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Abstract

Existing methods to search for an optimum Bayesian network su�er when the size of the data set

grows to be too large. The number of possible networks grows superexponentially in the number of

variables, and it becomes increasingly time-consuming to get reasonable results; in fact, �nding an exact

optimal network for a given data set is an NP-complete problem, so the question is often to �nd a network

which is �good enough�. However, as the numbers of instances and variables in the data set grow, the

time to take even a single search step can get very costly. Searching by proxy can alleviate this problem;

by selecting a random set of training samples and constructing an approximator around those, we can

greatly reduce the time it takes to �nd a network with a score comparable to that obtainable by the same

search algorithm using exact scoring. Moreover, with enough training samples, we can obtain networks

with signi�cantly better scores in a fraction of the time. However, with too many samples, over�tting

occurs and the results do not improve as the number of samples increases. We conjecture that this is

because the approximator smooths out the search landscape, making it less likely to get stuck in local

minima, and give experimental evidence to support this.

1 Introduction

The problem of searching for an optimal Bayesian network given a set of data is one that has been studied
for decades. However, modern machine learning problems often need to deal with much larger data sets
than current methods can plausibly handle; the number of possible edges in a network grows quadratically
with the number of nodes, and the number of possible networks grows exponentially in the number of edges.
Furthermore, even the task of scoring a single network can grow linearly in the number of instances in
the data. Methods such as the ADTree[12] exist to ameliorate this problem, but in networks with enough
variables, creating an ADTree in the �rst place becomes infeasible. We propose here a new strategy for
discovering high-scoring Bayesian networks for very large data sets, ones too large to realistically handle any
other way.

This strategy, searching by proxy, is compatible with any existing search method that computes the scores
of the networks as it searches; the idea here is not to change the search method itself, but the representation
it uses to calculate scores. We create a proxy function � a Gaussian Process regressor � which we train
on a selection of randomly drawn sample networks and their corresponding BDe scores, and then use our
proxy function as a quick way to search. Given enough training samples (and �enough� can turn out to be
very small), the resulting scores at the end are equivalent to or even better than those obtained by searching
using a standard scoring function while taking less time to obtain.

There are two reasons this works as well as it does. First, and more obviously, the proxy function
takes much less time to compute than a full exact BDe score. ADTrees are also a way of calculating these
scores very quickly, but the up-front time and space required to build an ADTree in the �rst place can be
prohibitively expensive. The second reason, detailed in the latter part of our experiments, is that creating
an approximator smooths out the search space, reducing the chance of getting stuck in a local minimum.

There are some caveats to keep in mind. First, it should be noted that this work is not about the
search process itself, but about representation. Searching by proxy is compatible with any search method
that depends on calculation of a graph's score; it replaces the score calculation step, but leaves the rest of
the algorithm unchanged. Second, this method searches over a smooth approximation to the true surface,
which has two e�ects. One is that it is possible (and, as our results show, very probable) to get results
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that are signi�cantly better than those an exact-scoring-based search would produce because of the reduced
chance of getting stuck in a local optimum. However, adding more training samples will not always increase
the e�ectiveness of the approximator; as our results show, there is a point past which the search performs
no better given an increasing number of samples, and in fact can perform worse than it would with fewer
training points. The data sets here are all assumed to be fully observed; in future work, we plan to address
the possibility of using this same method to ease the search for optimal networks given missing data or even
completely unobserved variables.

2 Bayesian Networks

A Bayesian network is a model of the independence relations of a set of variables. Suppose we have a data set
with variables x1...n, with m independent instances of values these variables take, assumed to be drawn from
an unchanging underlying distribution. We could attempt to encode this joint distribution p(x1, x2, . . . , xn)
explicitly in an attempt to understand the underlying processes behind our data, but this su�ers from two
problems. One is that it hides possible dependence/independence relations between the variables � ones that
might be useful for understanding the data � but the more important one is that it takes an exponentially
large number of instances to learn the structure of a full joint distribution.

