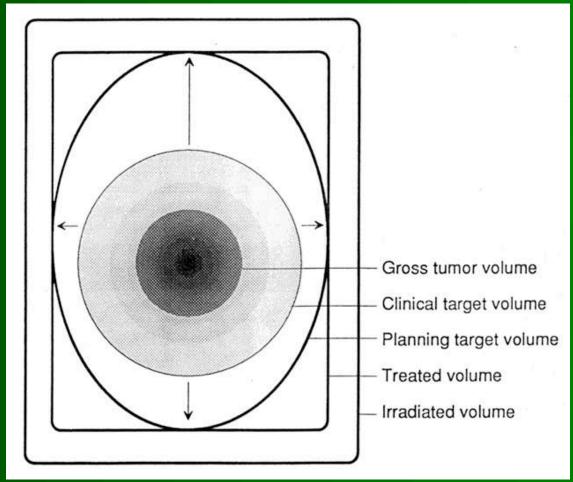
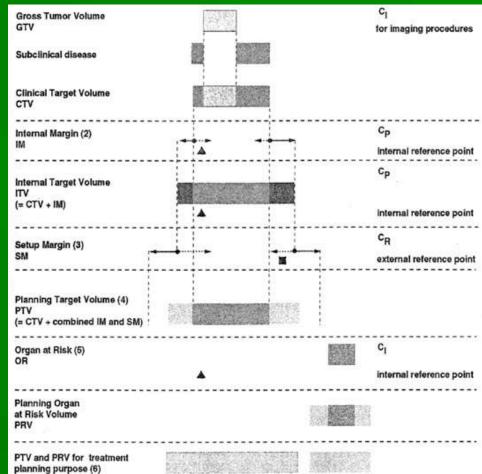
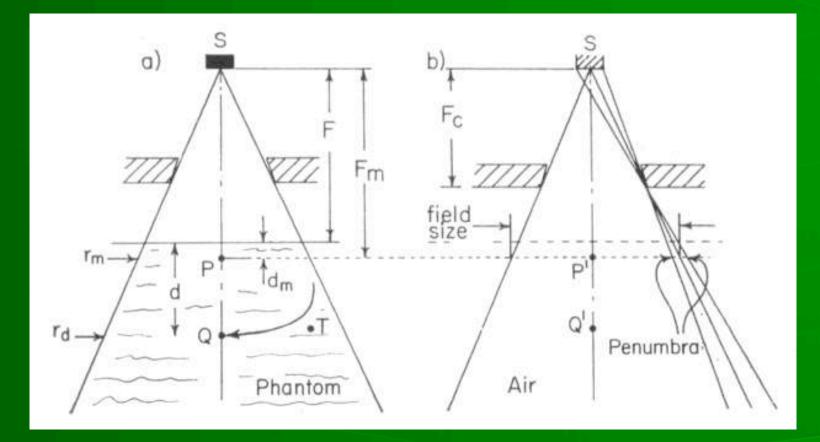
Dosimetric Calculations


Lonny Trestrail

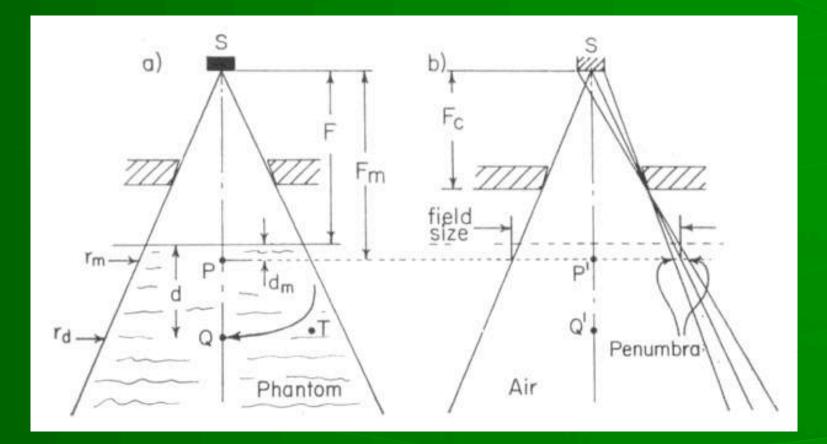

20 October 2008

Objectives

Dose Distribution Measurements ♦ PDD, OCR ♦ TAR, SAR, TPR, TMR, SPR, SMR Arc or Rotational Therapy Isodose Curves Point Dose Calculations Wedged Fields Photon Beam Models


Definition of Tumor Volumes

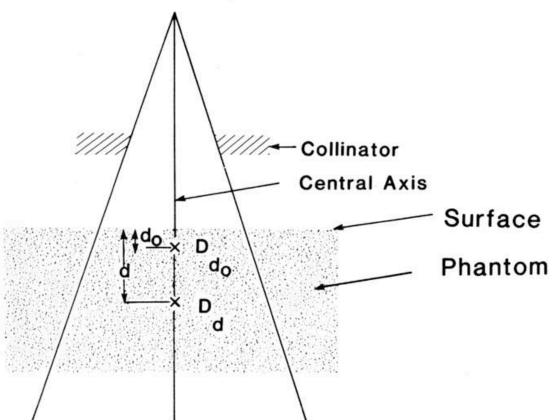
Definition of Terms


SSD – Source Skin Distance (F)
SAD – Source Axis Distance (Fm)

