More Networking
Where do these standards come from?

• IETF = Internet Engineering Task Force
• RFC = Request for Comments
 – MUST, MUST NOT, SHOULD, SHOULD NOT, MAY (RFC 2119)
• “The only laws on the Internet are assembly and RFCs” --Phrack 65
 – Assembly is an abstraction
 – RFCs are not always followed
 • Often ambiguous
OSI model

- Layer 1: Physical (think Ethernet, 802.11)
- Layer 2: Data Link (think ARP)
- Layer 3: Network (think IP)
- Layer 4: Transport (think TCP)
- Layer 5: Session (think NetBIOS, SOCKS)
- Layer 6: Presentation (think SSL/TLS)
- Layer 7: Application (think HTTP)
Some Wireshark stuff (http.pcap)

- You should poke around the GUI
- You should also check out tcpdump, tshark, and Python dpkt
- View::Name Resolution
- Right Click->[Follow TCP Stream]
- Can look in, e.g., IP header for, e.g., TTL (Time-to-live), or, e.g., TCP header for, e.g., ports
- Never completely trust abstractions
 - Can you trust the wireshark GUI?
 - Can you trust tshark raw text output?
 - Can you trust raw bits off the wire?
TCP 3-way handshake

- TCP header has flags
 - SYN is “Synchronize”, it means the sequence number has a special meaning
 - ACK is “Acknowledge”, it means the acknowledgment number has meaning
 - RST: “I have no record of such a connection”
 - Also, FIN, CWR, ECN, URG, PUSH
TCP 3-way handshake

- SYN: I'd like to open a connection with you, here's my initial sequence number (ISN)
- SYN/ACK: Okay, I acknowledge your ISN and here's mine
- I ACK your ISN
Attacks in Layer 1

From submarinecablemap.com
Attacks in Layer 1

• Taps are easy
 – Port mirrors on backbone routers literally split light
 – Port is the physical hole in a router, can mirror any of them to get a copy of the traffic

• 802.11 suite of wifi protocols has various issues
Attacks in Layer 2

- ARP spoofing
- ARP cache poisoning

From Wikipedia
Attacks in Layer 3

- **Man-in-the-middle**
 - Great Cannon is an example (in-path)

- **Man-on-the-side**
 - Great Firewall of China (GFW, on-path) and NSA QUANTUM are examples

- **TTL** is a clue, but is easy to hide

Image from https://citizenlab.org/2015/04/chinas-great-cannon/
Other IP-layer attacks

- **BGP prefix attack**
 - BGP routers prefer more specific announcements, meaning you can steal a /25 by announcing two /24s

- **BGP announcements that are duplicated**
 - Should get about half the traffic

- **Announce a whole /8**
 - Spammers can use whole chunks of unused (i.e., unannounced) IP address space
Off-path attacks in layer 4

- If you can guess the initial sequence numbers of a TCP connection, you can hijack it off-path
 - See “Off-Path TCP Exploits…” by Cao et al. at USENIX Security 2016 as an example

- There are also off-path threats to privacy
 - See “Counting Packets Sent Between Arbitrary Internet Hosts” by Knockel and Crandall at USENIX FOCl 2014
Where is all this going?

- All layers have lots of attacks, can't talk about them all
- Lab 1 is about port scanning, Lab 2 involves sockets
- Later in the semester we'll talk about Internet censorship and surveillance at various times
- There are different threat models to consider
- After network security, we'll start talking about cryptography which can add security properties (like confidentiality, integrity, and authentication) end-to-end
“Mos Eisley Spaceport. You’ll never find a more wretched hive of scum and villainy.”