The alternative, then, is to assume independence relationships between the variables, encoding the de-
pendencies in the form of a directed acyclic graph. The full joint distribution can then be factored into a
product of marginals, one per variable:

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|Pa(xi))

The notation Pa(xi) here means 'the parents of node xi', or those variables with edges running from
themselves to xi. Now, instead of needing to learn the entire joint distribution at once, we only need to
learn a set of conditional distributions, one per variable, given their parents in the graph. Finding these
distributions is relatively easy; they can be readily estimated from the data set. The far more di�cult (and
interesting) problem is to �nd the structure of the graph.

3 Network Search

3.1 Notation and Terminology

Given a set of data, we wish to be able to �nd a graph G ∈ GDAG with labeled nodes such that it represents
the optimal Bayesian Network to explain a set of causal relationships between the variables of our data
set. In order to make the word �optimal� make sense, of course, we need a numeric score to optimize; the
computation of this will depend entirely on the structure of the graph and the set of data. The set GDAG

is the subset of the set of all graphs G consisting only of directed acyclic graphs (thus the acronym DAG).
Additionally, we are only ever interested in graphs with the same number of nodes as the number of variables
in our data set; our convention is to assume that we are searching over the correct subset of GDAG, since
none of our search algorithms involve adding or deleting nodes.

We use the convention that our data set D is a matrix in Rm×n, where m is the number of data
instances, and n is the number of variables. The data set D is fully observed, with no missing values or
hidden variables. Each variable is assumed to be discrete, taking on values 1 to rn (termed variable n's arity).
Following Heckerman[9], we use the following notation to relate variables to their parents: Pa(xi) denotes
the set of parents of the variable xi, and qi =

∏
xj∈Pa(xi)

rj is the total number of possible con�gurations of

the parents of variable xi. The notation Nijk indicates the number of instances (i.e. rows) in our data set
D where xi = k and Pa(xi) = j, with k ranging over values 1 through rn and j ranging over all possible
con�gurations of values for xi's parents. Related to this, Nij =

∑
kNijk. The notations N ′ij and N ′ijk are

used for pseudo-counts, or prior beliefs on the relative values of Nij and Nijk; these are hyperparameters
on the Dirichlet prior on individual conditional probability tables. The BDe score of a graph, de�ned in full

2



below, is the function sBDe : GDAG → R mapping from the set of directed acyclic graphs GDAG to real
numbers, while s(G|D) indicates the score of graph G given data set D.

When we construct the approximator, we use the term �samples� to denote the testing graphs g1, g2, . . . gns

to be take exact scores of (as opposed to �instances�, which are the individual points in our original data
set D). The function k(·, ·) is a kernel function between graphs, with the matrix K and column vector K∗
de�ned as Kij = k(gi, gj) and K

∗
i (g∗) = k(gi, g

∗) for some other graph g∗.

3.2 Scoring Functions

From the above, then, we want to �nd an edge set E for our graph G that optimizes some scoring measure
given a corresponding data set over the variables. In other words, we want

Ê = arg max
E

s(G|D)

We use the BDe score as de�ned in Heckerman, which can be thought of as a Bayesian posterior estimation
of the probability that the data set was generated from a probability model represented by graph G. Higher
BDe scores indicate graphs which are more likely, and therefore preferable over those with lower scores,
although as a logarithm of a fraction, BDe scores are necessarily always negative. The de�nition of the
scoring function we use, the log-BDe, is:

s(G|D) = ln

p(G)

n∏
i=1

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)


This is the logarithm of the BDe function as given in Heckerman; we use this form for its ease of

computation (it can be expanded as a sum of di�erences of log-gamma functions) and because computing
the actual probability would rapidly lead to a numeric under�ow. Working in the space of logarithms,
scores are typically in the negative thousands; a higher score (i.e. closer to zero) is still better. However,
even in log-space, calculation of this score can take quite a while, depending on it does as a triple-nested
product, �rst over all nodes, then over all possible sets of values of each node's parents (which there are
an exponential number of with larger parent sets), and �nally over all possible values for a node given
a single parent con�guration; counts are required in the second (Nij) and third (Nijk) levels, so a naive
approach of simply counting over the entire data set every time one of these is encountered can take a very
long time indeed. However, since all of these counts are of the form �how many instances �t the query
x1 = v1 ∧ x2 = v2 . . . xt = vt�, ADTrees are a natural choice to use for accelerating them, since they are
designed to return counts of that exact form in very little time. As we shall see, though, even ADTrees bog
down when used with su�ciently large data sets.