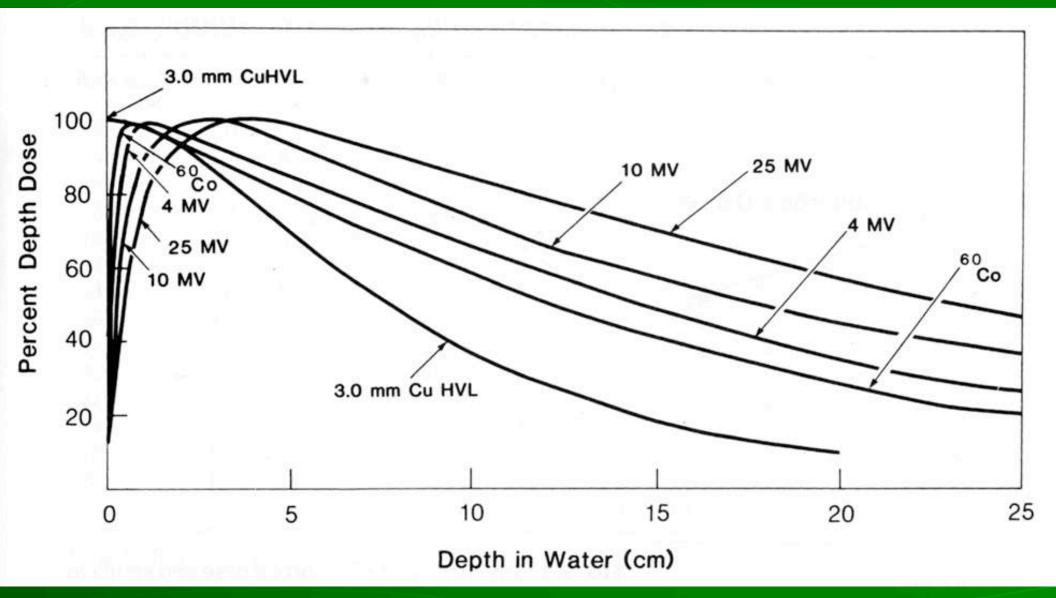
Definition of Terms

CAX – Central Axis

□ Isocenter

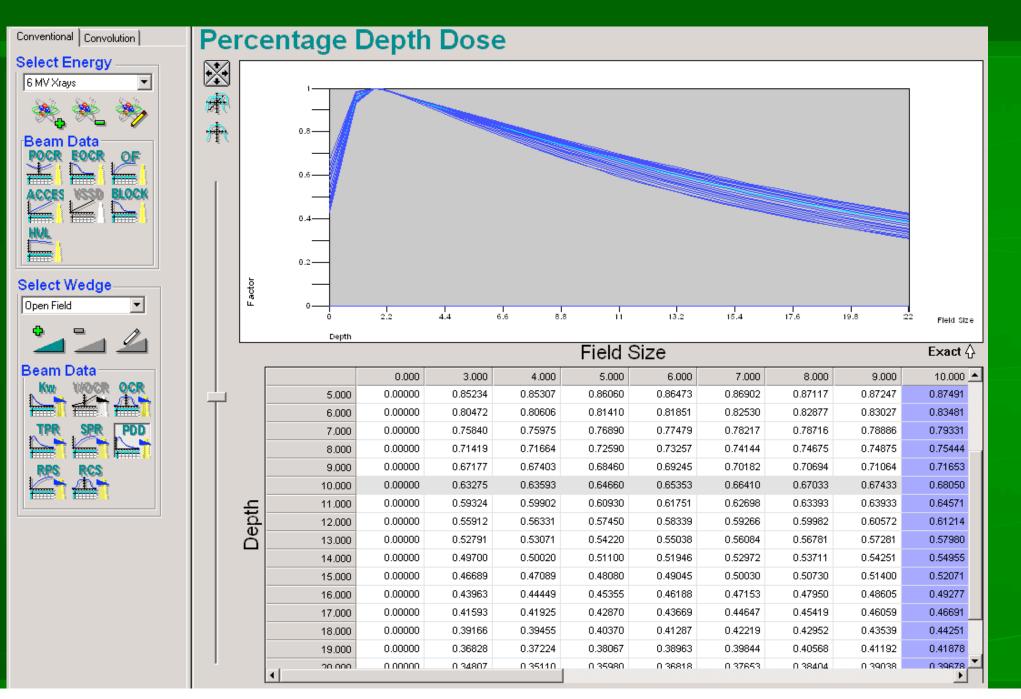


Percentage Depth Dose

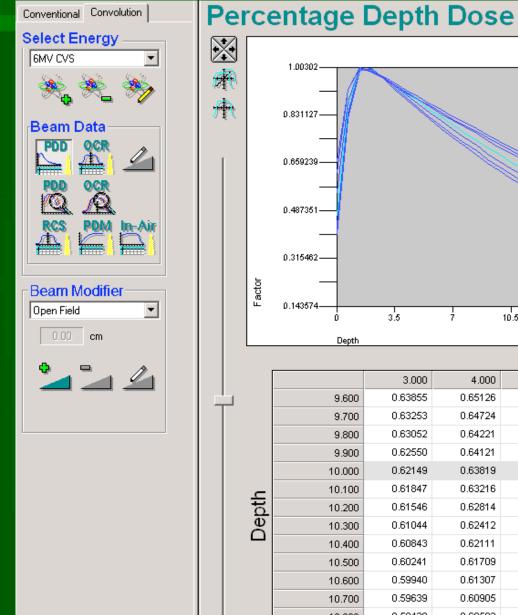

%D_n = D_n / D₀ x 100%
 Varies w/Depth
 Beam Energy

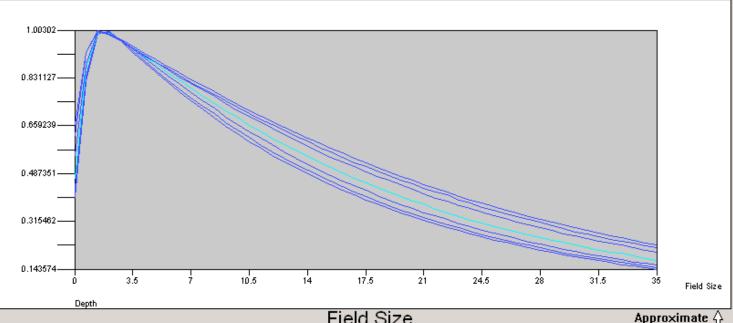
- Depth
- ◊ Field Size
- ◊ Source Distance
 ◊ Collimation
 10×10 dMax

