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Abstract

The feasibility of automatically evolving software patches has been
demonstrated by Forrest and Weimer [2]. In this paper we describe
a model of a network of computers, each capable of evolving in re-
sponse to an attack, bug, or vulnerability. Such a network may
develop a diversity of software over time. We model such a net-
work in order to explore the effects of different attack patterns and
patch-sharing paradigms on the software diversity across the whole
network. We wish to eventually investigate whether software di-
versity throughout a network confers increased resistance to novel
attacks.

Introduction

This project is still in an early stage of development. This paper will
describe the goal of the project, design of the model, parameters of
interest, key questions, and a brief glimpse into some of the output.

The model consists of a graph, representing nodes in a computer
network. Each node is capable of evolving its own software patches.
Nodes also have a choice of whether or not to share patches they
have developed wth their neighbors and whether or not to incorpo-
rate patches from their neighbors. Assuming that there are a finite
number of maximally resistant programs then there is a tradeoff
between diversity and resistance.

If nodes are selfish actors then it is not clear what incentives they
have for using valuable CPU’s to evolve a patch if they can simply
incorporate a patch shared by a neighbor instead. This tradeoff and
other interactions will be investigated using the model.

Our goal is to create a network system that will quickly develop
resistance to exploits by automatically patching vulnerabilities and
that will spread this resistance rapidly, with low overhead, to other
computers in the network while maintaining software diversity.

1



Design / Setup

Initial mock up:

• 16-node ring

• Identical initial software

• Sequential and increasingly severe attacks

• Resistance via local evolution or sharing of resistant patches

• Choice to incorporate or reject shared patches with consequences
for diversity and overhead

For now we are using a simple mock-up network as a proof of con-
cept. The sixteen computers (nodes) in the network are arranged
in a ring. Each node can share resistance only with its clockwise
neighbor. Sixteen was chosen so that we could also analyze a 4 x 4
grid.

Nodes are initialized with identical, low-quality ”software” repre-
sented by a 20-bit bit string encoding a number in the range zero
to one. The quality of the software is determined by its resistance
to exploitation or attack. A bit string with floating point value b
resists an attack x if sin(32πb) > x.

sin(32πb) has global minima at every 3/64 + n/16. There are 16
minima between zero and one, enough for one distinct optimal fit-
ness per node.

At time step one, each node in the network is simultaneously sub-
jected to attack. For now each node is subjected to an attack of
equal severity. Attack severity is a number in the range zero to
one with zero being the least severe and one being the most severe.
The closer to one the severity gets, the more time and cpu cycles
it takes each node to evolve a patch that confers resistance to the
attack. The attack severity keeps rising over the course of a run and
the nodes are tasked with ”keeping their heads above water”, but
as time goes on there are fewer values that are resistant until only
sixteen resistant values remain.

A new attack will occur only after all nodes are resistant to the
current attack. Subsequent attacks will be increasingly difficult to
evolve solutions for. In the current implementation, a node will
never evolve resistance to one attack and by doing so become sus-
ceptible to an earlier attack.

In response to attack, each node runs a local genetic algorithm to
evolve a patch (bit string) that resists the attack. Once found, a
node propagates the patch to neighbors. Nodes do not wait around
to optimize the patch, but will stop evolving as soon as a ”good
enough” patch is discovered. Nodes will only propogate patches
once per attack.
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In the current implementation the model waits to proceed to the
next attack phase until all nodes have evolved, or adopted from a
neighbor, ”software” resistant to the attack. That is, each node
must acquire a bit string with resistance greater than the attack
severity.

Resistance, when acquired, is always passed forward to neighbors,
but is incorporated probabilistically when received. A node receiv-
ing a patch has a p% chance of replacing its own bit string with the
patch if it has not yet evolved its own. If the node accepts the patch
then it will also distribute the patch to its neighbor. If not, it will
evolve its own patch and distribute that. Resistance is currently
only shared once per attack, and is accepted or rejected without
regard to the attack severity.

Parameters of interest

• Attack frequency

• Attack range

• Frequency of resistant patch sharing

• Frequency of resistant patch incorporation

• Network structure

Attack frequency: The current model is sharply delineated into
attack phases during which all nodes attempt to aquire resistance
to a uniform attack. No new attacks are generated until the current
phase ends. In the future, we will do away with the notion of an
attack phase. Instead attacks against the network will occur at
irregular intervals, though they may only target a subset of the
total network.

The three-way interaction between network attack-resistance, attack
frequency, and network diversity is of particular interest. We believe
there is a tradeoff between diversity and the rapidity with which
an individual node can resist an attack, but network-wide diversity
itself may serve as a potent defense against frequent attacks directed
against a subset of nodes.

Attack range: One of the many assumptions inherent in the cur-
rent model is that there exists a set of ”ideal” (maximally resistant)
programs. It is possible instead that patching one hole always ex-
poses the software to another. This assumption could be removed
by creating periodic attacks that only exploit programs in a certain
range of values, but for which no value in that range is resistant.

Attacks are currently implemented as uniformly increasing and one
dimensional in that resistance to an attack of severity x implies re-
sistance to all attacks of severity ≤ x and the attack applies equally
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across the entire interval zero to one. We will investigate the effect
of attacks that very not only in severity, but also in the range they
effect. For example, currently it is impossible to evolve software
resistant to an attack with severity greater than one, but if such
an attack only affected software with bitstring values in the range
0.3 to 0.5 then resistance would be possible, but all the software
in the range 0.3 to 0.5 would be eliminated. Such an attack would
immediately reduce diversity. We will investigate how the range is
“re-populated” in the wake of such attacks.

Frequency of patch sharing: Frequency of patch sharing will
impact the cpu time other nodes must spend to evolve resistance
as well as the overall network diversity. Additionally, if nodes are
selfish actors then it is not clear what incentives they have for using
valuable CPU’s to evolve a patch if they can simply incorporate a
patch shared by a neighbor instead.

Frequency of patch incorporation: It may not be in the best
interest of the network as a whole for nodes to adopt shared patches
100% of the time. In the future a more sophisticated decision pro-
cess may be implemented with respect to patch incoporation. This
decision may depend on factors such as the time already spent at-
tempting to evolve a patch, the criticality of the node in question,
and the severity of the attack.

Network structure: The current ring layout is both uninteresting
and un-representative of real world networks. We will investigate
the efficacy of our system on both real-world networks and attempt
to discover the ideal network structure to achieve our goals.

Key Questions

• Does network-wide diversity protect the whole against novel
attacks?

• What is the optimal level of diversity to maintain?

• How can this level be maintained network-wide without sacri-
ficing local response times?

Trade-offs to quantify:

• Rapid distribution of resistance vs. diversity

• Rapid distribution of resistance vs. network traffic overhead

• Evolution of new resistant software vs. cpu overhead
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Figures

The first graph above shows a count of evolved patches, passed (ie
shared patches), and of the shared patches how many were accepted
and how many rejected in favor of a computer evolving its own
patch. Accepts + Rejects does not equal Passes because patches
that were shared with computers that were already resistant were
simply ignored.
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The second graph above shows the population resistance as the at-
tack severity rose. As you can see, some individuals rapidly reach
peak resistance.

The third graph shows diversity of ”software” on the network at
each attack severity.

Above is a snapshot of a dynamic graph showing nodes (green dots)
and where their ”software” falls on the fitness landscape (sine curve)
as the attack severity (red line) rises.
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The above is a screenshot of the visualization of patch sharing on
the ring network.
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