4 Prior Work

One of the earliest methods to �nd optimal Bayesian networks is the Chow-Liu Tree[5], which very quickly
generates a network from a given set of data (and computed mutual information values between each pair
of variables). The Chow-Liu Tree has been proven to be optimal within the space of networks constrained
to tree topology[14]. However, most interesting networks are not trees; despite the existence of an e�cient
algorithm to �nd a tree, the general network search problem is, in fact, NP-complete as long as the actual
optimum is required[4]. A brute-force search based on enumerating all possibilities quickly grows unfeasible,
since the number of possible directed acyclic graphs grows superexponentially; there are 543 directed acyclic
graphs on 4 nodes, but 29, 281 on 5. To alleviate this problem, there are methods to search through the set
of DAGs in a smarter fashion. The simplest way to do this is incrementally, as with a greedy search that
explores, at every step, the set of possible DAGs that can be generated through the addition or deletion (or, in
some algorithms, reversal) of a single edge, and then accepts the change that gives the highest-scoring graph,
continuing until no further improvements can be made[3]. As with nearly any greedy search, this does tend
to get stuck in local optima; variations on this search technique adapt ideas from simulated annealing[10] or
beam search[11]. Another possibility that is often used is a search based on a Markov Chain Monte Carlo
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algorithm; here, the algorithm wanders around through the space of graphs in such a way that it spends
the most time in higher-scoring areas, and this can be left to run for as long as one desires, returning the
highest-scoring graph seen so far as an answer upon being halted[8].

All of these methods share a common problem, however, in that large data sets quickly become cumber-
some to �nd an optimal network on. To calculate a network's score the most straightforward way requires
looking at each instance in the data set separately, which means that the time to score a network grows
linearly in the number of instances; because of the i.i.d. assumption, each instance is independent of the
others, and so the time to score a whole data set must be the sum of the times it takes to score each instance.
With all of the data fully observed, each instance will take the same amount of time to score.

An even larger problem, however, is what happens as the number of variables increases. The size of the
search space grows approximately at O(2n

2

) for n nodes[17], which means that many interesting and useful
data sets are outside the realm of plausibility using conventional methods. Even smarter scoring methods
fall into this exponential growth problem as the number of nodes increases; a cache of scores for individual
nodes and their possible sets of parents will grow at O(2n).

4.1 ADTrees as Accelerator

ADTrees were introduced as a helper structure for a data set in order to make arbitrary queries of the form
�how many instances in this set have x1 = v1, x2 = v2, ... and xq = vq� (where the vi denote speci�c values
that the variables may take) run in time independent of the actual number of instances in the set. This
is accomplished through clever precaching. The root node of the ADTree is a �count node�; all children of
count nodes are called �vary nodes�, and all children of vary nodes are count nodes, giving the overall tree
a strati�ed structure where the levels alternate between count and vary nodes. Count nodes are so named
because they contain a count of how many instances match some speci�c query; the root node corresponds
to a query that speci�es no values for any variable, and therefore the number contained there is the number
of data points in the entire set. Below each count node is a set of vary nodes, one for each variable that is
not already contained in the count node's set of queries (with an additional condition to be explained later),
and beneath each vary node is a set of count nodes, each one corresponding to a single value the vary node's
variable could take. However, because many of the counts are redundant and calculable from other counts
with some clever addition and subtraction, much of the apparent complexity can be pruned away.

Most obviously, if a query contains a set of values which no instances of the data set match at all, that
entire count node can simply be replaced by a leaf labeled �0�; no further expansion needs to be done there,
because every possible child of a tree with a zero count must also have a zero count. We can also assume
that our queries pick out variables in a �xed order; for instance, if we want to query the tree for how many
instances match x1 = 0∧x2 = 1, we should get the same answer whether we query x1 or x2 �rst, making one
of those paths redundant. Without loss of generality, then, we can assume all queries follow a strict ordering
of the variables, and therefore prune all possible paths in the tree which would contradict this ordering. In
other words, the count nodes beneath the top-level �vary x1� node start from x2, those beneath the �vary
x2� node start from x3, and so forth.