%DD vs. Photon Beam Energy



%DD Tables


NPSF	Field Size (cm ²)											
	4 × 4 0.981	5 × 5 0,984	$\begin{array}{c} 6 imes 6\\ 0.988 \end{array}$	7 imes 7 0.991	8 × 8 0,994	$\begin{array}{c} 10 \times 10 \\ 1.000 \end{array}$	$\begin{array}{c} 12 \times 12 \\ 1.005 \end{array}$	15 imes 15 1.013	$\frac{20\times20}{1.023}$	25 × 25 1.030	30×30 1.035	40 × 40 1.037
Depth												1.1
1.5	100	100	100	100	100	100	100	100	100	100	100	100
2:0	97.8	97.8	97.9	97.9	97.9	98.0	98.1	98.1	98.2	98.2	98.2	98.3
3.0	93.6	93.7	93.7	93.8	93.9	94.1	94.3	94.4	94.6	94.7	94.8	95.0
4.0	89.5	89.6	89.8	89.9	90.1	90.4	90.6	90.9	91.1	91.3	91.5	91.9
5.0	85.5	85.7	85.9	86.1	86.3	86.8	87.1	87.4	87.8	88.1	88.3	88.8
6.0	80.8	81.1	81.4	81.6	81.9	82.5	83.0	83.5	84.0	84.4	84.7	85.3
7.0	76.2	76.6	77.0	77.3	77.7	78.4	79.0	79.6	80.4	80.8	81.2	81.8
8.0	71.8	72.2	72.7	73.2	73.6	74.5	75.2	75.9	76.8	77.3	77.0	78.5
9.0	67.5	68.1	68.6	69.2	69.7	70.7	71.5	72.4	73.4	74.0	74.5	75.3
10.0	63.4	64.1	64.7	65.3	65.9	67.0	67.9	68.9	70.1	78.8	71.3	72.2
11.0	59.9	60.6	61.3	62.8	62.6	63.7	64.6	65.7	66.9	67.6	68.2	69.2
12.0	56.5	57.3	58.0	58.7	59.3	60.5	61.4	62.5	63.8	64.5	65.2	66.Z
13.0	53.3	54.0	54.8	55.5	56.2	57.4	58.4	59.4	60.7	61.6	62.3	63.4
14.0	50.1	50.9	51.7	52.5	53.2	54.4	55.4	56.4	57.8	58.7	59.5	60.6
15.0	47.1	47.9	48.7	49.5	50.3	51.6	52.5	53.6	55.0	56.0	56.7	58.0
16.0	44.6	45.3	46.1	46.9	47.6	48.8	49.8	50.9	52.4	53.4	54.2	55.5
17.0	42.2	42.9	43.6	44.3	45.0	46.2	47.2	48.4	49.8	50.9	51.7	53.1
18.0	39.8	40.5	41.1	41.8	42.4	43.6	44.7	45.9	47.4	48.5	49.3	50.7
19.0	37.5	38.1	38.7	39.3	40.0	41.2	42.2	43.5	45.0	46.1	47.0	40.4
20.0	35.3	35.9	36.4	37.0	37.6	38.0	39.8	41.2	42.7	43.9	44.0	46.2
21.0	33.4	34.0	34.5	35.1	35.6	36.8	37.9	39.2	40.7	41.8	42.7	44.2
22.0	31.7	32.2	32.7	33.2	33.8	34.9	35.9	37.2	38.7	39.8	40.7	42.2
23.0	29.9	30.4	30.9	31.4	31.9	33.2	34.1	35.3	36.8	37.9	38.7	40.2
24.0	28.2	28.7	29.2	29.7	30.2	31.3	32.3	33.5	34.9	36.0	36.8	38.3
25.0	26.6	27.1	27.5	28.0	29.5	29.5	30.5	31.7	33.1	34.2	35.0	36.5


Source: Barnes, W. H., Hammond, D. B., Janik, G. G. Beam characteristics of the Clinac 2500. Presented at Varian Users Group Meeting (1983).

