’s law. Courtesy of NVIDIA (see section 2.0.8 for further discussion)

are Single Instruction Multiple Data (SIMD) processors. The main computational

task of the fragment processor is to assign color and other visual effects to each frag-

ment or eventual pixel. By coupling the computational power of these two classes

of processor with the large memory bandwidth substantial computational power is

available.

It is the combination of these special purpose processors, pipeline architectures

for processing and memory, and inherent parallelism that make these processors able

to continually beat Moore’s law and create an interesting niche for research.
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2.0.9 So what?

You might be asking yourself about now, “So what?”. Why should we care about

GPUs coupled with Artificial Neural Networks? The answer has several parts to it.

1. The GPU is another processor in most systems today, and as such can be used

as a co-processor to offload work from the CPU. The co-processor approach will

allow you to better utilize the overall system as a whole rather than relying

entirely on your CPU.

2. The GPU is very good at linear algebra operations because of the pipelined

and parallel architecture. Most artificial neural networks rely heavily on linear

algebra to implement their neurons, connection weights, activation functions,

etc; and as a result artificial neural networks are generally more amenable to

execution on the GPU than general purpose computations.

3. The GPU is composed of many parallel subcomponents which are easily repli-

cated and integrated into the next generation of processor. As a result the

generation to generation performance curve for the GPU is quite attractive

compared to a CPU (Figure 2.11).

4. Artificial neural networks are capable of solving many interesting problems,

but have been under utilized to date partially because of the computational

cost.

5. Graphics programming languages are becoming more powerful and flexible.

Programming environments like Brook are able to capitalize on the underlying

“high level” shading languages like Cg, HLSL or GLSL to allow developers

to remove themselves as far as possible from architecture specific assembly or

other low-level constructs.
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6. The GPU and CPU have fundamentally different approaches to architecture

design and utilization. CPU development has been driven by the business and

home computing industry, and is best suited to run diverse user applications.

GPU development has been driven by games and graphics application, and is

best suited to run specific graphical application operations. ANNs happen to

have some operations and modes of execution that seem to share many of the

operations and characteristics of graphics applications.

2.1 Previous Work

This section outlines the related previous research in this field. Although there has

been little directly related research, the research presented below has laid much of

the groundwork for this and future research into GPU ANN simulation.

2.1.1 General Purpose Graphical Processing Unit Compu-

tation

The research community has started several projects to utilize the GPU for general

purpose computation. Individual research institutions and researchers have taken

this initiative and been conducting interesting and useful investigation into the uses

of the GPU. One of the most popular sites is GPGPU.org. This site is essentially

a paper and application BLOG. Numerous people have published papers about po-

tential applications of the GPU to real world computing problems, however to date

there have only been two main papers (one has been reprinted with minor mod-

ifications) on ANN simulation on the GPU. GPGPU.org is host to the forums for

BrookGPU, as well as several other community forums devoted to general computing

on the GPU. It is through these forums and paper collections that ideas are shared
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and extended, including the basis of this research.

Research topics that have been investigated for GPU implementation include:

advanced rendering, global illumination, image-based modeling and rendering, audio

and signal processing, computational geometry, GIS, surfaces and modeling, data-

bases, sort and search, high-level languages, image and volume processing, computer

vision, medicine and biology, scientific computing, data compression, data structures,

dynamics simulation, numerical algorithms, and stream processing.

2.1.2 How general purpose computation occurs on the GPU

General purpose computation on the GPU necessitates using the built-in architecture

API to accomplish operations. The graphics card (and more specifically the GPU) is

designed to operate efficiently on graphics primitives such as polygons and textures.

As such, computation occurs by mapping the problem at hand into the graphics

primitives, performing graphics operations on the primitives, then re-mapping the

resulting image into solution values. In most general purpose GPU programming at

the moment computation starts with the generation of a quadrilateral by the vertex

shader that fills the raster buffer (or other large buffer). The data for the problem

is then loaded into the graphics card by encoding values from the user application

into floats represented in one or more textures. The pixel (or fragment - depending

on architecture) shader then does the computation using graphical convolution and

blending operations. Finally, the resulting image is translated back into values in

the user’s application and results are obtained.

Computation is constrained by operations that are available on the GPU and by

the size of the buffers available. For instance some GPUs implement operations not

present on others, and some graphics cards (NVIDIA) are constrained to buffers of

16 million pixels while others (ATI) are constrained to buffers of 4 million pixels.
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Care must be exercised when using the GPU to compute traditional CPU algo-

rithms as the GPU has some functionality implemented differently than the CPU.

For example, the GPU does not perform conditional branching efficiently (due to the

pipelined architecture), and as such branching algorithms should be implemented tra-

ditionally through the CPU rather than the GPU. Other caveats include operations

such as memory access. In most CPU based languages it makes no sense to attempt

to access a fractional array value (for example my array[1.5]) however in graphics

fractional memory access is a very standard way of implementing sampling or interpo-

lating effects, and as such, a GPU program has no problem returning my array[1.5]

which may or may not be what was actually intended.

Most researchers perform their implementation of the computation in one of the

approaches outlined in section 2.2.

2.1.3 Artificial Neural Network Graphical Processing Unit

Simulation

Thomas Rolfes has published several versions of an article[16] on GPU simulation of

the multi-layer perceptron (MLP). In these articles, he outlines an approach to the

implementation of a MLP on the GPU through DirectX. In short, he uses matrix-

matrix products to compute the activation levels for the neurons, then applies his

non-linearity threshold function. Each layer in the network is a single matrix repre-

sented explicitly as a texture in DirectX, and inputs are aggregated into a matrix of

compatible dimensionality. The matrix product is based on an approach presented

in [14, 12, 20]. See Appendix G

Kyoung-Su Oh and Keechul Jung have also implemented a multi-layer perceptron

for the GPU to perform text detection[10]. Again, they use a method for matrix

products outlined in [14, 12, 20].
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2.1.4 These approaches are not enough

While these papers are quite interesting, and both show promising results, both only

examine one ANN architecture (the MLP) and by in large fail to identify the traits

of the GPU that make certain ANN architectures well suited to GPU simulation.

Perhaps more importantly, both papers constrain themselves to a batch processing

mode of execution. While batch processing is a fine constraint in some applications

and architectures, there are many classes of ANN architectures that can not be run

in batch mode. A prime example is adaptive resonance theory (ART); because the

templates may change between two consecutive input vector presentations, you can

not present input in batch mode.

Lastly, while performance increases over the CPU are claimed, only Rolfes presents

any source code, but even he lacks a published comparable CPU optimized version

of the code. Correspondence with both sets of researchers has been attempted, but

only Rolfes has responded. He has been kind enough to supply a copy of his revised

work that was previously unavailable in the United States.

2.2 Approach

In light of the shortcomings of previous research in this field, the approach taken in

this research is to explore multiple implementations of several ANN architectures,

both on the GPU and on the CPU. To provide the most unbiased comparison between

the relative performance of a GPU implementation and a CPU implementation the

CPU code is implemented using ATLAS BLAS (see section 2.2.3) where applicable.

While it is acknowledged that programming in a high level language does not pro-

vide the best performance possible, it is a convenient approach to exploring multiple

implementations in a reasonable time period. Because of these constraints and ben-
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efits, in this research both the GPU and CPU are programmed in the most efficient

method available through C.

2.2.1 Virtual Machine

Hardware is often presented to the developer as a virtual machine at some level. In

the following sections the most important virtual machine architectures used in this

research are presented. The virtual machines are used by the developer through an

API (application programming interface). The API can change as new techniques

are developed or desired without requiring a change of the underlying hardware.

Cg

Cg is a shader language (API) developed by NVIDIA Corporation to allow developers

to write code once and re-compile it for future architectures as they are released. Cg

stands for “C for graphics”, and was the first major shader language to be developed

and released for real time graphics. It was inspired by the RenderMan shaders

that were developed for non-interactive off-line rendering projects such as: Young

Sherlock Holmes (1985), The Abyss (1989), Terminator II (1991), Jurassic Park

(1993), Toy Story (1995), A Bugs Life (1998) (just to name a few of the highlights).

The tremendous success of RenderMan shaders with artists, efficient implementation

on hardware, and stunning visual result made this approach to graphics programming

quite attractive. In short a shading language is typically used to determine the final

surface properties of a scene or an object within a scene. These properties are

manipulated by altering the properties of the vertices of the objects (location, color,

etc), or the resulting pixels (color, alpha, location, etc).
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DirectX & HLSL

DirectXTMis a API developed by Microsoft R© to facilitate a unified interface with

the multimedia hardware present in modern PCs running Windows and gaming con-

sole systems. Of particular interest to this research is Direct3DTMand HLSLTM.

Direct3DTMis Microsoft’s graphics portion of DirectX. It is one of the main com-

petitors for OpenGL and provides many of the same style of 3D scene manipulation

functionality. HLSL is Microsoft’s version of Cg, a high level shading language for

use with Direct3D. Both Direct3D and HLSL are ported to the PC and Xbox archi-

tectures, and thus present developers with a convenient and fairly standard virtual

machine to write code for.