The �nal simpli�cation is the �most common value� speedup, which accounts for ADTree's excellent
performance on data sets which are either entirely binary or have heavily lopsided distributions. Instead
of explicitly encoding every possible value beneath each vary node, we �rst �nd out which value is the
most common and then replace the corresponding count node with an �MCV� leaf, never expanding it any
further. The key idea here is that if we have all but one count for the children of a single vary node (each
corresponding to a possible value of a single variable), we can obtain the other through simple subtraction;
take the count on that vary node's parent, subtract all of the counts on our unknown value's siblings, and
the remainder is the count we want. This subtraction trick is su�cient to derive counts for any possible
query that can be made while cutting down on the tree's size signi�cantly.

However, ADTrees run into a signi�cant problem for large data sets � not ones which are large in the
number of instances, necessarily, but in the number of variables. Consider the overall size of an ADTree;
from the root node at the top, we branch out into n separate vary nodes which then each branch out to
ri new ADTrees (which begin at x2, x3, and so on); the overall size of the tree, then, is O(

∏
i ri), which is

clearly exponential in the number of variables. Even given the �most common value� speedup, each of these
factors is reduced from ri to ri − 1; this is a clear win in the case when all variables are binary (so ri = 2
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Algorithm 1 Outline of a generic Bayesian Network search algorithm

Input: a data set D

1. G = an initial DAG

2. sc = the score of G given scoring function s(·|D)

3. G′ = the next DAG to be examined

4. sc′ = s(G′|D)

5. if sc′ > sc then G = G′ and sc = sc′

6. If we haven't reached an optimum, go to step 3

for all i), since the tree has a branching factor of 1 out of each vary node1. However, many interesting data
sets are not, and the size of the tree remains exponential in those cases.

Furthermore, the size of an ADTree also depends on the data's sparsity; a data set where one variable's
values are equally proportionate will branch at that variable's Vary node into equal-sized ADTrees, while
one with a heavily lopsided distribution of values will branch into a very large tree for its most common
value (the basis for the MCV speedup, since this large tree is no longer needed) and very small ones for the
least common ones. This is the trick used in Moore[12] to reduce a 97-variable data-set (the Birth data)
to a reasonable size; as they state, in over 70 of these variables, over 95% of the values are False. We can
make no such guarantees about data sets in general.

ADTrees, then, do o�er signi�cant speedups in calculating exact BDe scores, but run into signi�cant
problems with both size and speed on general data-sets with large numbers of variables. As the results show,
they are useful for small to medium data sets, but in the realm of the very large, fail to keep up.

5 A Proxy-Based Search for Bayesian Net Structures

The term �proxy-based search� refers not to a speci�c search technique, but rather a way to accelerate any
already-existing search method. When dealing with data sets of su�cient size, as proxy-based search is
intended for, conventional methods simply take too long to produce reasonable answers. ADTrees do help in
cases with a large number of instances, but su�er from the exponential amount of storage space needed as
the number of variables grows. The answer is to construct a proxy function � one that can take an arbitrary
graph and output a number which will be close enough to the real score that we can use the proxy to search
instead of exact scores.

Algorithm 1 is an intentionally generic search for a Bayesian network given an input data set D; a
typical algorithm for searching for an optimal network progresses along those lines, with suitable ways of
de�ning steps 2 and 3 speci�c to the algorithm in question. Algorithm 2 is a modi�ed form of Algorithm 1
demonstrating the basic concept of a search by proxy; we introduce a new parameter, the number of sampled
random networks we score �rst, and then build an approximator. The advantage is not immediately obvious,
but consider that the scoring step (step 4 in algorithm 1) is going to be repeated potentially many times; if
the calculation of the score takes a long time, this time will be multiplied by the number of calculations we
need to make. Proxy-based search can dramatically shorten the time it takes to perform a single calculation,
thereby reducing the overall time to perform a search.