MDE – Conventional PDD Tables

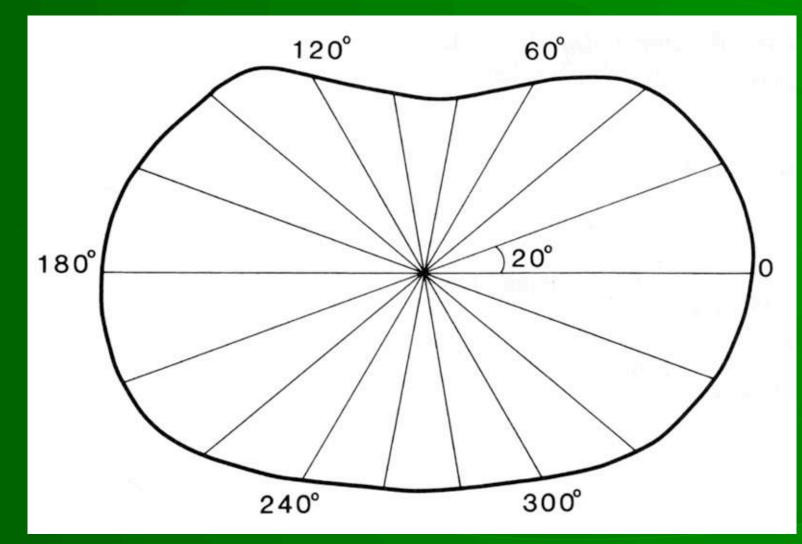
MDE – Convolution PDD Tables

Approximate A

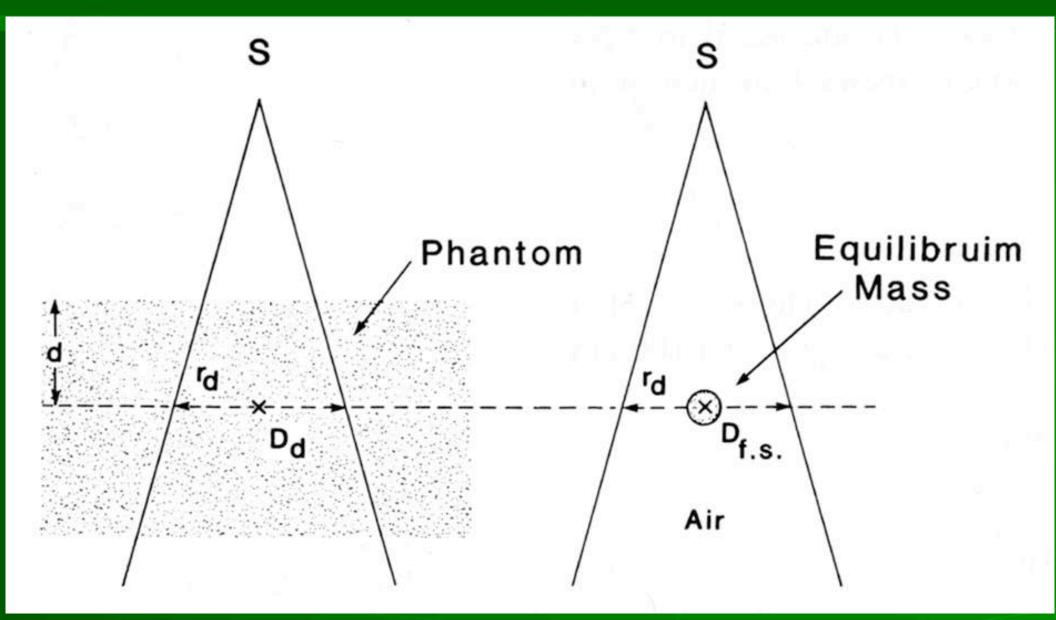

		3.000	4.000	6.000	10.000	20.000	30.000	40.000	<u> </u>		
	9.600	0.63855	0.65126	0.67202	0.69439	0.72200	0.73300	0.74174			
	9.700	0.63253	0.64724	0.66700	0.69038	0.71800	0.72900	0.73874			
	9.800	0.63052	0.64221	0.66299	0.68938	0.71400	0.72600	0.73473			
	9.900	0.62550	0.64121	0.65998	0.68236	0.71200	0.72300	0.73173	_		
	10.000	0.62149	0.63819	0.65496	0.67735	0.70600	0.71900	0.72773			
Depth	10.100	0.61847	0.63216	0.65196	0.67635	0.70300	0.71600	0.72673			
	10.200	0.61546	0.62814	0.64895	0.67134	0.70100	0.71400	0.72272			
	10.300	0.61044	0.62412	0.64493	0.67134	0.69800	0.71000	0.72172			
	10.400	0.60843	0.62111	0.64092	0.66433	0.69600	0.70700	0.71772			
	10.500	0.60241	0.61709	0.63791	0.66132	0.69300	0.70300	0.71371			
	10.600	0.59940	0.61307	0.63591	0.65932	0.68900	0.70300	0.71071			
	10.700	0.59639	0.60905	0.62889	0.65731	0.68900	0.69700	0.70771			
	10.800	0.59438	0.60503	0.62688	0.65130	0.68100	0.69500	0.70571			
	10.900	0.58835	0.60101	0.62287	0.64930	0.67600	0.69000	0.70270			
	11.000	0.58233	0.59698	0.61886	0.64830	0.67800	0.69000	0.69970	•		

Sterling's Rule

Effective Field Size


- This rule states that a rectangular field is equivalent to a square field if bot
 - have the same ratio of area/perimeter (A/P)
- Example
 - $_{\diamond}$ 15x8 has an A/P of 2.61
 - ◊ 10.3x10.3 has an A/P of ~2.61 (2.58)
 - \diamond 4 A/P = 10.4

Transverse Profile



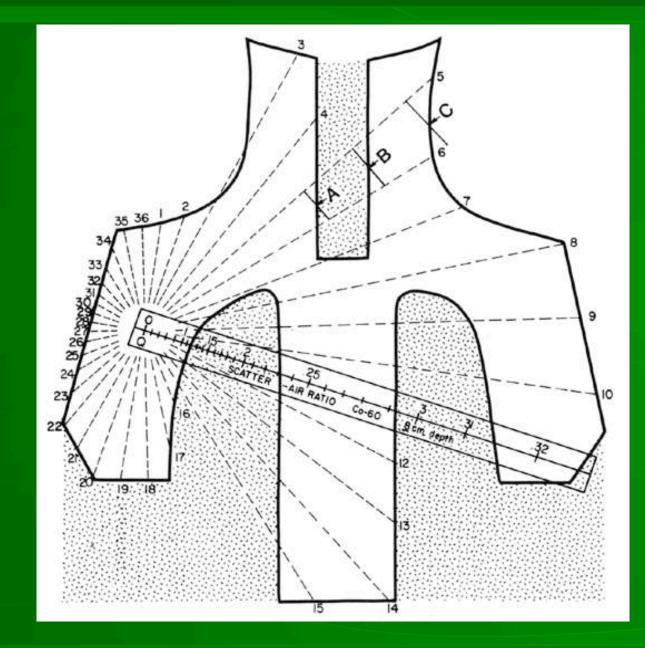
TAR Used in Calculating Arc Rotations

Use average TAR, not average depth

TAR Measurement

Tissue Air Ratio (TAR)

- \square TAR = D_d / D_{air}
- Where:
 - \diamond D_d: dose to a small volume of tissue in a medium
- D_{air}: dose to a small volume of tissue in air
 Depends on:
 - ◊ Energy, Depth, Field Size
- Accounts for tissue attenuation
- Used for isocenter treatments and rotational treatments

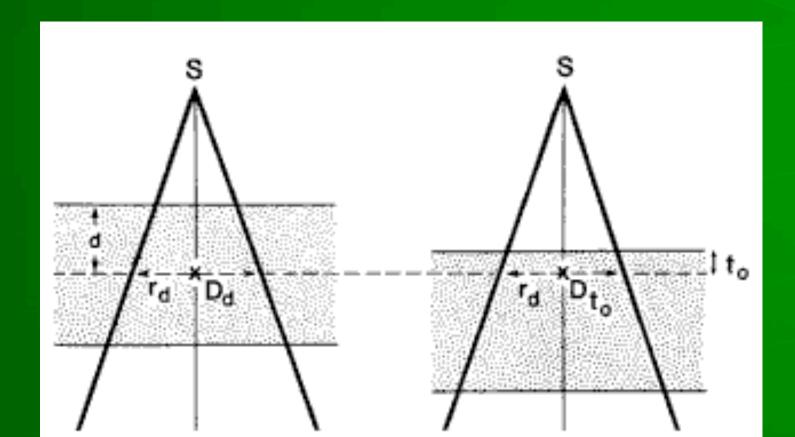

Scatter-Air Ratio (SAR)

- SAR = TAR(finite fs) TAR(zero fs)
- Depends on:
 - ◊ Energy, Depth, Field Size
- Useful in
 - do
 - S
 - e computation of irregularly shaped fields
- □ 0x0 fs:
 - hypothetical field rep

Irregularly Shaped Fields

- Clarkson's integration
- Separates primary and secondary
- Primary contribution
- Secondary contribution
 - Sum of irregularly shaped scatter contribution

Clarkson's Irregular Field Calculation



Tissue/Phantom Ratio (TPR)

- \square TPR = D_d / D_{ref}
- Where:
 - \diamond D_d: dose to a point in phantom
- D_{ref}: dose at the same point at a fixed ref depth
 Depends on:
 - ◊ Energy, Depth, Field Size

TPR Measurement

□ If t_0 is the ref depth of max dose, then: \Rightarrow TMR(d, r_d) = TPR(d, r_d)