GLSL

GLSL, also sometimes called the ARB shading language, is the OpenGL shading

language (API) that is currently being released. Over the past few years the archi-

tecture review board (ARB) has added various functions to the OpenGL extensions

that approached a full-fledged shading language. In the last year the ARB finalized

the standard for the new shading language extension, and released it. At the time

of this research there were no reliable GLSL compilers, so it was not an option for

research and experimentation. In spite of the lack of compiler, GLSL is worth noting

here because a series of compilers and run-time environments have recently been

released, it will be a viable virtual machine, and will have benefits and drawbacks

when compared to the two currently available options (Cg and HLSL).
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2.2.2 Assembly Language

While the previous sections presented several virtual machine views of the processors,

it is also quite possible to view the hardware without any virtual machine abstraction.

While assembly language implementation allows you direct, generally unhampered

access to the hardware, it also ties you explicitly to a particular line of hardware.

Early GPU programming was done exclusively in assembly language but proved

to be an often arduous task for developers since every architecture needed its own

assembly implementation of a shader for the shader to function optimally (or close

to optimally). Assembly coding of the CPU and GPU are still popular routes to

pursue when performance is of the upmost importance.

SSE and SSE2

For the CPU there are several ways to view its architecture and functionality. One

of the more interesting views of the CPU is to view it as a streaming processor.

SSE stands for Streaming S IMD Extensions and is Intel’s solution to a streaming

processor instruction set. SIMD stands for S ingle Instruction, M ultiple Data and

is an approach to parallel processing that has become much more popular over the

past 35 years. SIMD is a way of running small kernels of instructions over a set of

data, with each data point receiving the same set of operations. In this method of

processing, the pipelines of the modern processor are able to be better streamlined,

the branches better predicted, and the overall performance improved. SSE and SSE2

are the successors to Intel’s MMX (M ultimedia Ex tensions) and the main competi-

tors to AMD’s 3Dnow, and PowerPC’s AltiVec instruction sets. These streaming

instruction sets are mentioned here because the various high-performance linear al-

gebra suites (like ATLAS BLAS) utilize these instructions heavily in order to achieve

better performance. It is also worth noting that these are the direct analog to the
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streaming kernels found in all shaders implemented on the GPU.

2.2.3 ATLAS BLAS

ATLAS stands for Automatically Tuned Linear Algebra Software and is a linear al-

gebra package developed under the BSD license through Source-Forge (open source).

As the name suggests it is a package that automatically tunes itself to the hardware

that it is being run on. It attempts to perform tasks on the CPU in the most efficient

method that it is aware of by testing parameters such as cache size, instruction sets

supported, etc. One of the features that ATLAS provides is a BLAS implementa-

tion. BLAS stands for Basic Linear Algebra Subprograms. ATLAS BLAS provides

a suite of functions callable from Fortran or C/C++ that allow for efficient execution

of operations like vector-vector products, vector-matrix products, and matrix-matrix

products. In this research the BLAS implementation utilizes the SSE2 instruction set

(see section 2.2.2) in order to provide developers with an even more abstract view

of the underlying hardware. Through this package complex operations are made

available to developers with the simple call of a function.

2.2.4 BrookGPU

BrookGPU was developed at the Stanford University Graphics Lab as a GPU imple-

mentation of their streaming research language Brook. It is an extension to standard

ANSI C and allows a simplified streaming interface to the programmable GPU. One

of the main benefits to this approach to programming the GPU is that, unlike Cg,

HLSL, GLSL, or assembly, this approach is highly portable, and far removed from

the graphical constructs present in these languages. BrookGPU includes a compiler

and runtime implementation, and utilizes the industry standard shader compilers to

perform the low-level compilation to GPU assembly. Essentially BrookGPU maps
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kernels and streams into one of the target shader languages (Cg or HLSL) for com-

pilation. It is possible to test applications implemented in BrookGPU on Linux

OpenGL, Windows OpenGL, and Windows DirectX because of the portability of

BrookGPU code. This portability is quite convenient for an exploratory research

project because it allows comparison of the various merits and shortcomings of each

architecture and multiple graphic cards without code revision.

2.2.5 Stream Based Processing and Data Types in BrookGPU

Streams are a data type that lends itself to parallel processing. Streams are made up

of elements, much like a standard array, however there are restrictions placed on how

and when you can access the stream elements. Some of these restrictions include[5]:

”indexing to gain access to stream elements is not allowed outside of

kernels, no static initializers are allowed, streams must be local (stack)

variables, streams can only be read and written inside kernel functions

or through special operators that fill streams from regular pointers and

vice versa.”

In BrookGPU streams are converted into textures and loaded onto the graphics card’s

texture memory.

Streams are operated on by what are called “kernels”. A kernel is a special

function that is compiled into shaders and loaded onto the GPU. Each kernel invoked

will operate on every stream element, but not necessarily in order. Kernels can not

operate on global memory or static variables, but can be passed streams and scalars.

Every kernel also has the restriction that it must have an output stream passed to

it that matches the dimensions of an input stream.
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Reduction kernels are a special type of kernel that can reduce the dimensionality

of the data. In other words a reduction kernel does not need to meet the above restric-

tions of having a output stream that matches the dimensionality of an input stream,

it can instead have an output stream that is smaller than the input streams. This

kind of kernel is particularly useful for performing operations such as a summation

of a vector into a scalar (used in operations like dot-products). Reduction kernels do

have the restriction that they can only perform operations that are associative and

commutative (like sum, min/max, OR, AND, XOR, etc).

A unique feature of stream based processing in BrookGPU is that stream shape

determines the operation. Stream shape determining operation can be a bit diffi-

cult to understand at first (coming from a C/C++ background), but it allows for

extremely general purpose kernels. A single kernel can operate on a multitude of dif-

ferent dimensional inputs, and depending on how the dimensions match-up to each

other different operations may be performed. This generality allows programmers to

operate on every element of a stream, or some sampled sub-set of the streams.

2.2.6 Algorithms Investigated

The algorithms investigated in this research are drawn from the popular ANN archi-

tectures. Through the implementation of three different algorithms a more complete

characterization of the performance of the GPU as it pertains to ANN simulation

can be developed.

Perceptron

The perceptron is one of the simplest neural models, and is typically the first model

most people implement when studying neural architectures. As such, it would seem

to be an obvious model to investigate for execution on the GPU.
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The perceptron was originally developed by Rosenblatt in 1958[18]. Two years

after its inception Rosenblatt published a proof of convergence[19], an important

step towards proving the efficacy of the perceptron.

The perceptron is based on a series of dot products between an input vector and

the connection weight vector of each neuron (Equation 2.1). The resultant scalar is

then passed through a non-linear function (Equation 2.2) to obtain the actual value.

The connection weight vectors can be supplied pre-set if you know how to solve the

problem, or you can learn the weights through error correction methods[11, 8].

z =
∑N

i wi · xi

wi is the neural weight for the ith element of the input vector x
(2.1)

y = σ(z)

y is the output value of the neuron and σ is the non-linear function
(2.2)

The more interesting version of the perceptron is the multi-layer perceptron. In

this model, perceptron neurons are connected in a layer to layer connection model.

This means that the outputs of the first layer are fed as the input vector to the

second layer, the outputs of the second layer to the inputs of the third and so on.

The error correction method works slightly differently in this model than in the single

layer perceptron. Because there are hidden nodes, you do not immediately know the

weight correction that must occur for a given neuron. The credit assignment problem

is easily solved by applying the corrections to each neuron based on a formula derived

from the non-linear function used (Equations 2.3, 2.4, & 2.5).

∆wki = −c(di − yi) ∗ yi(1− yi)xk,

for output nodes
(2.3)
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∆wki = −c ∗ yi(1− yi)
N∑

i

−deltaj ∗ wij,

for hidden nodes where j is the index of the nodes in the next layer

(2.4)

deltaj = (di − yi) ∗ (yi(1− yi)

delta for Eq. 2.4
(2.5)

Because you must differentiate the non-linear function, it is important that the

function be continuous - therefore a McCulloch-Pitts clamped neuron can not be

used in this model. The multi-layer approach is more interesting not only because it

is capable of solving more interesting problems, but because it is also more amenable

to GPU execution.

The multi-layer perceptron is more amenable to GPU execution because the op-

erations per byte of data transmitted to the graphics card increases. Because the bus

to the graphics card is the slowest step in any computation, it is important that the

operations per byte sent to the card or received from the card be as large as possible.

Because the GPU is better optimized for matrix-based math, another simplifica-

tion and optimization can be made to improve the performance of the multi-layer

perceptron. Instead of performing a series of dot products (one for each neuron) we

can create a matrix of all the connection weights for a particular layer, and perform

a single vector matrix multiply (Equation 2.6) followed by a non-linear activation

function (Equation 2.7).

zj =
∑N

i Wji · xi

Wji is the neural weight for the ith element of the input vector x
(2.6)

yj = σ(zj)

y is the output value of the neuron and σ is the non-linear function
(2.7)
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If the perceptron is run in batch mode, we can further optimize the execution by

performing matrix-matrix products followed by a non-linear activation function[16].

