Example File Systems
CD-ROM File Systems

Padding

es 11 8 8 7 1.2 4 1 4-15)
| | | Location of file File Size Date andtimel | | CD # |L| File name I Sys

Flags

Extended attribute record length
T_ Interleave | Base name |.| Ext |;

Directory entry length

The ISO 9660 directory entry

430

The CP/M File System (1)

Address
OxFFFF BIOS
CP/M
Shell
User program
0x100 Zero page
0

Memory layout of CP/M

431

The CP/M File System (2)

Bytes 1 8 3 1 2 16
File name /
£ L / I
T . f ‘Y Disk bIocI; numbers
User code File type Extent Block count
(extension)

The CP/M directory entry format

432

The MS-DOS File System (1)

Bytes 8 3 1 10 2 2 2 4

File name Size

/o N N
Extension Atftributes Reserved Time Date First
block
number

The MS-DOS directory entry

433

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 218
16 KB 1024 MB 21TB
32 KB 2048 MB 21TB

* Maximum partition for different block sizes
* The empty boxes represent forbidden combinations

434

The Windows 98 File System (1)

Bytes 8 3 111 4 2 2 4 2 4
N Creation Last Last write T
Base name Ext T date/time |access date/time Fllsisian
ALBGLSS Sec Upper 16 bits Lower 16 bits
of starting of starting
block block

The extended MOS-DOS directory entry used in Windows 98

435

The Windows 98 File System (2)

Bytes 1 10 111 12 2 4
| | 5 characters | | 0 | | 6 characters | 0 |2 characters
Sequence Attributes
Checksum

An entry for (part of) a long file name in Windows 98

436

The Windows 98 File System (3)

C
68 d o g AlO0|k 0
C
3| o v e AlO|k| t h e I a | o0 z y
C
2| w n f o [A|O|k]| x j u m p 0 s
C
11 T h e q [A|O|k]| u i c k b | 0 r o
N Creation | Last Last .
THEQU I ~ 1 AlT|S time ace | Upp write Low Size
Bytes N R N I O Y B T T 1 T T T 11 T T T

An example of how a long name is stored in Windows 98

437

The UNIX V7 File System (1)

Bytes 2 14

File name

T

I-node
number

A UNIX V7 directory entry

438

Disk addresses

The UNIX V7 File System (2)

I-node
Attributes :
| » Single
1 » indirect
+4 > block

:; Double

indirect Cudl

Addresses of
data blocks

block /

=4

T

-4

T
\ Triple 1
P indirect]

] block
\// <

/

\

A UNIX i-node

439

The UNIX V7 File System (3)

Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1 6 . 26 &
Mode Mode
1 size 1] oo size 6 | o
- times - times
4 | bin 19 | dick 64 | grants
dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields /usris in is i-node /usr/astis in is i-node
i-node 6 block 132 26 block 406 60

The steps in looking up /usr/ast/mbox

440

Distributed Systems

Item

Multiprocessor

Multicomputer

Distributed System

Node configuration

CPU

CPU, RAM, net interface

Complete computer

Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems One, shared Multiple, same Possibly all different
File systems One, shared One, shared Each node has own

Administration

One organization

One organization

Many organizations

Comparison of three kinds of multiple CPU systems

Distributed Systems: middleware

Common base for applications

Application Application Application Application
Middleware Middleware Middleware Middleware
Windows Linux Solaris Mac OS
Pentium Pentium SPARC Macintosh

— —

Achieving uniformity with middleware

Network

Distributed File Systems

 networking computers, sharing files
« explicit file utilities: ftp, scp, etc.

— sessions between pairs of computers
Distributed File System: single view of files
* easy access regardless of location
* sharing semantics
» file transfer modes
e directory structure

443

DFS transfer models

1. Client fetches file

Client l Server - Old file Client Server
/—-I]]I[I]]]]‘ New file Request
(I e ~——— | (D
\ [0 Reply
2. Accesses are 3. When client is File stays
done on the done, file is on server
client returned to server

(a) upload/download model
(b) remote access model

DFS: directory structure

provide directory, read, write, operations

— but directory on more than one machine

global v. local naming
— 1s the view the same across all the DS?

location transparency
— 1s the location part of the file’s name/path?

location independence

— 1if file moved, must its name change?