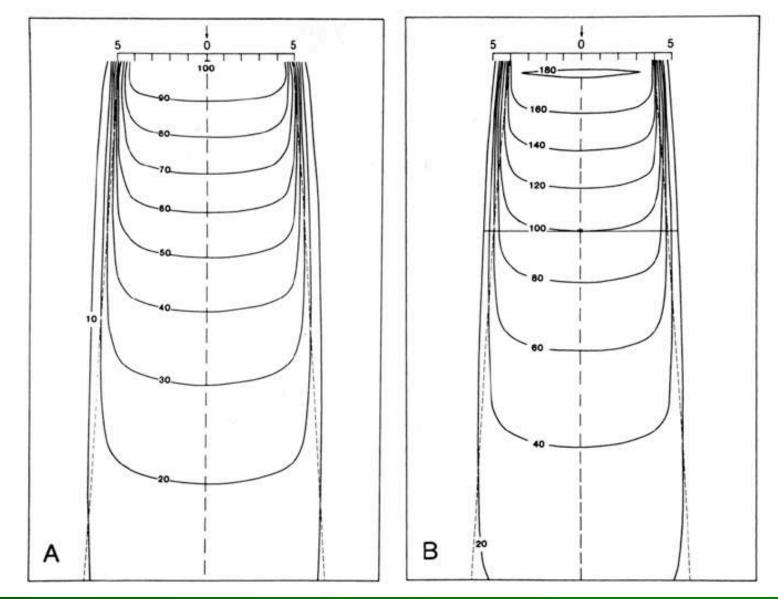
Tissue Maximum Ratio (TMR)

- $\square TMR = D_d / D_{refMax}$
- Where:
 - \diamond D_d: dose to a point in phantom
 - D_{refMax}: dose at the same point at maxRef depth
- Depends on:
 - ◊ Energy, Depth, Field Size

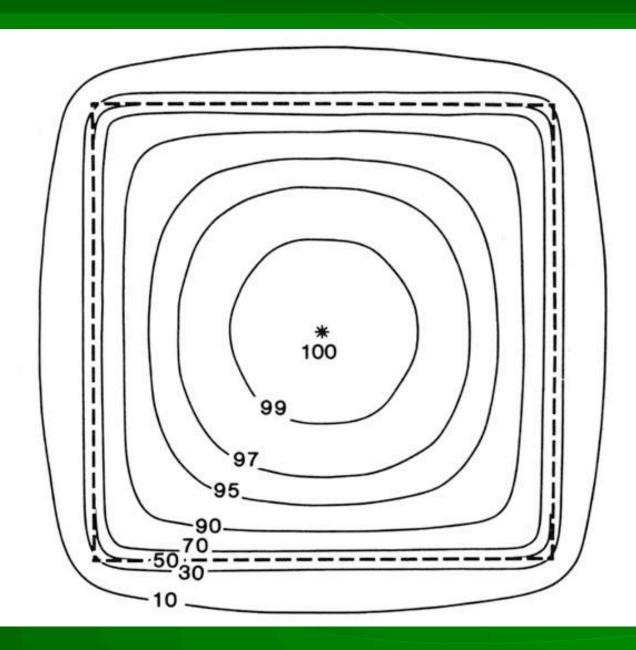
Scatter/Phantom Ratio (SPR)

 Ratio of the dose contribution solely by scattered radiation at a given point divided by the reference dose at a selected depth in the phantom

Scatter-Maximum Ratio (SMR)


 Ratio of the dose caused solely by scattered radiation at a given point divided by the maximum dose measured at the same distance from the radiation source

Isodose Curves


Lines passing thru points of equal dose
 Percentage of the dose at a reference point
 Dose distribution off axis

 CAX depth dose distribution is not sufficient to characterize a radiation beam that produces a dose distribution in a threedimensional volume.

Isodose Curves

Isodose Curves Perpendicular to CAX

Point Dose Calculations

Treatment unit calibration ◊ Calibrated at defined SSD (100 cm) Calibrated at isocenter
 MU calculation depends upon calibration \square Meter Setting (MU) =

Prescribed dose related to calibration conditions Calibration dose rate

Treatment at Standard SSD

MU = Given Dose / Dose Rate at dMax

- ◊ Given dose: (Rx'd dose @ depth)*100 / (%Dn) = Dose at dMax
- ◊ Dose rate at dMax: Dm = Dc Sc Sp F
- Dc: calibrated dose
 rat
 - e

at dm for 10x10 cm field size, or (1 cGy/MU)