The result from the first layer is then propagated to the next layer in the same

fashion as the first. If a single input is being processed at a time, we perform another

vector-matrix product, or in batch mode, another matrix-matrix product.

As with most neural models we can choose to turn learning on or off by deciding

to update (Equations 2.3 & 2.4) or not update the connection weights.

2.2.7 Hopfield Network

The Hopfield network is based on a vector-matrix product with a non-linear func-

tion applied to the result. It is a single layer solution that is derived from energy

minimization approaches in physics. It can be broken down into four basic stages:

learning, initialization, iteration until convergence, and outputting.

In the learning stage, the fundamental vectors are presented to the system and the

outer product rule (Hebb’s postulate of learning) is used to compute the connection

weight matrix. The fundamental vectors encode the data that you want the network

to memorize and later recall in the form of ±1. Once the weights have been computed

they are kept fixed through the rest of the network’s usage.

Wji =





1

N

M∑

µ=1

ξµj · ξµi if j 6= i;

0 if j = i.

Wji is the weight matrix, N is the number of fundamental vectors,

ξµ is the fundamental vector

(2.8)

In the initialization stage, an unclassified vector is presented to the network and
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the state vector is initialized to the value of the vector.

xj(0) = ξ
iprobe for j = 1, . . . , N .

xj(0) is the input layer, ξ
iprobe is the probe vector

(2.9)

In the iteration until convergence step, the state vector is updated repeatedly

asynchronously until it doesn’t change from one step to the next. This iteration is

done by performing a product between the state vector and the connection weight

matrix, then applying a sigmoid function to the result.

xj(n + 1) = f

[
N∑

i=1

Wji · xi(n)

]
, for j = 1, 2, . . . , N.

f is a non-linear function

(2.10)

Once the state vector has converged, the network enters the final stage: out-

putting. In this stage the state vector is simply returned as the result[11, 8].

A variation on the asynchronous update mentioned above uses a synchronous

update and is known as a Little model. The main difference in performance is that

while the Hopfield model will always converge to a stable state, the Little model will

converge to a stable state or a limit cycle of length at most 2[8].

The Little model of the Hopfield architecture is amenable to GPU computation

because it inherently uses the vector-matrix product. As in the multi-layer percep-

tron, it is also possible to amortize your work and perform matrix-matrix multipli-

cation. However, in this model a matrix-matrix amortized approach seems to be less

of an advantage because some vectors may converge well before other vectors do.

Convergence and different points results in wasted cycles trying to converge already

settled results.
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2.2.8 Adaptive Resonance Theory (ART)

Adaptive resonance theory is based on the “winner takes all” model. In this archi-

tecture a series of vector templates is created, initially with value 1 or greater. A

series of vector dot products is then performed to determine the template that has

the closest value to the input vector. The closest template will have the largest dot

product with the input vector. This template is then compared to see if it is “close

enough” to the input vector via a user controlled variable called “vigilance”. If the

vector and template are indeed close enough, then the template is updated through a

process called “erosion” in which a template monotonically decreases in zero or more

dimensions. In Fuzzy ART the erosion is a fuzzy erosion (namely the min operation)

whereas in ART1 a “logical and” is the erosion operator. If the vector and template

are not close enough a new template is formed as a copy of the input[8, 17].

A brief overview of the Fuzzy ART algorithm follows:

Tj(I) = |I∧wj |
α+|wj |

Tj is the choice function for input I and category j
(2.11)

Where the fuzzy and operator ∧ is defined by

(x ∧ y) ≡ min(x, y) (2.12)

and the norm operator | · | is defined by

|x| ≡
N∑

i=1

|xi| (2.13)

For a given input I the category choice is denoted as J where

TJ = max(Tj : j = 1...N) (2.14)

36



Chapter 2. Background

Resonance occurs if the match is good enough

|I∧wj |
|I| ≥ ρ

ρ is the vigilance
(2.15)

Otherwise reset occurs and the value for TJ is set to −1 so that it will not be the

max value ever again for this input.

Learning the weight vector occurs according to the following equation:

wnew
J = β(I ∧ wold

J ) + (1− β)wold
J

β is the learning speed
(2.16)

As in the previous two architectures, this architecture would seem to be amenable

because it can be formulated as a vector-matrix dot product. This model can not

be extended to the matrix-matrix multiplication form because the templates may

change after each input.
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Findings

It is the tension between creativity and skepticism that has produced the

stunning and unexpected findings of science.

Carl Sagan,

3.1 Results

The results will be presented on a architecture by architecture basis. Each set of

results is the average time compiled over a number of runs for each datum. Specific

dimensions, parameters, and iteration count will be given when appropriate.

3.1.1 Hardware Used

The hardware used in this research consisted of 3 graphics cards and three desktops.

One desktop served as the CPU model and development platform. This desktop
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has dual processor Xeon Pentium 4 2 GHz processors in it, 1 GB of RAM, and

an NVIDIA 6800 AGP card. The other machines were utilized only for the GPU

execution model. The graphic cards consisted of an NVIDIA 6800 Ultra AGP, and

a ATI Radeon X800 PCI-X.

3.1.2 Software Used

The software used in this study consisted of three operating systems, one development

and two testing. The development machine mentioned above was configured as

a dual-boot Windows 2000TMand Debian Linux “non-stable” machine running the

2.6.10 kernel. The testing machines consisted of a Windows XP Professional machine

(the ATI x800 machine) running Cygwin, and a Linux machine (the NVIDIA 6800

Ultra) running “non-stable” and kernel 2.6.10. The Windows operating systems

allowed for the testing of OpenGL and DirectX, while the Linux machine only utilized

OpenGL.

3.1.3 Multi-Layer Perceptron Results

The multi-layer perceptron was the first architecture implemented in this research,

and as such has had the most revisions made to it over time. Initially the model was

implemented in vector-vector dot product form and it was approximately 20% slower

than the same model implemented for the CPU using ATLAS BLAS . Following

these results the perceptron was re-implemented in vector-matrix form to capitalize

on the GPU’s better performance in matrix-based math. Figures 3.1, 3.2, and 3.3

show the results from running a series of increasingly large multi-layer perceptrons.

The algorithm as implemented involves three layers of size N , one output layer of

size 4, and a input vector of size N . The ANN was run for 200 iterations per

datum, where each iteration involves the loading of the weight vectors (included in
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the running-time) and the presentation of 2000 unique input vectors to the ANN.

The running time is then averaged across the 200 runs to produce a datum in the

results. Averaging was necessary to help reduce the noise introduced by the system

potentially being partially utilized by system level operations.
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Figure 3.1: Comparison of two independent simulations of the MLP on the GPU. Notice
that the “bumps” are present in all GPU simulation runs.

3.1.4 Little model Hopfield Network Results

The Little model of the Hopfield network was the second architecture implemented

and measured. The initial implementation was made utilizing the vector-matrix

product developed for the previous model. Because it is not simple to resize the

memory matrix of a Hopfield network, the measurement made on this model instead

shows the results of increasing the number of iterations performed in the “Iterate
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Figure 3.2: Comparison of MLP network simulated on GPU vs CPU using the number
of multiplication and addition operations. As one might expect the performance scales
linearly. (discussed in section 3.2.4)

until convergence” step (see section 2.2.7). The memory matrix represented a series

of characters represented by a 32 by 32 pixel bit-map. The resulting memory matrix

was 1024 by 1024 neurons (each character bitmap was turned into a single string of

length 1024 for purposes of encoding and training). Figure 3.4 shows the results of

increased iteration count run times.

3.1.5 Adaptive Resonance Theory Results

The final architecture implemented was F-ART. It was implemented using a fuzzy

dot product kernel based on the vector-matrix product kernels used in the previous

two implementations. Results of running the GPU version against the CPU version
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Figure 3.3: Comparison of MLP network simulated on the ATI Radeon 800 GPU com-
paring OpenGL vs DirectX using the number of multiplication and addition operations

showed that the GPU performance was very poor in comparison to the CPU (Table

3.1). In fact, the CPU was between 468024 and 679785 times faster than the GPU.

No graph will be included in light of the poor performance, however the reasons the

performance was so poor will be discussed in the next section. It should be pointed

out that F-ART was the only on-line learning ANN implemented.

Fuzzy ART Performance
ATI OpenGL 25.690157 seconds
ATI DirectX 25.831837 seconds
NVIDIA OpenGL 17.784929 seconds
CPU 0.000038 seconds

Table 3.1: A chart of Fuzzy ART network performance
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Figure 3.4: More evidence that the GPU overcomes the CPU’s performance when enough
operations per byte are performed

3.2 Discussion

What follows is a discussion of the results obtained from each architecture, discussion

on the study, some potential interpretations of the results, what was done well in this

research and what could have been done better or differently, and some connections

back to the literature. This chapter is concluded by a discussion of what general

characteristics make a ANN amenable or ill-suited to GPU execution.

