
1

430

Example File Systems
 CD-ROM File Systems

The ISO 9660 directory entry

431

The CP/M File System (1)

Memory layout of CP/M

2

432

The CP/M File System (2)

The CP/M directory entry format

433

The MS-DOS File System (1)

The MS-DOS directory entry

3

434

The MS-DOS File System (2)

• Maximum partition for different block sizes
• The empty boxes represent forbidden combinations

435

The Windows 98 File System (1)

The extended MOS-DOS directory entry used in Windows 98

Bytes

4

436

The Windows 98 File System (2)

An entry for (part of) a long file name in Windows 98

Bytes

Checksum

437

The Windows 98 File System (3)

An example of how a long name is stored in Windows 98

5

438

The UNIX V7 File System (1)

A UNIX V7 directory entry

439

The UNIX V7 File System (2)

A UNIX i-node

6

440

The UNIX V7 File System (3)

The steps in looking up /usr/ast/mbox

Distributed Systems

Comparison of three kinds of multiple CPU systems

7

Distributed Systems: middleware

Achieving uniformity with middleware

443

Distributed File Systems

• networking computers, sharing files

• explicit file utilities: ftp, scp, etc.
– sessions between pairs of computers

Distributed File System: single view of files

• easy access regardless of location

• sharing semantics

• file transfer modes

• directory structure

8

DFS transfer models

(a) upload/download model

(b) remote access model

(a)
(b)

445

DFS: directory structure

• provide directory, read, write, operations
– but directory on more than one machine

• global v. local naming
– is the view the same across all the DS?

• location transparency
– is the location part of the file’s name/path?

• location independence
– if file moved, must its name change?

9

446

DFS: global v. local naming

users prefer to see the same everywhere, but:

• some files must be on specific computers
– binaries; machine-state inits, etc.

thus some files must be localized visibly

• global dir structures: add a common root
– retain meaning of “/” via “..” to access it

• local dir structures: mount remote on local dir
– transparency but different views (same file has

different paths on different computers)

447

DFS: global v. local naming (ctd)

Shared directory substructure (Andrew)

• 2-part hierarchy for each machine
– local files, different for each machine

– subtree of shared files, identical everywhere

• beneficial for performance
– e.g., local temp files not shared

10

448

DFS: global v. local naming

(10-14)

DFS File Sharing: inconsistency

• Semantics of File sharing
– (a) single processor gives sequential consistency
– (b) distributed system may return obsolete value

11

450

DFS: semantics of file sharing
in centralized systems, unique access to file
• Unix semantics: writes visible immediately

– read sees last write
– writes propagated over network; order?

• session semantics: private copy until close
– less overhead than Unix
– less predictable: lost update problem

• transaction semantics (atomic set updates)
– procs reduce/specify time changes invisible

• immutable file semantics (version mgmt)

451

DFS Implementation

• typically client-server architecture (NFS)
– virtual FS layer hides local and NFS client

– local system asks its NFS client for a file; client
asks remote system’s server for the file.

• overhead: network & disk access delay

12

452

DFS Implementation: Caching

overhead: network & disk access delay
• server caching: simple and transparent

– caching entire file wasteful, complicated (why?)
– cach already accessed blocks (LRU?)

• client caching, consistency problems
• write-through v. delayed writing

– e.g., session semantics (propag to server at close)

• cache update schemes
– other clients may have stale copies!
– server-initiated (breaks C-S paradigm)
– client-managed: how often check?

453

DFS Stateless v Stateful Servers
• new file = new entry in Open File Table

– where is OFT maintained?

• stateful server maintains OFTs for clients
– client simplified - only convey procs. reqs.

• reliability: crashed client leaves useless OFTs;
crashed server loses client OFTs

• stateless server: clients keep their OFTs
– interactions more complicated

– server can crash and recover -idempotency-

13

454

DFS: Sun’s NFS
• clients access files through set of RPCs

– most operations are idempotent
• the ones that aren’t generate error messages, e.g.,

rename/delete if not ack’d is repeated

• caching at server and clients, but also Unix
semantics, a conflict
– client caching for nonshared files only

– thus server needs to keep some state (!)

• mixed semantics, but popular/useful
• also see Castro & Liskov BASE work

455

DFS Stateless v Stateful Servers

• (10-16)

14

456

DFS: File Replication

multiple copies of a file on multiple servers

• availability: wrt to crashes

• reliability: can reconstruct consistent state

• performance: find a nearby copy

• scalability: deal well with load

replication is a form of caching; again the
problem is consistency

457

DFS: File Replication 2

Protocols to keep replicas consistent:

• Read-Any/Write-All
– W-A: propagate write w/out interleaving with

other updates (consistency) - multicast
• sometimes apps allow interleaved updates

• what if one copy is unavailable?

15

458

DFS: File Replication 3

Protocols to keep replicas consistent:

• Quorum-based R/W protocol on N replicas
– w: write quorum, # replicas must be written

– r: read quorum, # replicas must be read (!)

Then we require:

• r + w > N (any read intersects W quorum)

• w > N/2 (no disjoint subsets updated)

Object-level “DFS:” CORBA

Main elements of CORBA based system
– Common Object Request Broker Architecture