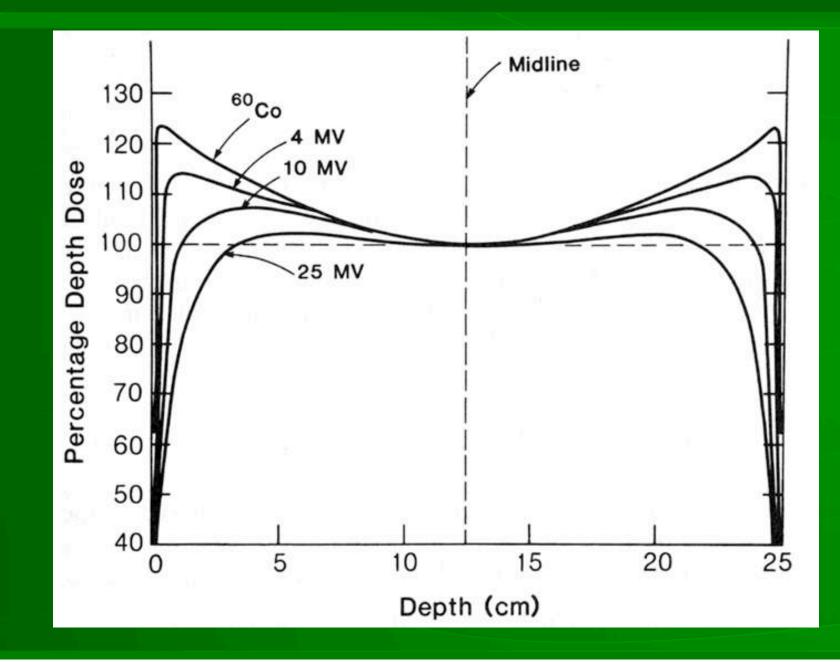
- ◊ Sc: collimator
 - S
 - С

atter factor normalized to 10x10 cm field size⁸

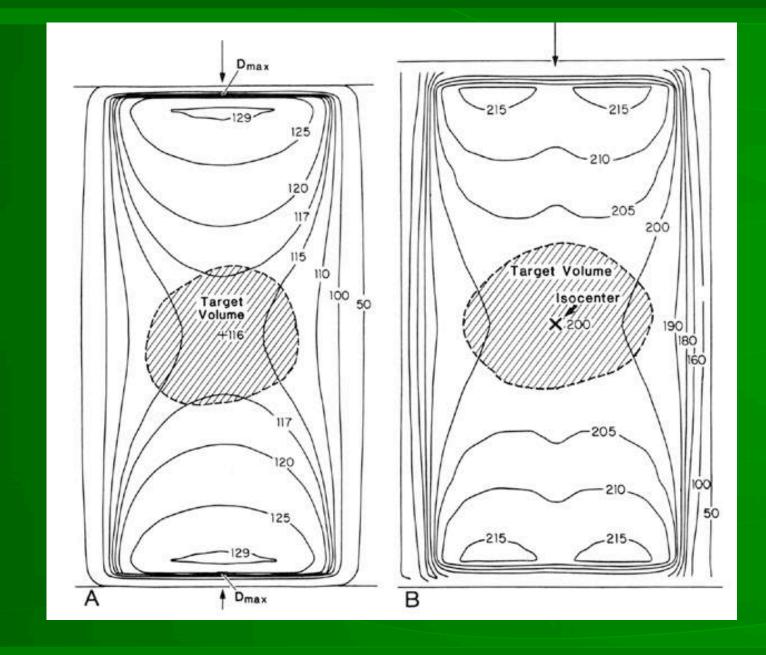
Treatment at Isocenter

Meter setting (MU) =
 <u>Prescribed dose at isocenter</u>
 Dose rate at isocenter

Meter setting (MU) =
 <u>Prescribed dose at isocenter</u>


 Dc [(SSD+dMax)/SAD]² TMR Sc Sp F

Distribution of Multiple Fields


Parallel opposed fields – CAX

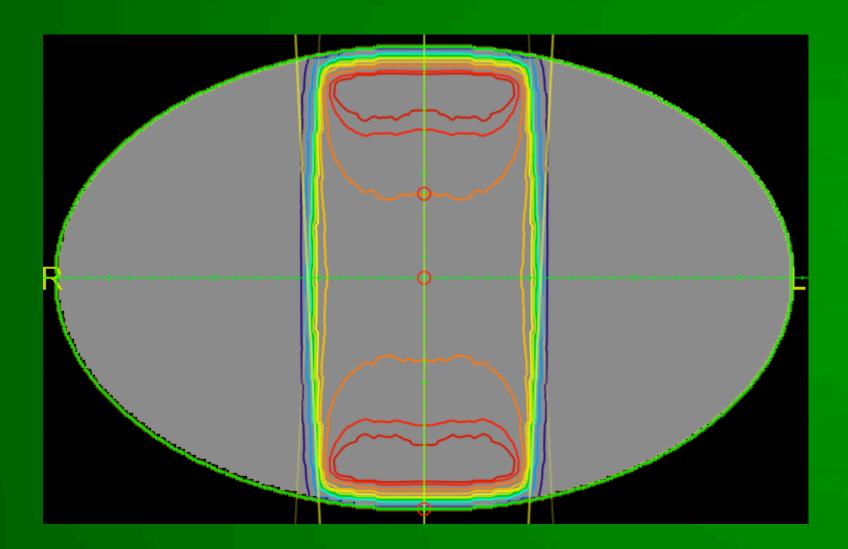
- Equal weighted or unequal weighted beams
- Minimum dose in mid-plane
- Build up at entrance of both fields
- Often normalized to 100% or dose to a point (tumor) in the patient

CAX Depth Dose vs. Energy

Parallel Opposed Beams

Example Problem

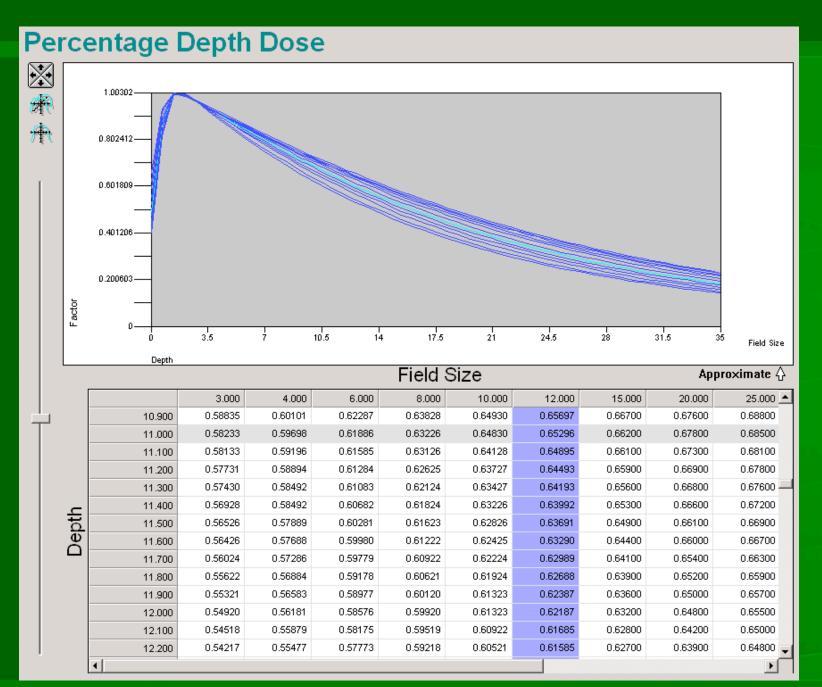
A patient is to be treated using a AP/PA pair of fields and a SSD technique. The patient is 22 cm thick. The field size is 10x15 cm with minimal blocking, however a block tray is used. The physician prescribes 61.2 Gy at 1.8 Gy/ treatment to the 90% isodose line. The fields are equally weighted at dMax from each field. How many MU's are needed/ day for each field?


Example Problem

A patient is to be treated using a AP/PA pair of fields and a SSD technique. The patient is 22 cm thick. The field size is 10×15 cm with minimal blocking, however a block tray is used. The physician prescribes 61.2 Gy at 1.8 Gy/ treatment to the 90% isodose line. The fields are equally weighted at dMax from each field. How many MU's are needed/ day for each field?