3.2.1 Interpretations

The results presented above can generally be interpreted as the problem of overcom-

ing the “operations per byte” threshold to make GPU simulation better performing
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than the CPU counterpart. Researchers at Stanford refer to the threshold problem

as the algorithmic intensity problem. Because the underlying hardware is constantly

evolving, as well as the driver interfaces dramatically changing the interface to the

hardware from revision to revision, it is extremely hard (and potentially misleading)

to assign a specific operation per byte measure at which the GPU will surpass the

CPU in performance.

One overarching high level interpretation that should be gathered from this re-

search is that if one is interested in using the GPU as a serious computational

platform, it is important to consider what kinds of operations you are performing,

how many operations can be collapsed into larger operations, how many operations

(roughly) per byte can be performed, how much traffic must occur on the system

bus, and what your intended virtual machine representation is.

More detail into the specific traits that are desirable or undesirable in computa-

tion are described in section 3.2.7.

Comparing the ATI and the NVIDIA results from this experiment is of some

interest. The large performance gap between the two cards is due to several factors.

First, and probably most important, the I/O characteristics of the ATI card are

far superior to that of the NVIDIA card due to the PCI-X bus. The PCI-X bus

can transport 4.3 GB/sec of data in either direction while the AGP bus present

on the NVIDIA card is limited to 2.1 GB/sec. Furthermore, the AGP bus has

been measured to typically have good performance reading to the card, but poor

performance reading back from the card to main memory.

3.2.2 What was right/wrong

Choosing BrookGPU as a language to develop these approaches in seems to have

been a very good decision. Without BrookGPU the development of a particular
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network architecture could have taken much longer, and poor approaches to the

implementation of specific kernels would have resulted in much more lost research

time. Debugging BrookGPU code also turned out to be much simpler than debugging

assembly level code would have been.

Choosing BrookGPU as a language also limited the types of operations that could

be performed. For example at the time of research there did not appear to be any

way of performing a render to a sub section of a texture, and as such partial updates

of networks is impossible. Recent driver updates by NVIDIA claim to support the

FBO (Frame Buffer Object) which would allow for direct render to texture operations

rather than using the P-Buffer, which may alleviate some of the issues in future

research. Further discussion of this limitation can be found in the F-ART section

below.

Starting at the smallest, most simplistic and direct implementations of the ap-

proaches to the linear algebra and the resulting networks and working up to more

complex and involved models was a very good approach to have taken. This approach

allows the performance at large to be characterized on the full range of operations

one could desire to implement for most ANNs. This research examines much of the

area not explored by the previous two sets of authors in the field[16, 10].

3.2.3 Improvements

One of the only serious potential improvements this research could benefit from would

be a more in-depth and involved investigation of GLSL, Cg, HLSL, and assembly

level implementation of the networks of interest. This improvement would allow for

measurement and characterization of the ability of the GPU to simulate an actively

learning ANN, since rendering to sub-texture regions could then be available.

One potential improvement to the MLP would be to implement matrix-matrix
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products. However the matrix-matrix product approach to MLP has already been

investigated by other researchers[16, 10].

3.2.4 MLP Results Discussion

The multi-layer perceptron was by far the most measured and improved upon model

in this investigation. Although the MLP as implemented does show better perfor-

mance on the GPU than on the CPU, it is not the largest performance gap.

Figure 3.1 shows the results of running increasingly large networks. The growth

rate of the curve is expected because of the growing number of multiplications and

additions. As mentioned above the output layer was fixed to 4 output neurons and

the input and hidden layers were iteratively increased in size. The intersection points

of the various curves show the points at which one processor overtakes another in

performance. The ATI processor shows better performance than the CPU at just

before layers of size 600 neurons, while the NVIDIA card shows better performance

than the CPU just after 1100 neuron layers are run.

Figure 3.2 shows the more results of running increasingly large networks. In this

graph the x axis is the number of multiplications and additions. As expected, this

scale removes the majority of the curve from the results. It is interesting to note that

the slope of the ATI results is much shallower than the slope for the NVIDIA results.

As above the intersection points show when one processor overtakes another. In this

view the ATI processor overtakes the CPU at approximately 1 × 106 multiply and

add operations, while the NVIDIA card overtakes the CPU at approximately 4×106

multiply and add operations.

Figure 3.3 shows the same results as above, but only comparing the ATI results.

This graph allows for more direct and unobstructed comparison of DirectX and

OpenGL performance. It is interesting to note that there is very little difference
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between the two curves. These results are particularly surprising because DirectX

is supposed to have much more direct access to the hardware under Windows XP

than OpenGL does. OpenGL is forced to go through Microsoft’s HAL (Hardware

Abstraction Layer) before reaching the hardware.

Of potential interest are the results shown in Figures 3.1 and 3.2. Initially it

seemed as though the “bumps” in the curve were noise from system resources being

consumed by other processes, but after several runs it must be concluded that these

“bumps” are actually present in the performance. These perturbations are of some

interest and are, as of yet, unexplained.

3.2.5 Hopfield Results Discussion

Figure 3.4 shows the results of running increasing numbers of iterations against the

Little model Hopfield network. In this experiment the NVIDIA GPU performance

exceeds the CPU performance at around 35 iterations which is well within normal op-

erating conditions. The ATI performs even better; exceeding the CPU performance

at around 19 iterations. These results make the Little model Hopfield network a

very nice model for GPU simulation. The basic trait that enables this excellence in

performance is the learn once, run many times aspect of the network. The Hopfield

networks investigated involved only one matrix, and thus only one texture to operate

on, while other architectures involved texture switching and re-texturing of the quad

used to perform the actual low-level computation.

3.2.6 F-ART Results Discussion

Although F-ART possesses many traits that would seem to make it very GPU

friendly, testing showed that within BrookGPU this was not the case. At the time
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of implementation there was no apparent support for rendering to a sub-region of

the texture in memory within BrookGPU, so to update the template matrix the

entire matrix is repeatedly pushed across the bus. Repeated bus traffic and latency

killed the performance, and made it impossible to ever do better than the CPU’s

performance.

3.2.7 What makes an ANN amenable to GPU execution?

About now hopefully you have an idea of what kinds of traits make a ANN ill or

well suited to GPU simulation, but let’s summarize some of the characteristics here:

• SIMD type operations – SIMD type operations are extremely well suited to

programmable GPU execution. The basic form of the shader kernel and the

hardware implementation are direct analogs of the SIMD architectures used on

the CPU. The GPU has evolved to handle these kernel repeated convolutions

in a parallel fashion to improve graphics performance and SIMD operations for

computation can exploit this trait.

• vector-matrix or matrix-matrix style linear algebra – Linear algebra that uti-

lizes a matrix (or a collection of vectors) scales nicely for the GPU. For vector-

matrix operations as you increase the size of your matrix, you linearly increase

the number of operations per value (float). If you are able to utilize matrix-

matrix operations this scaling becomes N2 where N is the size of your matrix.

This scaling factor, or algorithmic intensity, is of upmost importance for the

GPU. The design of the GPU is such that it is meant to be heavily utilized

with a high operation per byte ratio (more on this below).

• minimal bus traffic – One of the major hurdles to GPU performance is the

amount of data being sent to and from the card. The bus is by far the slowest
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communication channel in the hardware of the graphics card, and as such

should be avoided whenever possible.

• no learning (at least with Brook) – Although it is possible to implement learning

for a ANN using some of the other languages, it is possible that learning could

hurt the performance gap between the CPU and the GPU. Considering the

previous item (minimal bus traffic), unless you can perform all the learning

on the card (all the matrix or vector updates in texture memory) learning is

something to be avoided.

• little or no branching – the branching performance of a GPU is poor in com-

parison to what is available on modern CPUs. The SIMD style of optimization

is not well suited to conditional programming (if, while, for, switch, etc). The

fact that the processors are named “pipelines” seems to hint at this, but tests

confirm the suspicion.

• high operations to byte ratios – There are several factors that make high algo-

rithmic intensity a desirable trait in GPU simulation. The bus issue (mentioned

above) is one of them, however this is not the end of the story. Because the

processors are aimed towards repetitive convolution kernels, or SIMD style op-

erations, performing multiple operations on the same byte of data is highly

advantageous and optimized. The increased instructions are not “free”, but

the resulting performance curve has a much shallower slope to it, and thus it

scales very nicely.
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Summary and Conclusion

People do not like to think. If one thinks, one must reach conclusions.

Conclusions are not always pleasant.

Helen Keller (1880 - 1968)

There are many people who reach their conclusions about life like school-

boys: they cheat their master by copying the answer out of a book without

having worked the sum out for themselves.

Søren Kierkegaard

4.1 Summary

In this section a brief summary of the thesis and research is reiterated.
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4.1.1 The Area

Artificial neural networks are a useful approach to solving many difficult problems.