5.1 The Metagraph

In prior work[18], we introduced the concept of a �metagraph�, a structure which represents a relationship
between graphs as a graph itself. Each node in the metagraph as previously de�ned corresponds to a di�erent
edge con�guration, while edges connect nodes whose corresponding graphs di�er by exactly one edge. Scores,

1This is not to say that complicated queries are O(1) in a binary data set; the algorithm to derive counts from the ADTree
will still require O(v) look-ups for queries with v components.
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Algorithm 2 Outline of a generic Bayesian Network search algorithm, modi�ed to search by proxy

Input: a data set D and a number of samples ns

1. Generate random DAGs G1 . . . Gns

2. Calculate training values si = Gi for i = 1 . . . ns

3. Generate ŝ(·|D), a Gaussian Process regressor using the graphs Gi and values si as training data; see
section 5.2

4. G = an initial DAG

5. sc = ŝ(G|D)

6. G′ = the next DAG to be examined

7. sc′ = ŝ(G′|D)

8. if sc′ > sc then G = G′ and sc = sc′

9. If we haven't reached an optimum, go to step 6

then, are a function from this metagraph to the real numbers. This construction is a useful one to keep in
mind; although we do not explicitly use the hypercube structure to perform our approximation, it led to the
simple form of the kernel function de�ned below, since we can imagine each of the learned weights to be one
of the edge lengths of our metagraph hypercube.

5.2 Gaussian Process Regression

The Gaussian Process Regression method[16] (or GPR for short) is based on taking �nite sets of known
exact function values and constructing an approximator based on a Gaussian distribution in the in�nite-
dimensional space of functions. For simplicity, this can be equivalently thought of as a �mean function�
which is a conventional regressor built out of smooth functions and a separate �covariance function� which
says, for every point in the mean function, how much variance the approximator expects to see. Areas which
are more densely populated with points from the original data set will have correspondingly low covariances,
and, conversely, sparse areas will have a high covariance. However, in this work, we only treat the mean
function as our approximator; the covariance function is irrelevant for now, although in future work it may
become more useful as a way of determining which parts of a search landscape are more stable.

First, let our training data be the set (xi, yi) for i = 1 . . . n. Each xi is drawn from a set X of arbitrary
objects; the properties of the set X are largely irrelevant except as far as they are needed to de�ne the kernel
function k : X×X→ R, a mapping from pairs of elements of X to the real numbers. The intuitive meaning
of k is as a measure of similarity; the larger k(x1, x2) is for some x1, x2 ∈ X, the �closer� x1and x2 are. The
speci�c kernel we use is

k(g1, g2) =

n∑
i=1

n∑
j=1

wijI[eij ∈ g1]I[eij ∈ g2]

The summation is over the natural numbers up to n (the number of variables, equal to the number of
nodes in both graphs); the weights wij are learned from the data (see below), and the two indicator functions
contain abbreviated statements meaning �the edge from variable xi to xj is present in graph g�. In other
words, we assign every edge a weight, and then the value of the kernel is simply the sum of the weights of
all edges the two graphs share in common.

Once this is de�ned, we can then use the conventional form of a GPR to create our approximator:

ŝ(g∗) = K∗(g∗)K−1s

Here, s denotes the column vector of scores s1...ns
where si = s(gi|D).
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5.3 Learning the Weights

Following the method in Rasmussen[16], we train our weights (and therefore our kernel function's hyperpa-
rameters) by using the marginal likelihood gradient. Restating equation 5.9 in the book, we have:

∂

∂w
log p(y|X,w) =

1

2
tr

((
αα> −K−1

) ∂K
∂w

)
, α = K−1y

Here, w represents our vector of weight values, one for each possible edge. Maximizing the probability
involves setting this expression equal to zero, which can be done through a gradient descent method; note
that the derivative still involves K, which depends on w. However, gradient descent works well enough as
a way to solve this equation (is this convex?). In our results, the time spent calculating the proper kernel
weights is denoted �weight time�.

The internal representation of graphs, in our implementation, is as a bit string of length n(n−1), one bit for
each possible edge (we omit self-loop edges because they can never occur in a Bayesian network); this makes
the calculation of K∗(g∗) particularly simple when the weights are known. If we use B ∈ {0, 1}ns×n(n−1)

to be a matrix where the rows are each given by the bit string equivalent of a single graph in our training
set and W is the matrix whose diagonal is given by the elements of w, then K∗ is just a matrix product.
In formal terms, let the function b : G → {0, 1}n(n−1) be our translation function, each edge of the graph
argument corresponding to 1 in the output with zeros everywhere else. The matrices B and W, then, are:

B =


b(g1)
b(g2)
...

b(gns)

 W =


w1 0

0 w2

...
...