Answer

MU = Prescribed Dose / Field / Day %DD*100*TF*ROF $_{\Box}$ MU = 180 cGy / 2 / 0.9 %DD(12x12 @ d11)*TF*ROF(12) MU = 1000.6475 * 0.97 * 1.016MU = 157 MU


External Beam Plan

Answer

MU = Prescribed Dose / Field / Day %DD*100*TF*ROF $_{\Box}$ MU = 180 cGy / 0.9 / 2 / 1 %DD(12x12 @ d11)*TF*ROF(12) MU = 1000.65296 * 0.966 * 1.016 MU = 156 MU

MDE – PDD 0.65296

MDE – Tray Factor 0.966

Accessories

Name	Factor
Block Tray	0.966

MDE – Output Factor 1.016

Output Factor Field Size Factor 3.000 0.91600 4.000 0.93300 1.102-0.94700 5.000 6.000 0.96100 1.00000 10.000 20.000 1.05200 1.08200 30.000 1.0648-1.10200 40.000 1.0276þ.9904b.9532-. actor -عctor -10.6 14.4 18.2 22 25.8 29.6 33.4 37.2 40 3 6.8 Field Size

Photon Plan Summary

Pr

No

Plan Summary

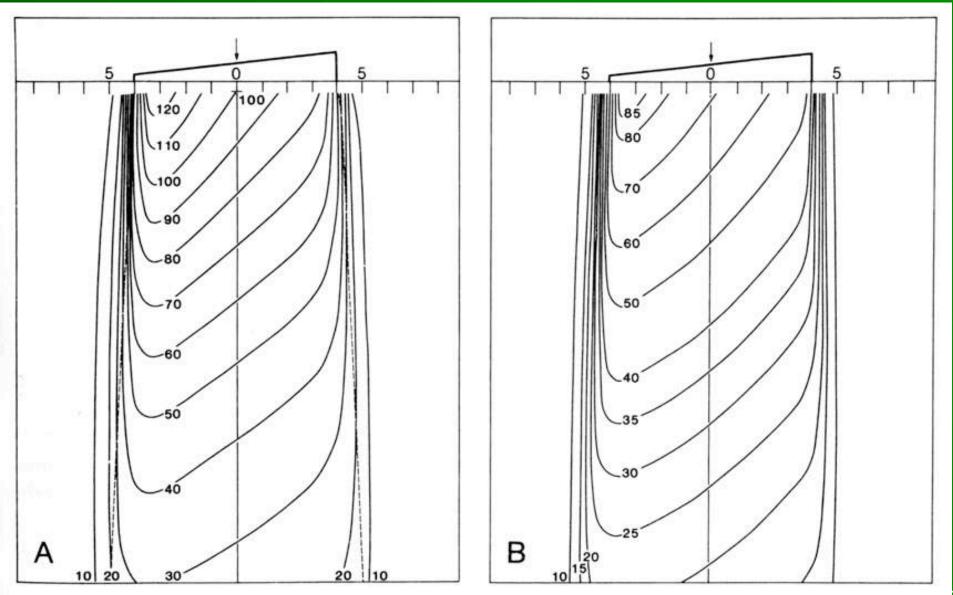
□ 142 vs 156

- $\diamond Rx$
- ◊ Isodose
- ♦ dMax
- ◊ Field Size
- ◊ Effective Square
- □ 143 vs 156

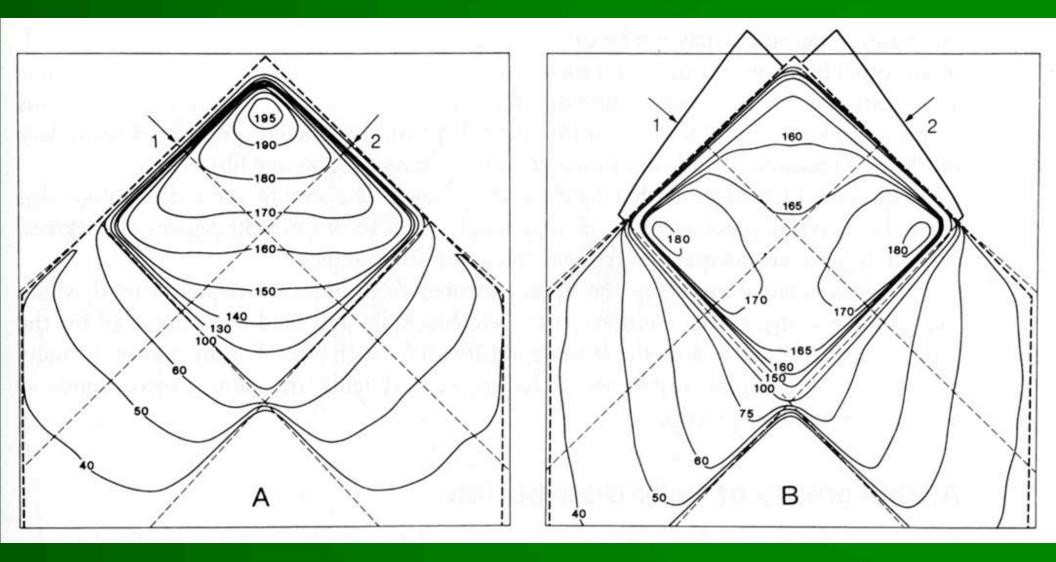
rescription: 180.0 cGy to the 90.0 isodose line.	
ormalization: Calc Pt #1	