ANNs are attractive because they posses many traits that allow them to make state-

ments about neurobiology, statistics, classification, pattern recognitions, and many

other interesting and useful fields.

Modern consumer graphics cards are rapidly becoming more powerful. The

processors packaged on these cards are designed to dramatically improve graphics

performance, but are applicable to many other useful types of computation as well.

4.1.2 The Problem

The problem as stated in this research is to implement artificial neural networks on

the graphics card, characterize traits that help or hinder a ANN’s performance on the

GPU, and generally show that the simulation of ANNs on the GPU is a worthwhile

endeavor, worthy of future study and experimentation.

4.1.3 Other’s Solutions

Other researchers have implemented the multi-layer perceptron using techniques

described in [14, 12, 20, 16, 10]. There have been many other researchers in-

vestigating other general purpose computing lines of research for the GPU (see

http://www.gpgpu.org).
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4.1.4 This Solution

This solution was implemented in BrookGPU, a stream programming C language

extension developed at Stanford University. A series of architectures and revisions

were developed to allow for the characterization of GPU performance as it relates to

ANN simulation. Results were presented, discussed, and the efficacy and applicability

of GPU simulation established.

4.1.5 What was right/wrong?

BrookGPU allowed several rapid prototypes of artificial neural networks to be im-

plemented for both OpenGL and DirectX. This portability allowed measurements to

be taken on both Windows and Linux, and comparisons made.

BrookGPU while a useful tool for this exploratory work, seems to have some

shortcomings. The largest deficiency was the apparent lack of ability to update sub-

sections of streams (in graphics parlance this is updating a sub-texture). Recent

forum discussion points to the possibility of some solutions to this problem, however

investigating this possibility is beyond the scope of the research in the time given.

BrookGPU and shader programming at large is still a very young field. As such

many of the development tools are wanting, features are bug-filled, and performance

is likely to change drastically over the course of a few months.

4.1.6 The Study

Generally speaking the study can be considered a success. Some architectures were

shown to be well suited to GPU simulation using BrookGPU, and others were shown

to be ill suited. Strong results do not always need to be positive to be good, and
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this research points out some of the benefits and strengths, as well as shortcomings

and weaknesses of GPU programming. This research shows some of the potential of

GPU simulation of ANNs and leaves the field open for future research.

4.2 Conclusion

The field of artificial neural networks is an interesting approach to some difficult

problems. It has held the attention of researchers for over 60 years now, and seems

to be worthy of many more years of study. There is a multitude of reasons to

consider using a neural based solution to real-world problems, and several of them

have been outlined in this thesis. Coupled with commercial off-the-shelf graphics

hardware found in many personal computers, significant improvements in simulation

performance can be realized. Although more power is not a panacea, it is a good step

towards allowing us to solve larger, harder, and ultimately more interesting problems

and questions.
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Future Work

“This is not the end. It is not even the beginning of the end. But it is,

perhaps, the end of the beginning.”

Winston Churchill, Speech given at the Lord Mayor’s Luncheon, Mansion

House, London, November 10, 1942.

This research is worth much future investigation. Among the endeavors that are

worthy of study are:

• assembly level implementations of ANNs to establish close to optimal perfor-

mance measurements

• assembly level implementations of “high level primitives” to allow for more

optimal implementations

• other high level language implementations to explore benefits and drawbacks

of each language’s capabilities
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• other architectures beyond the popular consumer ATI and NVIDIA graphics

cards (perhaps examine gaming console graphics cards)

• re-running the currently implemented tests with the new FBO options

• implement learning and determine efficacy of on-board learning

• applying this technology to interesting data sets

• building powerful hybrid CPU/GPU ANNs that capitalize on each component’s

strengths
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BrookGPU Multi-Layer

Perceptron

// mlp.br

// Christopher Davis

// chris2d@cs.unm.edu

// Final BrookGPU implementation of a multi layer perceptron.

// This code utilizes vector matrix dot product in a parallel fashion

// to attempt to realize better performance.

#include <stdio.h>

#include <math.h>

10 #include <time.h>

#include <lin time.h>

reduce void rsum4(float4 x<>, reduce float4 result<>) {
result += x;

}
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kernel void forceGPUFlush float4(float4 input<>, out float4 result<>) {
result = input;

}
20

kernel void tanh4(float4 x<>, out float4 result<>) {
result = tanh(x);

}

// A is (m/4)−by−n

// x is (n/4)−by−1

// result is (m/4)−by−(n/4)

kernel void denseMatVecKernel(iter float2 it1<>, iter float2 it2<>,

iter float2 it3<>, iter float2 it4<>,

30 float4 A[ ][ ], float4 x<>, out float4 result<>) {
float4 data1 = A[it1.xy];

float4 data2 = A[it2.xy];

float4 data3 = A[it3.xy];

float4 data4 = A[it4.xy];

result = x.x * data1;

result += x.y * data2;

result += x.z * data3;

result += x.w * data4;

40

}

kernel void multKernel4(float4 x<>, float4 y<>, out float4 result<>) {
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result = x * y;

}

void do MLP(int test, int num iter, int length, int dim,

float fWideDim, float fDim ){

50 float *x, *y, *A, *B, *C, *D, *oArray, *timeArray;

int size of comp;

int i,j,k;

float4 xStrm<1, dim>;

float4 yStrm<dim, 1>;

float4 AStrm<dim, length>;

float4 BStrm<dim, length>;

60 float4 CStrm<dim, length>;

float4 DStrm<dim, 1>;

float4 oStrm<1, 1>;

float4 tmpStrm<dim, dim>;

float4 resultStrm<dim, 1>;

float4 flushStrm<1,1>;

float4 flush[1];

70 iter float2 it1<dim, dim> = iter( float2(0.0f, 0.0f),

float2(fWideDim, fDim) );
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iter float2 it2<dim, dim> = iter( float2(1.0f, 0.0f),

float2(fWideDim+1.0f, fDim));

iter float2 it3<dim, dim> = iter( float2(2.0f, 0.0f),

float2(fWideDim+2.0f, fDim));

iter float2 it4<dim, dim> = iter( float2(3.0f, 0.0f),

float2(fWideDim+3.0f, fDim));

x = (float*)malloc(sizeof(float) * length);

80 y = (float*)malloc(sizeof(float) * length);

A = (float*)malloc(sizeof(float) * length * length);

B = (float*)malloc(sizeof(float) * length * length);

C = (float*)malloc(sizeof(float) * length * length);

D = (float*)malloc(sizeof(float) * length);

oArray = (float*)malloc(sizeof(float) * 4);

timeArray = (float*)malloc(sizeof(float) * test);

/* fill in matrix and x-vector values */

srand(time(NULL));

90 for (i=0;i<length;i++) {
x[i] = (float)(rand()−(float)(RAND MAX/2))/(float)RAND MAX;

D[i] = (float)(rand()−(float)(RAND MAX/2))/(float)RAND MAX;

y[i] = 0.0f;

}

for (i=0;i<length;i++) {
for (j=0;j<length;j++) {

A[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;
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100 B[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;

C[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;

}
}

InitTime();

for (k = 0; k < test; k++){
110 UpdateTime();

streamRead(AStrm, A);

streamRead(BStrm, B);

streamRead(CStrm, C);

streamRead(DStrm, D);

for (i=1;i<=num iter;i++) {
streamRead(xStrm, x);

denseMatVecKernel(it1, it2, it3, it4, AStrm, xStrm, tmpStrm);

120 rsum4(tmpStrm, resultStrm);

tanh4(resultStrm, yStrm);

denseMatVecKernel(it1, it2, it3, it4, BStrm, yStrm, tmpStrm);

rsum4(tmpStrm, resultStrm);

tanh4(resultStrm, xStrm);

denseMatVecKernel(it1, it2, it3, it4, CStrm, xStrm, tmpStrm);
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rsum4(tmpStrm, resultStrm);

tanh4(resultStrm, yStrm);

130

multKernel4(DStrm, yStrm, resultStrm);

rsum4(resultStrm, oStrm);

tanh4(oStrm, oStrm);

}

forceGPUFlush float4(oStrm, flushStrm);

streamWrite(flushStrm, flush);

streamWrite(oStrm, oArray);

140 UpdateTime();

timeArray[k] = GetElapsedTime();

}
size of comp = length*length + length*length + length*length + 4*length;

for (k = 1; k < test; k++){
timeArray[0] += timeArray[k];

}
printf(" %d %d %f \n", length, size of comp, (timeArray[0]/(float)test));

150

free(x);

free(y);

free(A);

free(B);

free(C);
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free(D);

free(oArray);

free(timeArray);

160 }

int main() {
int num iter = 2000;

int test = 200;

int base dim = 20;

int length, dim;

float fWideDim, fDim;

170

int i;

for (i = 20; i < 21; i++){
dim = base dim * i;

length = base dim * i * 4;

fWideDim = (float) length;

fDim = (float) dim;

do MLP(test, num iter, length, dim, fWideDim, fDim );

}
180

return 0;