. . .

0 · · · wn(n−1)


Using these de�nitions, K∗(g∗) = BWb(g∗)>, and K = BWB>.

5.4 Search Methods

The simplest form of search we use here is the greedy search, which scores all possible one-edge variants
of the network at a given step and uses the variant with the highest score as a basis for the next step,
proceeding until we reach a network from which all variants have a lower score. This has the usual issue
that all greedy searches have: a tendency to get stuck in local maxima. However, this is useful as a point
of comparison; since our contribution is about scoring and not the actual search method, it should su�ce to
use greedy search for its simplicity and vary the way it gets its scores � either from direct calculation of a
network's score (potentially through an ADTree for data sets small enough to support them), or from our
Gaussian Process proxy.

5.5 The DAG constraint

One notable problem with the above is that our approximator is de�ned over the space of all graphs over
a certain number of nodes, no matter their structure; since Bayesian networks are restricted to be directed
and acyclic, we are generating scores which are potentially nonsensical. However, this is a problem we deal
with not in the approximator itself, but in the search process; if, at any point, our search process attempts
to move to a graph containing a loop, we immediately reject that graph and generate a new move, only
continuing when we generate a true DAG. This checking does not add signi�cantly to the time it takes to
search, and as such, the time it takes to reject cyclic graphs is folded into the reported search times in the
results.

It should be noted for completeness that, despite the holes that graphs containing cycles leave in the
search landscape, the entire set is still connected, with all points reachable from all others; this is most
easily seen by noting that any DAG can be transformed into any other by additions and deletions, �rst by
deleting all of the initial graph's edges to leave an empty graph, and then by �lling in all of the �nal graph's
edges one by one. Since the �nal graph by de�nition has no cycles, there will never be a point at which
the construction leaves a cycle in the graph being constructed. There are, of course, often faster routes to
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transform one graph into another, but this proof does at least show that the space of DAGs remains fully
connected under the addition and deletion operations.

6 Results

The initial goal of the experiments was to show that a proxy-based search could beat an ADTree-accelerated
one on time taken to get a network of equivalent score, and could beat the ADTree-based search on score
when given the same amount of time to search. The results, however, are even more encouraging; not only
can we beat an ADTree-based search on time to get to an equivalent score when given enough training
samples, but we can also

6.1 Data sets

All data sets used in this research were taken from the UCI data repository[7] apart from the two synthetic
networks, which were generated randomly with their given numbers of nodes (20 and 40, respectively) and
then sampled to provide 20,000 instances for each. All variables in these two cases were binary; these data
sets are called Synth20 and Synth40.

The Adult1, Adult2, and Adult3 data sets are those used in the ADTree paper[1]; Adult1 and
Adult2 contain 15 attributes related to census data. Adult1 has 15,060 instances, Adult2 30,162. Adult3
is a concatenation of Adult1 and Adult2 into a single data set with 45,222 instances. These three data
sets contain the fewest number of variables of any we tested.

The Musk data set has the largest number of variables, making it a challenge to �nd any kind of
meaningful network on. With 168 variables and 6,598 instances, this is typical of the size of the data sets we
would like to consider, in columns if not in rows. The data is biochemical, the task being to classify indicated
molecules as musk or non-musk given �distance features�[6], making all but one variable continuous (the last,
its class, is binary). We quantize all of this data set's variables down to 5 quantiles to make the problem of
scoring tractable, but even this simpli�cation proves to be too much for an ADTree to handle (see section
6.4).

Because of space considerations, we only present results from the Adult1 and Musk data sets here,
but other data sets of intermediate sizes were tested as well, and their results were consistent with those
presented here.