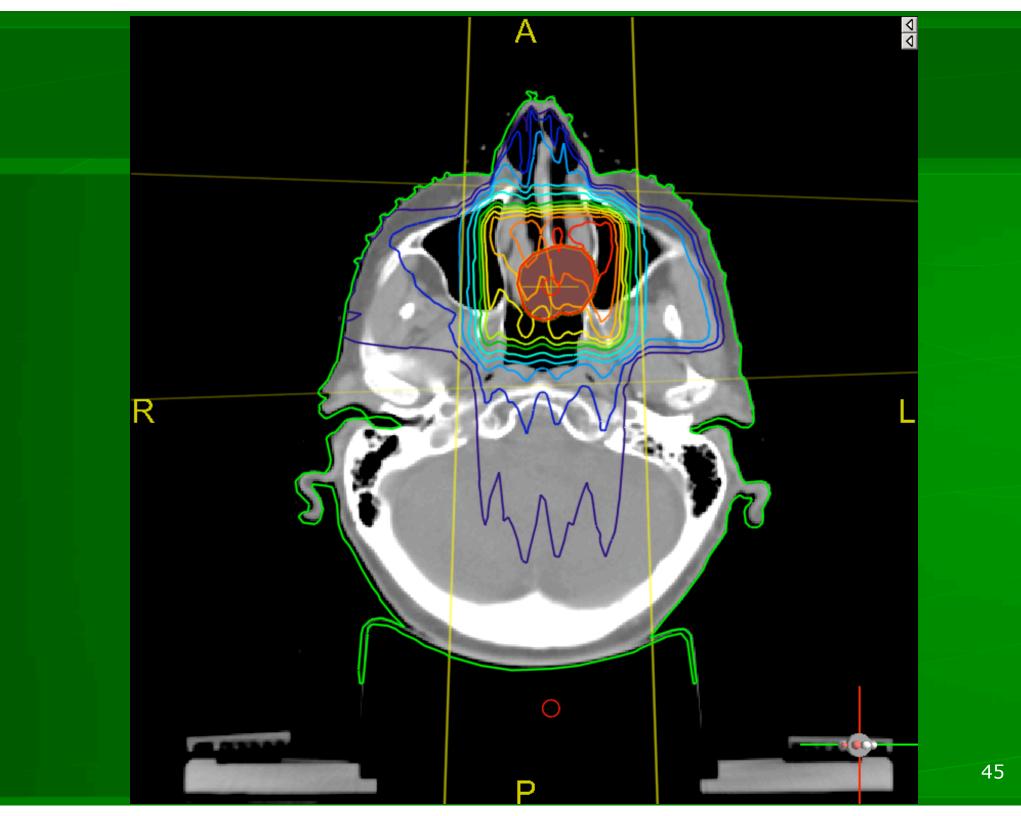
	Beam #1	Beam #2
Name	Beam #1	Beam #2
Machine	Clinac 2100 (Sample Machini	Clinac 2100 (Sample Machini
Energy	6MV	6MV
Block	Yes	Yes
Wedge Name	Open Field	Open Field
Wedge Orientation		
Gantry (Start°,Stop°)	0.0	180.0
Couch (°)	0.0	0.0
Couch (Lat,Vert,Long)	0.00, -22.00, 25.00	-0.00, 0.00, 25.00
Isocenter (X,Y,Z) (cm)	0.00, 0.00, 11.00	0.00, 0.00, -11.00
Fit (Volume,Margin)	none	none
SSD (cm)	100.0	100.0
Coll Angle (°)	180.0	180.0
Field Size (cm)	10.0 x 15.0	10.0 x 15.0
Coll Size (cm)	X1:5.0 X2:5.0	X1:5.0 X2:5.0
	Y1:7.5 Y2:7.5	Y1:7.5 Y2:7.5
Depth (cm)	1.50	1.50
Effective Square (cm)	12.04	11.94
TPR	1.000	1.000
RCS	1.005	1.005
RPS	1.005	1.005
Wedge Factor	1.000	1.000
Inverse Square	1.000	1.000
Bolus Thickness (cm)		
Bolus Density		
Accessory Trans. Factor	1.000	1.000
Total OCR	1.000	1.000
Primary OCR	1.000	1.000
Block Edge OCR	1.000	1.000
Coll Edge OCR	1.000	1.000
Wedge OCR	1.000	1.000
Weight Point	dMax	dMax
Total Weight	50.0	50.0
Dose to Weight Point (cGy)	143.2	143.2
Dose at Dmax (cGy)	143.2	143.2
Number Fractions	1	1
Machine Setting	141.9 MU	141.9 MU

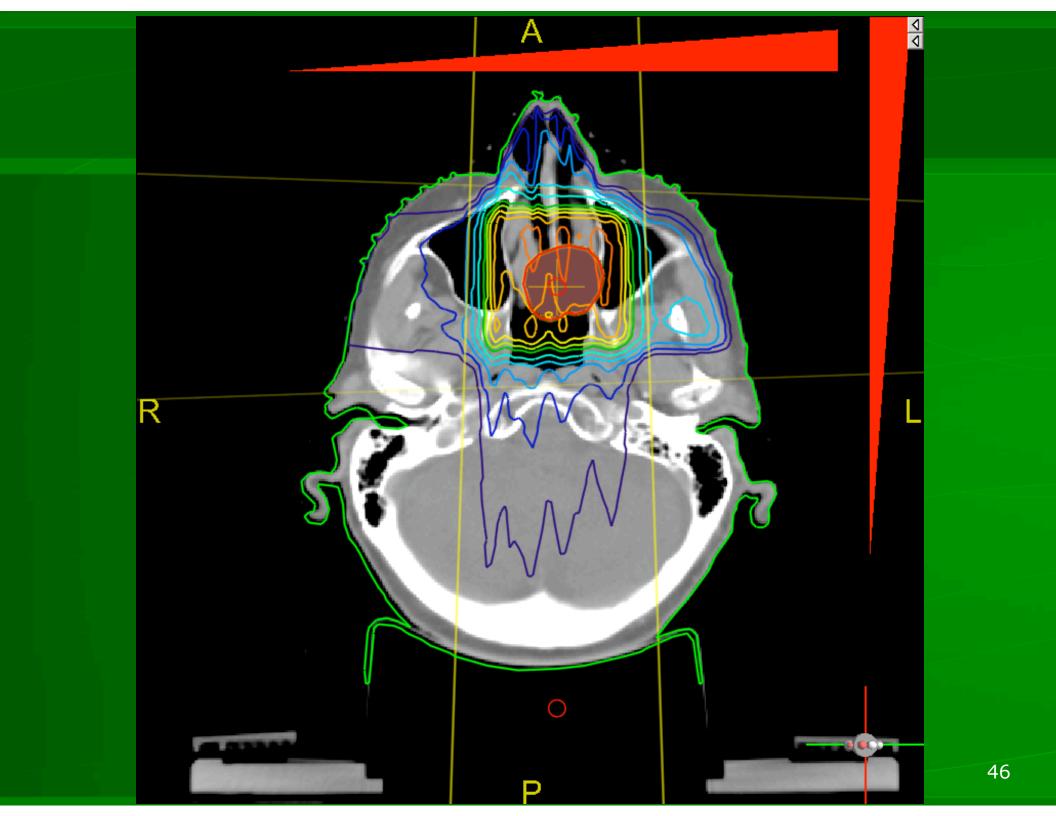
OK


The Wedged Beam

 Metal wedge shaped filter is put in beam to tilt isodose curve


- Angle usually defined at d10, or 50% isodose
- Types of wedge filters
 - Solid metal
 - ◊ Universal
 - Dynamic wedge


Isodose curves change with field size
 Flatness changes with depth


Isodose Curve of Wedged Beam

Wedged vs. Unwedged Fields

Typical Head & Neck Plan

Photon Inhomogeneity Correction

- Density affects attenuation of x-rays
- Lung with a density of 0.25-0.30
 attenuates much less than normal tissue
- Bone with a higher density and atomic number attenuations x-rays more
- Inhomogeneities also affect scatter
- Lung corrections 10-15% for 5-8 cm lung tissue

Photon Beam Models

- Analytical method: %DD x OAR
- Matrix Technique: Fan lines and %DD
- Semi-Empirical Methods
 - ◊ Clarkson Integration
 - ◊ Differential Scatter Air Ratio
 - Heterogeneity Corrections
- - n
 - V

olution Superposition Algorithm (Kernels)49