}
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ATLAS BLAS Multi-Layer

Perceptron

// mlp BLAS.c

// Christopher Davis

// chris2d@cs.unm.edu

// My final version of a multilayer perceptron written for ATLAS BLAS

// I use sgemv and sdot to achieve maximal CPU performance

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

10 #include <cblas.h>

#include "lin_time.h"

#include <time.h>

#include <assert.h>

void do MLP(int test, int num iter, int length){
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int size of comp;

int sizeX = length;

int sizeY = length;

int dim = length/4;

20

float *x, *y, *A, *B, *C, *D, *x1, *x2, *x3, *x4;

float *d1, *d2, *d3, *d4, *timeArray;

float oArray[4] = {0.0f, 0.0f, 0.0f, 0.0f};

int i,j,k;

x1 = (float*)malloc(sizeof(float) * length/4);

x2 = (float*)malloc(sizeof(float) * length/4);

30 x3 = (float*)malloc(sizeof(float) * length/4);

x4 = (float*)malloc(sizeof(float) * length/4);

d1 = (float*)malloc(sizeof(float) * length/4);

d2 = (float*)malloc(sizeof(float) * length/4);

d3 = (float*)malloc(sizeof(float) * length/4);

d4 = (float*)malloc(sizeof(float) * length/4);

x = (float*)malloc(sizeof(float) * length);

y = (float*)malloc(sizeof(float) * length);

A = (float*)malloc(sizeof(float) * length * length);

B = (float*)malloc(sizeof(float) * length * length);

40 C = (float*)malloc(sizeof(float) * length * length);

D = (float*)malloc(sizeof(float) * length);

timeArray = (float*)malloc(sizeof(float) * test);
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/* fill in matrix and x-vector values */

srand(time(NULL));

for (i=0;i<length;i++) {
x[i] = (float)(rand()−(float)(RAND MAX/2))/(float)RAND MAX;

D[i] = (float)(rand()−(float)(RAND MAX/2))/(float)RAND MAX;

y[i] = 0.0f;

50 }

for (i=0;i<length;i++) {
for (j=0;j<length;j++) {

A[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;

B[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;

C[ i*length+j ] = (float)(rand()−(float)(RAND MAX/2))/

(float)RAND MAX;

60 }
}

InitTime();

for (k = 0; k < test; k++){
UpdateTime();

for (i=1;i<=num iter;i++) {

cblas sgemv(CblasRowMajor, CblasNoTrans, sizeX, sizeY,

70 1, A, sizeX, x, 1, 0, y, 1);

for (j=0; j < sizeX; j++){
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y[j] = tanh(y[j]);

}

cblas sgemv(CblasRowMajor, CblasNoTrans, sizeX, sizeY,

1, B, sizeX, y, 1, 0, x, 1);

for (j=0; j < sizeX; j++){
x[j] = tanh(x[j]);

}
80

cblas sgemv(CblasRowMajor, CblasNoTrans, sizeX, sizeY,

1, C, sizeX, x, 1, 0, y, 1);

for (j=0; j < sizeX; j++){
y[j] = tanh(y[j]);

}

for (j = 0; j < dim; j++){
x1[j] = y[j];

x2[j] = y[j+dim];

90 x3[j] = y[j+dim];

x4[j] = y[j+dim];

d1[j] = D[j];

d2[j] = D[j+dim];

d3[j] = D[j+dim];

d4[j] = D[j+dim];

}

oArray[0] = tanh(cblas sdot(dim, x1, 1, d1, 1));

oArray[1] = tanh(cblas sdot(dim, x2, 1, d2, 1));
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100 oArray[2] = tanh(cblas sdot(dim, x3, 1, d3, 1));

oArray[3] = tanh(cblas sdot(dim, x4, 1, d4, 1));

}

UpdateTime();

timeArray[k] = GetElapsedTime();

}
size of comp = length*length + length*length + length*length + 4*length;

for (k = 1; k < test; k++){
110 timeArray[0] += timeArray[k];

}
printf(" %d %d %f \n", length, size of comp, (timeArray[0]/(float)test));

free(x);

free(y);

free(A);

free(B);

free(C);

free(D);

120 free(x1);

free(x2);

free(x3);

free(x4);

free(d1);

free(d2);

free(d3);

free(d4);

68



Appendix B. ATLAS BLAS Multi-Layer Perceptron

free(timeArray);

130 }

int main() {

int base length = 20;

int test = 100;

int num iter = 2000;

int length, i;

for (i = 1; i < 21; i++){
140 length = base length * i * 4;

do MLP(test, num iter, length );

}

return 0;

}
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BrookGPU Little model Hopfield

Network

// hopfield1.br

// Christopher Davis

// chris2d@cs.unm.edu

// Hopfield network

// This code utilizes vector matrix dot product in a parallel fashion

// to attempt to realize better performance.

#include <stdio.h>

#include <math.h>

10 #include <time.h>

#include <lin time.h>

#define EPS 1e−9f

void printdat(float *a){
int i, j;
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for (i = 0; i < 32; i++){
for (j = 0; j < 32; j++){

if(a[i*32+j]>0) printf("1");

else printf("0");

20 }
printf("\n");

}
}

reduce void rsum4(float4 x<>, reduce float4 result<>) {
result += x;

}

kernel void forceGPUFlush float4(float4 input<>, out float4 result<>) {
30 result = input;

}

kernel void tanh4(float4 x<>, out float4 result<>) {
result = tanh(x);

}

kernel void minus4(float4 x<>, float4 y<>, out float4 result<>) {
result = x − y;

}
40

kernel void plus4(float4 x<>, float4 y<>, out float4 result<>) {
result = x + y;

}
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// A is (m/4)−by−n

// x is (n/4)−by−1

// result is (m/4)−by−(n/4)

kernel void denseMatVecKernel(iter float2 it1<>, iter float2 it2<>,

iter float2 it3<>, iter float2 it4<>,

50 float4 A[ ][ ], float4 x<>, out float4 result<>) {

float4 data1 = A[it1.xy];

float4 data2 = A[it2.xy];

float4 data3 = A[it3.xy];

float4 data4 = A[it4.xy];

result = x.x * data1;

result += x.y * data2;

60 result += x.z * data3;

result += x.w * data4;

}

kernel void multKernel4(float4 x<>, float4 y<>, out float4 result<>) {
result = x * y;

}

kernel void equals4(float4 x<>, out float4 result<>){
result = x;

70 }
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kernel void ones4(out float4 result<>){
result = 1.0;

}

int main() {

int length = 1024;

int dim = 256;

80 int tests = 1000;

int baseval = 1;

float fDim = 256.0;

float fWideDim = 1024.0;

float *x, *y, *z, *A, *ones, *timeArray;

float tempF = 0.0;

int i,j,k,l,m;

90 float4 xStrm<1, dim>;

float4 x1Strm<1, dim>;

float4 yStrm<dim, 1>;

float4 y1Strm<dim, 1>;

float4 AStrm<dim, length>;

float4 tmpStrm<dim, dim>;

float4 flushStrm<1,1>;

float4 flush[1];
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100

iter float2 it1<dim, dim> = iter( float2(0.0f, 0.0f),

float2(fWideDim, fDim) );

iter float2 it2<dim, dim> = iter( float2(1.0f, 0.0f),

float2(fWideDim+1.0f, fDim));

iter float2 it3<dim, dim> = iter( float2(2.0f, 0.0f),

float2(fWideDim+2.0f, fDim));

iter float2 it4<dim, dim> = iter( float2(3.0f, 0.0f),

float2(fWideDim+3.0f, fDim));

110 printf ("# Dimensions :%d by %d \n",length, length );

ones = (float*)malloc(sizeof(float) * 2);

x = (float*)malloc(sizeof(float) * length);

y = (float*)malloc(sizeof(float) * length);

z = (float*)malloc(sizeof(float) * length);

A = (float*)malloc(sizeof(float) * length * length);

timeArray = (float*)malloc(sizeof(float) * tests);

/* fill in matrix and x-vector values */

120 srand(time(NULL));

ones[0] = 1.0;

ones[1] = −1.0;

FILE *datafile;

datafile = fopen("hopfield.dat", "r");

74



Appendix C. BrookGPU Little model Hopfield Network

if (!datafile)

{
130 printf("Unable to open data file: %s \n", "hopfield.dat");

exit(1);

}

for (i=0;i<length/4;i++) {
for (j=0;j<length;j++) {

k = fscanf(datafile, "%f", &tempF);

A[ 4*(i*length + j) ] = tempF;

k = fscanf(datafile, "%f", &tempF);

A[ 4*(i*length + j)+1] = tempF;

140 k = fscanf(datafile, "%f", &tempF);

A[ 4*(i*length + j)+2] = tempF;

k = fscanf(datafile, "%f", &tempF);

A[ 4*(i*length + j)+3] = tempF;

}
}

InitTime();

for (i = 0; i < 40; i++){

150 for (l=0;l<length;l++) {
x[l] = ones[(rand()%2)];

y[l] = ones[(rand()%2)];