6.2 Time and Score Comparisons

As an initial experiment, we searched for networks on the Adult1 data set, giving the approximator varying
numbers of training networks to use. The ADTree-based search, without the help of an approximator,
took 86.21 seconds to create the tree and then 102.1 to perform the search, resulting in a �nal score of
−1.7362 × 105. This should be compared to the results shown in Table 1. The upper half of the table
contains the results of using the ADTree to score the training samples (the number of which is given along
the top); because of this, the total time is reported including the time it took to create the tree (which is
the same one used to do the ADTree-only search). Note that even with 50 samples, both the time and score
are superior. As one would expect, the time it takes to generate and score the training graphs (reported as
�gen. time�) is linear in the number of graphs, while the time taken to tune the weights of the approximator
grows more sharply. However, because it never takes that many training graphs to get reasonable results,
the weighting time never becomes problematic. The lower half of the table contains results that were trained
using the Bayes Net Toolkit[13]; the generation times are correspondingly longer, but without the overhead
of creating the ADTree, the total times end up faster. A similar pattern emerges here, although the drop
in scores between 250 and 500 samples is surprising. However, this is an example of the kind of over�tting
that results from having too many samples.

6.3 Performance on Large Data Sets

First, a caveat about the meaning of the word �large�. There are three independent ways which a data set
could be called �large� � either it has many instances, or it has many variables, or the variables have a
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50 100 250 500
score (AD) −1.592± 0.093 −1.539± 0.038 −1.557± 0.041 −1.553± 0.049
gen. time 1.71± 0.31 3.46± 0.29 8.64± 0.32 17.37± 0.55
weight time 0.07± 0.03 0.18± 0.12 1.26± 1.06 8.88± 8.57
search time 0.19± 0.03 0.37± 0.17 1.53± 1.08 9.82± 8.52
total + tree 88.19± 0.36 90.23± 0.39 97.65± 2.26 122.29± 16.78

score (BNT) −1.565± 0.067 −1.578± 0.145 −1.510± 0.067 −1.618± 0.186
gen. time 3.89± 0.29 7.33± 0.52 17.67± 0.16 39.85± 2.02
weight time 0.09± 0.03 0.28± 0.26 1.31± 1.25 12.11± 6.69
search time 0.22± 0.03 0.47± 0.28 1.58± 1.25 13.35± 6.33

total 4.20± 0.27 8.07± 0.65 20.56± 2.58 65.30± 13.74

Table 1: Adult1 numeric results
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Figure 1: Trajectories for 50 to 500 samples, Adult1 data set
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Figure 2: Trajectories for 5 to 20 samples, Musk data set
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samples 10 20 30 40 50 60

gen. time 29.4±1.3 60.3±3.0 93.2±2.3 120.7±5.4 146.7±5.1 175.4±0.8
weight time 0.18±0.11 0.21±0.06 0.33±0.19 0.32±0.17 0.39±0.10 1.57±0.46
search time 194.4±19.3 328.5±34.4 376.7±21.6 394.5±25.2 469.6±32.0 489.6±17.1

total 224.0±20.5 389.0±33.1 470.2±23.6 515.44±30.0 616.7±30.4 666.5±17.3
mean score(×105) −8.103 −6.573 −6.239 −6.082 −5.647 −5.579

Exact-scoring search: 3907 seconds, �nal score −7.659× 105

Table 2: Timing results for 10 to 50 samples, Musk data set

samples 100 150 200 400 800

gen. time 304.8±7.9 448.5±11.3 604.8±15.8 1341.1±128.3 2346.6±8.9
weight time 2.3±1.7 7.9±3.6 13.4±6.8 81.9±38.4 401.5±226.9
search time 475.8±35.2 478.3±13.0 474.6±19.3 578.9±50.9 926.5±218.6

total 782.9±37.5 934.7±17.7 1092.8±25.5 2002.0±162.9 3674.7±447.2
mean score(×105) −5.819 −5.762 −5.765 −6.029 −6.149

Exact-scoring search: 3907 seconds, �nal score −7.659× 105

Table 3: Timing results for 100 to 800 samples, Musk data set

high arity, thereby making the conditional probability tables large. The �rst sense of large is the one which
ADTrees are good at handling; once a tree is built, it doesn't matter how many instances the original data
had, since the tree only stores numeric counts. However, if there are many variables, or the variables have a
high arity, the size of tree grows exponentially, as stated before.