445

DFS: global v. local naming

users prefer to see the same everywhere, but:

» some files must be on specific computers
— binaries; machine-state inits, etc.

thus some files must be localized visibly

* global dir structures: add a common root

— retain meaning of “/”” via “..”” to access it

* local dir structures: mount remote on local dir

— transparency but different views (same file has
different paths on different computers)

446

DFS: global v. local naming (ctd)

Shared directory substructure (Andrew)
 2-part hierarchy for each machine

— local files, different for each machine
— subtree of shared files, identical everywhere
* beneficial for performance

— e.g., local temp files not shared

447

DFS: global v. local naming

(10-14)

448

DFS File Sharing: inconsistency

Client 1

Single processor 2. Write "c" / cad @
1. Write "c" \
Original
\ file File server
LR \
[2]ofe]

ead gets "abc" 3. Read gets "ab"
(a) Client 2

(b)

* Semantics of File sharing
— (a) single processor gives sequential consistency
— (b) distributed system may return obsolete value

10

DFS: semantics of file sharing

in centralized systems, unique access to file

» Unix semantics: writes visible immediately
— read sees last write
— writes propagated over network; order?

* session semantics: private copy until close
— less overhead than Unix
— less predictable: lost update problem

e transaction semantics (atomic set updates)
— procs reduce/specify time changes invisible

« immutable file semantics (version mgmt)

450

DFS Implementation

* typically client-server architecture (NFS)
— virtual FS layer hides local and NFS client

— local system asks its NFS client for a file; client
asks remote system’s server for the file.

 overhead: network & disk access delay

451

11

DFS Implementation: Caching

overhead: network & disk access delay
 server caching: simple and transparent
— caching entire file wasteful, complicated (why?)
— cach already accessed blocks (LRU?)
* client caching, consistency problems
« write-through v. delayed writing
— e.g., session semantics (propag to server at close)
» cache update schemes
— other clients may have stale copies!
— server-initiated (breaks C-S paradigm)
— client-managed: how often check?

452

DFS Stateless v Stateful Servers

» new file = new entry in Open File Table
— where 1s OFT maintained?
» stateful server maintains OFTs for clients

— client simplified - only convey procs. regs.

« reliability: crashed client leaves useless OFTs;
crashed server loses client OFTs

« stateless server: clients keep their OFTs
— interactions more complicated

— server can crash and recover -idempotency-

453

12

DFS: Sun’s NFS

* clients access files through set of RPCs

— most operations are idempotent

* the ones that aren’t generate error messages, €.g.,
rename/delete if not ack’d is repeated

 caching at server and clients, but also Unix
semantics, a conflict
— client caching for nonshared files only
— thus server needs to keep some state (!)

» mixed semantics, but popular/useful
* also see Castro & Liskov BASE work

454

DFS Stateless v Stateful Servers

. (10-16)

455

13

DFS: File Replication

multiple copies of a file on multiple servers
* availability: wrt to crashes

* reliability: can reconstruct consistent state
 performance: find a nearby copy

* scalability: deal well with load

replication 1s a form of caching; again the
problem is consistency

456

DFS: File Replication 2

Protocols to keep replicas consistent:
* Read-Any/Write-All

— W-A: propagate write w/out interleaving with
other updates (consistency) - multicast
 sometimes apps allow interleaved updates
» what if one copy is unavailable?

457

14

DFS: File Replication 3

Protocols to keep replicas consistent:
* Quorum-based R/W protocol on N replicas

— w: write quorum, # replicas must be written
— r: read quorum, # replicas must be read (!)

Then we require:
 r+w> N (any read intersects W quorum)
* w > N/2 (no disjoint subsets updated)

458

Object-level “DFS:” CORBA

Client Client stub Skeleton (= Server

Operating|system Operating 'system

1IOP protocol

Network

Main elements of CORBA based system
— Common Object Request Broker Architecture

Client C \ | Server
code code
Object —
Client|oRB_ > adapter Server|ORB

15