}
for (m = 0; m < tests; m++){
UpdateTime();
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streamRead(xStrm, x);

streamRead(AStrm, A);

160 forceGPUFlush float4(xStrm, flushStrm);

forceGPUFlush float4(AStrm, flushStrm);

streamWrite(flushStrm, flush);

k = baseval + ( i);

j = 0;

while(k){

denseMatVecKernel(it1, it2, it3, it4, AStrm, xStrm, tmpStrm);

rsum4(tmpStrm, yStrm);

170 //plus4(yStrm, y1Strm, yStrm);

tanh4(yStrm, yStrm);

denseMatVecKernel(it1, it2, it3, it4, AStrm, yStrm, tmpStrm);

rsum4(tmpStrm, xStrm);

//plus4(xStrm, x1Strm, xStrm);

tanh4(xStrm, xStrm);

j+=2;

k−−;

180 }

forceGPUFlush float4(yStrm, flushStrm);

streamWrite(flushStrm, flush);
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streamWrite(yStrm, y);

UpdateTime();

timeArray[m] = GetElapsedTime();

}
for (m = 1; m < tests; m++){

190 timeArray[0] += timeArray[m];

}

printf ("%d %f \n", j, (timeArray[0]/(float)tests));

// printdat(y);

}
return 0;

}
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ATLAS BLAS Little model

Hopfield Network

// hop cpu1.c

// Christopher Davis

// chris2d@cs.unm.edu

// A Hopfield network

// This code utilizes ATLAS BLAS vector matrix dot product

// to attempt to realize better performance.

#include <stdio.h>

#include <stdlib.h>

10 #include <math.h>

#include <time.h>

#include <cblas.h>

#include "lin_time.h"

#define MAX DIM 2048

#define EPS 1e−9f
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void printdat(float *a){
int i, j;

20 for (i = 0; i < 32; i++){
for (j = 0; j < 32; j++){

if(a[i*32+j]>0) printf("1");

else printf("0");

}
printf("\n");

}
}

int main() {
30

int length = 1024;

int baseval = 1;

float *x, *y, *z, *A, *ones;

float tempF = 0.0;

int tests = 1000;

float timeArray[tests];

40 float oArray[length];

int i,j,k,l,m;
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printf ("# Dimensions :%d by %d \n",length, length );

ones = (float*)malloc(sizeof(float) * 2);

x = (float*)malloc(sizeof(float) * length);

y = (float*)malloc(sizeof(float) * length);

z = (float*)malloc(sizeof(float) * length);

50 A = (float*)malloc(sizeof(float) * length * length);

/* fill in matrix and x-vector values */

srand(time(NULL));

ones[0] = 1.0;

ones[1] = −1.0;

FILE *datafile;

datafile = fopen("hopfield.dat", "r");

60

if (!datafile)

{
printf("Unable to open data file: %s \n", "hopfield.dat");

exit(1);

}

for (i=0;i<length*length;i++) {
k = fscanf(datafile, "%f", &tempF);

A[i] = tempF;

70 }
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InitTime();

for (l = 0; l < 40 ; l++){
for (m=0;m<length;m++) {

x[m] = ones[(rand()%2)];

}
for (m = 0; m < tests; m++){
UpdateTime();

80 k = baseval + (l);

j = 0;

while(k){

cblas sgemv(CblasRowMajor, CblasNoTrans, length, length,

1, A, length, x, 1, 0, y, 1);

for (i=0; i < length; i++){
y[i] = tanh(y[i]);

}

90 cblas sgemv(CblasRowMajor, CblasNoTrans, length, length,

1, A, length, y, 1, 0, x, 1);

for (i=0; i < length; i++){
x[i] = tanh(x[i]);

}

j +=2;

k−−;

}
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100 UpdateTime();

timeArray[m] = GetElapsedTime();

}
for (m = 1; m < tests; m++){

timeArray[0] += timeArray[m];

}
printf ("%d %f \n", j, (timeArray[0]/(float)tests));

// printdat(x);

110 }
return 0;

}
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BrookGPU Fuzzy Adaptive

Resonance Theory

// fart1.br

// Christopher Davis

// chris2d@cs.unm.edu

// Fuzzy ART

// This code utilizes vector matrix fuzzy dot product in a paralell fashion

// to attempt to realize better performance.

#include <stdio.h>

#include <math.h>

10 #include <time.h>

#include <lin time.h>

#define MAX DIM 2048

static inline float mymin(float a, float b){
float r;
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r = a;

if (b < a) r = b;

return r;

}
20

reduce void rsum4(float4 x<>, reduce float4 result<>) {
result += x;

}

kernel void div4b(float4 x<>, float alpha, out float4 result<>){
result = x / alpha;

}

kernel void div4a(float4 x<>, float4 y<>, float alpha, out float4 result<>){
30 result = x / (y.x + y.y + y.z + y.w + alpha);

}

kernel void div4(float4 x<>, float4 y<>, out float4 result<>){
result = x / y;

}

kernel void forceGPUFlush float4(float4 input<>, out float4 result<>) {
result = input;

}
40

// A is (m/4)−by−n

// x is (n/4)−by−1

// result is (m/4)−by−(n/4)
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kernel void fdot(iter float2 it1<>, iter float2 it2<>,

iter float2 it3<>, iter float2 it4<>,

float4 A[ ][ ], float4 x<>, out float4 result<>) {

float4 data1 = A[it1.xy];

50 float4 data2 = A[it2.xy];

float4 data3 = A[it3.xy];

float4 data4 = A[it4.xy];

// This is slower to do the float4 for some reason

// result = min(x, data1);

// result += min(x, data2);

// result += min(x, data3);

// result += min(x, data4);

60 // Do the faster min

result.x = abs(min(x.x, data1.x));

result.x += abs(min(x.y, data2.x));

result.x += abs(min(x.z, data3.x));

result.x += abs(min(x.w, data4.x));

result.y = abs(min(x.x, data1.y));

result.y += abs(min(x.y, data2.y));

result.y += abs(min(x.z, data3.y));

result.y += abs(min(x.w, data4.y));

result.z = abs(min(x.x, data1.z));

70 result.z += abs(min(x.y, data2.z));

result.z += abs(min(x.z, data3.z));
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result.z += abs(min(x.w, data4.z));

result.w = abs(min(x.x, data1.w));

result.w += abs(min(x.y, data2.w));

result.w += abs(min(x.z, data3.w));

result.w += abs(min(x.w, data4.w));

}

int main() {
80

const static int length = 1024;

const static float fWideDim = 1024.0;

const static int dim = 256;

const static float fDim = 256.0;

const static int num iter = 1;

const static int test = 1000;

// choice parameter

90 float alpha = 1.0f;

// learning rate

float beta = 1.0f;

// vigilance

float rho = 0.5f;

float max = 0.0f;

// the uncommited template value, larger than 1 leads to deeper

// searches of previously coded categories

float uncommited = 1.0f;
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100

float *x, *y, *z, *A, *tTime;

float check size = 0.0f;

int i,j,testC,iterC,maxindex,reset events,max checks;

float4 xStrm<1, dim>;

float4 yStrm<dim, 1>;

float4 zStrm<dim, 1>;

float4 TSizeStrm<dim, 1>;

110 float4 AStrm<dim, length>;

float4 tmpStrm<dim, dim>;

float4 flushStrm<1,1>;

float4 flush[1];

iter float2 it1<dim, dim> = iter( float2(0.0f, 0.0f),

float2(fWideDim, fDim) );

iter float2 it2<dim, dim> = iter( float2(1.0f, 0.0f),

float2(fWideDim+1.0f, fDim));

iter float2 it3<dim, dim> = iter( float2(2.0f, 0.0f),

120 float2(fWideDim+2.0f, fDim));

iter float2 it4<dim, dim> = iter( float2(3.0f, 0.0f),

float2(fWideDim+3.0f, fDim));

x = (float*)malloc(sizeof(float) * length);

y = (float*)malloc(sizeof(float) * length);

z = (float*)malloc(sizeof(float) * length);

tTime = (float*)malloc(sizeof(float) * test);
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A = (float*)malloc(sizeof(float) * length * length);

130 /* fill in matrix and x-vector values */

srand(time(NULL));

reset events = 0;

max checks = 0;

for (i=0;i<length;i++) {
y[i] = 0.0f;

z[i] = 0.0f;

}

for (i=0;i<length/4;i++) {
140 for (j=0;j<length;j++) {

A[ 4*(i*length + j) ] = uncommited;

A[ 4*(i*length + j)+1] = uncommited;

A[ 4*(i*length + j)+2] = uncommited;

A[ 4*(i*length + j)+3] = uncommited;

}
}

InitTime();

for (testC = 0; testC < test; testC++){
150 UpdateTime();

for (i=0;i<length/2;i++) {
x[i] = (float)rand()/(float)RAND MAX;

x[(length/2)+i] = 1.0f−x[i];

