
Fault-Tolerant Wireless Sensor Networks
using Evolutionary Games

Ricardo Villalón
Computer Science Department
The University of New Mexico

Albuquerque, NM 87131

villalon@cs.unm.edu

Patrick G. Bridges
Computer Science Department
The University of New Mexico

Albuquerque, NM 87131

bridges@cs.unm.edu

ABSTRACT
Wireless sensor networks are commonly used to implement
applications for habitat monitoring, bridge structure monitoring,
or monitoring large networks such as power grids. In these
environments, faults are very frequent, maintenance and
replacement of system components is complicated or expensive,
and survivability of the network itself becomes a requirement.
In this research, we take an evolutionary approach to implement
protocols for reliable and survivable applications for wireless
sensor networks. We propose a system with a virtual biological
community of organisms living inside an ecosystem composed of
sensor nodes and data packets. These organisms execute some of
the functions assigned to the network and implement these
functions in several ways. Over time, organisms with the best
strategies are selected by the natural selection process.
As an example, we present a collection protocol called
Evolutionary Collection Protocol (ECP) to collect information in
a sensor network and send it towards the root node. Organisms
in the community execute the routing and data transportation
operations in the context of an evolutionary game. Some
preliminary results about population dynamics and network
operation are presented.

Keywords
Fault-tolerance, wireless sensor networks, evolutionary games,
natural selection.

1. INTRODUCTION
The complex fault scenarios of wireless sensor networks (WSN)
applications are usually caused by the harsh environmental
conditions where they are deployed or by the physical
characteristics of the sensor devices. Additionally, long-term
applications such as habitat monitoring, bridge monitoring or
power grid monitoring require high levels of survivability for
individual network components and long connectivity times for
the whole network.

Existing research about fault-tolerance of wireless networks is
insufficient for real-time WSN with complex failure environments
[12], [13]. Most existing fault models assume constant failure
rates for all components of the network instead of considering a
more dynamic approach, with different failure rates for every
component. Therefore, network operation can be partially or
totally interrupted when several failures produce chaotic situations
because they were not considered appropriately. Additionally,
most current approaches ignore the real-time issues associated
with failures because they abstract the real time to rounds or
iterations of the algorithm.

We propose an evolutionary network model inspired by biological
structures and supported by evolutionary game theory to provide
an efficient framework for reliability and survivability of WSN,
even in the presence of complex failures. In this approach, a
virtual biological community hosted in the nodes helps to execute
the functions assigned to the network. The community is
composed of several species of organisms having different roles,
some of them execute functions for the high-level application,
others support and preserve the community, or manage the
environment and resources.

The functions of the network are implemented in the context of
one or more simultaneous evolutionary games. Virtual organisms
are players of the game and the network functions are
implemented as strategies of players. Strategies can be inherited
between generations of players, supporting the evolution of the
best strategies through the process of natural selection.

Section 2 describes the contributions of this research. Sections 3
and 4 give a more detailed presentation of the problem we try to
solve and the main components of the evolutionary approach.
Sections 5 and 6 describe an example evolutionary protocol called
ECP and present some preliminary results. Sections 7, 8, and 9
describe future and related work and present the conclusions.

2. RESEARCH CONTRIBUTIONS
An important number of research projects are dedicated to fault-
tolerant systems using bio-inspired approaches but, to the best of
our knowledge, there are no implementations where an
evolutionary approach considers real-time faults as part of the
system itself. In our approach, reliability and fault-tolerance are
included in the design of the system components; they are
embedded into the rules of the evolutionary game and
implemented as strategies of the players.

Furthermore, our approach uses evolutionary games as a formal
methodology to compare and evaluate different algorithms in a
practical environment, including algorithms migration when
players move between nodes over the network.

The main contributions of this research are:

• A useful framework and a set of strategies to deal with
simple and complex failures in unreliable WSN.

• A software platform to create fault-tolerant WSN, with
dynamic fault models, even for individual nodes of the
network.

• A software platform to evaluate the evolution of
strategies in WSN.

• A software platform to create adaptive applications for
dynamic execution environments.

• A platform to create self-healing and self-configuring
wireless sensor networks.

3. PROBLEM DESCRIPTION
Existing models for reliability and survivability of wired networks
present some issues when applied to WSN because of contrasting
conditions [17]. WSN are usually built from small, low-cost,
unreliable hardware devices that have limited processing
capabilities and low memory capacity. These architectural
restrictions together with the environmental conditions where they
are usually deployed make these networks susceptible to failures
of different types.