Because of the sheer size of the Musk data set, creating an ADTree would be impossible. The size of an
ADTree, even with most-common-value pruning, is still exponential. As an approximation, the size of such
a tree is roughly (r − 1)n for n nodes of arity r. If we have 168 nodes all of arity 5, as in the Musk data
set, the size of tree would be 4168 or about 1.4× 10101 internal nodes. For this reason, we have no ADTree
results for this data set.

6.4 The Time/Score Trade-o� Illustrated

Figure 2 shows the results of changing the number of samples while searching for graphs on the Musk data
set. Because creating an ADTree on this data set would take far too much time and memory to be practical,
the darker lines indicate a search using exact scoring. The lighter lines, meanwhile, show that even with a
relatively small number of samples � 15 or 20 � we can achieve results that beat the exact search in score.
As we increase the number of samples, one would expect the scores to improve. They do, but only up to a
point; the best score is achieved with 60 samples, and then the scores start to decrease gradually while the
times, as expected, continue to increase. This unexpected result is most likely due to over�tting.

Figure 3 is a more graphic demonstration of the over�tting, plotting the results from the Adult1 exper-
iment with time on one axis and score on the other; each oval represents a di�erent number of samples, with
its center at the mean position of the �ve trials and the two axes corresponding to a single standard deviation
in either direction. The pattern quickly becomes apparent; as we increase the time taken (by increasing the
number of samples), the score increases as well, but only up to a point before it starts to drop again. Also
note that, because of the nature of the axes, lower and to the right are both �better�; the result from the
pure ADTree-based search, if plotted on these axes, would be o� the chart to the top left.

6.5 Performance Boost as a Function of Smoothness

We hypothesize that the reason for the accelerator's performance is not only that it speeds up the calculation
of scores, but also smooths out the search landscape, letting techniques such as greedy search get less confused
by local optima and proceed more straightforwardly toward the desired results.

Note that the approximation does not appear to be a very good one at �rst; the search quickly proceeds
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Figure 3: Time as a function of score, Adult1 data set

into areas of very high positive score, which should be impossible by the de�nition of our scoring function.
However, the actual scores are secondary � what we care about is ultimately the network that results from
a search in this landscape, and this is where the approximator is helpful; even with very few data points,
the gradients are captured well enough to push the search in the right direction. We exploit the overall
smoothness o�ered by the regressor and let it drive us out of potential pitfalls. This also could explain the
over�tting behavior; simply increasing the number of training samples will eventually lead to the �nal score
leveling o� and, in some cases, dropping.

7 Conclusion and Future Work

One obvious problem is the question of how to tell if we are in fact at a global optimum and not at either
some crude approximation to one, given that our regressor function smooths out local features. This could
be handled by adding a new subroutine to the search; if we've reached what looks like an optimum, sample
more random points in its vicinity to retrain the approximator and let it explore that neighborhood more
accurately. This can even be done recursively to get more and more detail in desired areas, down to the
limit of our �vicinity� simply being all one-step changes from our graph, at which point we can simply select
the best of those and call the process �nished.

Another avenue of exploration is a setting where we wish to search over networks given incomplete data
(where some entries in our data matrix D are simply missing or unknown). This is known to be a much
harder problem[15], but if we can at least generate some kind of score for a group of sampled graphs, we
should be able to proceed as before; once we have our approximator, the original data, complete or not, is
irrelevant. Entire variables could be missing (the so-called latent variable problem[2]) and we would still be
able to search e�ciently.

Further work could also examine the structure of the kernel function itself; di�erent kernel functions
impose di�erent structure on the space of graphs and make di�erent assumptions on how functions will be
smooth over that space; although the kernel we use is appealingly simple for its structure and ease of use
with graphs represented as bit strings, there might be other more sophisticated methods of producing a
kernel that would work better. It seems possible, for instance, that using a parameter-free kernel such as the
thin plate spline might reduce the time needed by eliminating the need to train kernel parameters, although
the weighting component of the search is what usually takes the least amount of time except in cases of large
numbers of samples, and then the over�tting problem would occur. It would also be useful to perform an
analysis of how many samples you need to converge to a reasonable estimate of the surface before over�tting
sets in by using facts about how quickly various estimators converge.
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