}
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check size = 0.0;

for(i = 0; i < length; i++){
check size += x[i];

160 }

for (iterC=1;iterC<=num iter;iterC++) {
streamRead(xStrm, x);

streamRead(yStrm, y);

streamRead(zStrm, z);

streamRead(AStrm, A);

forceGPUFlush float4(xStrm, flushStrm);

forceGPUFlush float4(yStrm, flushStrm);

170 forceGPUFlush float4(AStrm, flushStrm);

streamWrite(flushStrm, flush);

// Compute the category choice

fdot(it1, it2, it3, it4, AStrm, xStrm, tmpStrm);

rsum4(tmpStrm, yStrm);

rsum4(AStrm, TSizeStrm);

div4a(yStrm, TSizeStrm, alpha, zStrm);

// Compute the resonance or reset

180 div4b(yStrm, check size, yStrm);

forceGPUFlush float4(yStrm, flushStrm);

forceGPUFlush float4(zStrm, flushStrm);
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streamWrite(flushStrm, flush);

streamWrite(yStrm, y);

streamWrite(zStrm, z);

// Don’t need to read this out each time,

// just read it in each time since

// I do the update on the CPU side

190 // streamWrite(AStrm, A);

}

j = 1;

while(j){
max = 0.0f;

maxindex = 0;

for (i = 0; i < length; i++){
if (max < z[i]){

max = z[i];

200 maxindex = i;

max_checks++;

}
}

if (y[maxindex]<rho){
z[maxindex]= -1;

reset_events++;

}
else {

210 //we are close enough, let’s learn

for (i = 0; i < length/4; i++){
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A[ 4*((maxindex/4)*length+i)+maxindex ] =

beta * (mymin(x[i],

A[ 4*((maxindex/4)*length+i)+maxindex ]))

+ (1−beta)*A[ 4*((maxindex/4)*length+i)+maxindex ];

}
j = 0;

}
}

220

UpdateTime();

tTime[testC] = (float) GetElapsedTime();

}
for (i=1;i<test;i++) {

tTime[0] += tTime[i];

}
printf("Total time = %f \n", tTime[0]);

230 return 0;

}
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CPU Fuzzy Adaptive Resonance

Theory

// fart cpu.c

// Christopher Davis

// chris2d@cs.unm.edu

// This code implements a CPU version of Fuzzy ART.

// No ATLAS BLAS implementation of min existed so I wrote my own.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

10 #include <time.h>

#include "lin_time.h"

#include <string.h>

static inline float min(float a, float b){
float r;
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r = a;

if (b < a) r = b;

return r;

}
20

int main() {
InitTime();

int record count,i,tempTime,j,k,l;

float zTime = 0.0;

float smaxRatio = 0.0;

float dmaxRatio = 0.0;

float sminRatio = 100000;

float dminRatio = 100000;

30 char source file[60];

char source mfile[60];

const static int length = 10;

int templates = 1024;

int templates used = 0;

int templates ud = 0;

int test = 1000;

float *x, *y, *z, *w;

float ** A;

40 double alpha = 1.0;

double beta = 1.0;

double rho = 0.5;

float SizeI = 0.0f;
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float uncommited = 1.0f;

int notsat, maxindex = 0, reset events = 0, max checks = 0;

float max = 0.0f;

record count = 0;

A = (float **)malloc(templates * sizeof(float *));

50 for (int i = 0; i < templates; i++)

A[i] = (float *)malloc(length * sizeof(float));

x = (float*)malloc(sizeof(float) * length);

y = (float*)malloc(sizeof(float) * templates);

z = (float*)malloc(sizeof(float) * templates);

w = (float*)malloc(sizeof(float) * templates);

printf ("# Dimensions :%d by %d \n",templates, length );

60

/* fill in matrix and x-vector values */

srand(time(NULL));

printf("\n \n \n");

for (i=0;i<templates;i++) {
for (j=0;j<length;j++) {

A[i][j] = uncommited;

}
}

70

for(k = 0; k < test; k++){
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UpdateTime();

record count++;

for (i=0;i<length/2;i++) {
x[i] = (float)rand()/(float)RAND MAX;

x[(length/2)+i] = 1.0f−x[i];

}

80 for (j=0;j<templates;j++) {
y[j] = 0.0f;

w[j] = 0.0f;

}

for (j = 0; j < templates used+2; j++){
for (l = 0; l < length; l++){

y[j] += fabs(min(x[l], A[j][l]));

w[j] += fabs(A[j][l]);

}
90

z[j] = y[j] / (alpha + w[j]);

}

SizeI = 0.0f;

for (j = 0; j < length; j++){
SizeI += fabs(x[j]);

}

notsat = 1;
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100 while(notsat){
max = 0.0f;

for (j = 0; j < templates used+2; j++){
if (max < z[j]){

max = z[j];

maxindex = j;

max checks++;

}
}

110 if (y[maxindex]/SizeI < rho){
// Reset condition

reset events++;

z[maxindex] = −1;

}
else {

// close − let’s learn

templates_ud++;

notsat = 0;

120 for (l = 0; l < length; l++){
A[maxindex][l] = beta * (min(x[l], A[maxindex][l])

+ (1 - beta) * A[maxindex][l]);

}
}

if (templates_used < maxindex){
templates_used = maxindex;
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if (templates_used == templates - 1){
printf("\n \n Ran out of template space - exiting\n \n ");

130 exit(1);

}
}
}

UpdateTime();

zTime += GetElapsedTime();

}

printf("Processed %d records \n in %f seconds \n",

record_count, zTime/test);

140 return 0;

}
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Thomas Rolfes matrix product

implementation

The following code was presented in Mr. Rolfes’ paper [16]. The pixel shader is

presented first followed by the vertex shader. The entire source is available for

download from www.circensis.com.

// Partial matrix product

// oC0 <- A1.x*B1 + A1.y*B2 + A1.z*B3 + A1.w*B4 + C1*scale + bias,

// with scale in c0.x and bias in c0.y

ps_2_0 // shader version

dcl_2d s0 // texture stage A

dcl_2d s1 // texture stage B

dcl_2d s2 // texture stage C

dcl t0.xy // texture coordinate A1
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dcl t1.xy // texture coordinate B1 row 1

dcl t2.xy // texture coordinate B2 row 2

dcl t3.xy // texture coordinate B3 row 3

dcl t4.xy // texture coordinate B4 row 4

dcl t5.xy // texture coordinate C1

texld r0, t5, s2 // C1

mad r0, r0, c0.x, c0.y // C1*scale + bias ...

texld r1, t0, s0 // A1

texld r2, t1, s1 // B1

mad r0, r1.x, r2, r0 // ... +A1.x*B1 ...

texld r2, t2, s1 // B2

mad r0, r1.y, r2, r0 // ... +A1.y*B2 ...

texld r2, t3, s1 // B3

mad r0, r1.z, r2, r0 // ... +A1.z*B3 ...

texld r2, t4, s1 // B4

mad r0, r1.w, r2, r0 // ... +A1.w*B4.

// Add more blocks here and modify Shaders::Gemm() accordingly ...

// write result to output register

mov oC0, r0

The following code is the vertex shader component of the matrix product.

// Vertex shader for the matrix product A*B+C where:

// A is an m by k matrix,
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// B is an k by n matrix,

// C is an m by n matrix.

// k/4 passes are needed in order to complete the matrix product.

// Each pass multiplies a column of 4 cells of A with 4 rows of B.

// The texture coordinates B1 ... B4 are 4 subsequent rows of B.

// Constant registers:

// c0: 2, -1, 0.5, 1

// c1: adjustments for out

// c2: adjustments for A

// c3: adjustments for B

// c4: adjustments for C

// c5: dx for B, dy for B, step*dy for A, step*dx for B

vs_1_1

dcl_position v0 // v0.z holds the vertex index

// adjust and transform vertex position

mov r0, c0

mov r1, c1

mad r2.xy, v0.xy, r1.zw, r1.xy // adjust subpos within [0, 1]

mad r2.xy, r2.xy, r0.xx, r0.yy // scale and translate to [-1, 1]

mov r2.zw, c0.zw // z <- 0.5, w <- 1

mov oPos, r2

// adjust A texture coordinate

mov r0, c2

mad r2.xy, v0.xy, r0.zw, r0.xy // subpos
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mad r2.x, c5.z, v0.z, r2.x

// plus index dependent shift in x-direction

mov oT0, r2

// adjust B texture coordinates

mov r0, c3 // scale and translation

mad r2.xy, v0.xy, r0.zw, r0.xy // subpos

mad r2.y, c5.w, v0.z, r2.y

// plus index dependent shift in y-direction

mov oT1, r2.xy

add r2.y, r2.y, c5.y // next row

mov oT2, r2.xy

add r2.y, r2.y, c5.y // next row

mov oT3, r2.xy

add r2.y, r2.y, c5.y // next row

mov oT4, r2.xy

// adjust C texture coordinate

mov r0, c4

mad oT5, v0.xy, r0.zw, r0.xy // subpos
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