To make this situation worse, the cost of repairing failed nodes
can be high because of difficulties in accessing the physical
location of the network. In these cases, the network itself has to
execute temporary procedures to keep the system online while
more stable solutions are applied.

Additionally, some real-time failures can not be well analyzed
with conventional failure models because such models assume
constant failure rates, instead of using a model with different
failure functions for every component of the network. A good
example of this are hybrid fault models [13] that are not well
represented with constant failure rates.

In a real-time WSN, every component can have a different failure
function, and failures can not be statically analyzed. Occurrences
of complex or hybrid faults at different nodes and different times
can produce important damages to the network. Therefore, it is
worth considering time-dependent failure rates and time-
dependent failure modes as defined in [13], these models are
called dynamic hybrid failure models.

4. EVOLUTIONARY APPROACH
4.1 Evolutionary Games
Evolutionary Game Theory [14] applied to the Natural Selection
process and Darwinian Dynamics [9] provides an intuitive and
formal path to start building an evolutionary framework to host a
biological community inside a WSN. Evolution by natural
selection is an evolutionary game because it has players,
strategies, strategy sets, and payoffs. Players are the individual
organisms. Strategies are heritable phenotypes or visible features
of players. A player's strategy set is the set of all evolutionarily
feasible strategies. Payoffs are expressed in terms of fitness, and
fitness is the expected per capita growth rate of a given strategy
within an ecological circumstance [18].

In the proposed virtual community, players are virtual organisms.
Strategies are functions or behaviors of the network to be
executed by the players (e.g., picking the next hop on the path to
the root node, or selecting the right time to move from node to
node). Payoff is defined as the per capita growth rate over time of
the players' strategies for the surviving individuals.

4.2 First evolutionary model
We first consider a typical sensor network application. It is a
collection network where nodes have sensors of different types
such as temperature, light, or humidity. Sensor nodes collect
values and send them to the root node for processing.

Then, we create a community of individuals with capabilities to
execute some functions of this application (Figure 1):

• Messengers: carry collected values from originating
nodes to the root node.

• Advertisers: advertise and share routing information
between neighbor nodes. For example, Advertisers can
collect information that can be used by Messengers to
reach the root node.

• Guardians: execute management functions inside the
node, such as resources administration, CPU usage or
memory management.

The physical location of the organisms is very dynamic; they
move from node to node while executing some function according
to their own capabilities. Organisms can migrate to other nodes
for replication purposes. They can also die or be killed by other
organisms.

When a node crashes, all organisms living in that node die, but
Advertisers located at neighbor nodes rapidly detect that the
crashed node is no longer active. Messengers use this information
to exclude crashed nodes from the path to the root node.
Guardians execute memory and time management functions inside
the node. They also play an important role when more complex
failures are detected because they can declare alert or emergency
states in the nodes to enable complex interactions between
organisms of several nodes.

4.3 Micro-component Framework
The proposed game approach imposes some requirements on the
underlying software infrastructure because it allows several
simultaneous implementations (values of the strategies) for some
components of the system (strategies of players) .

There are some issues related to the design of this infrastructure,
and the proposed evolutionary platform. For example:

• Some functions require several implementations
because they are strategies of players, but some other
functions require only one implementation without the
complexity of the strategies.

• The system has to be flexible enough to add, change or
remove games, according to the requirements of new
applications.

• Fault-tolerance and optimization components are very
dynamic. The system has to support this dynamic
behavior.

Figure 1: a) Messengers move application data between
nodes; b) Guardians take care of internal node
management; c) Advertisers maintain routing tables
and do fault-tolerance monitoring.

To satisfy these requirements, we propose a software framework
based on small functional units called micro-components. Micro-
components implement control flows representing the processes
of the system, similar to the micro-protocols proposed in [6] with
some extensions to provide specific functionality required by a
sensor network application, such as split-phase or two-phase
components and virtual components to implement strategies.

Figure 2 shows the flow control for Advertising Receive process
explained below. Each box represents a micro-component, solid
gray boxes represent micro-components that are not strategies of
any player, green boxes (with 45 degrees pattern) represent
strategies for Advertisers, yellow boxes (with vertical pattern) are
strategies of Guardians. All player strategies have a similar
behavior to virtual functions in C++: the specific implementation
of the function is selected at run-time, depending on the strategy
value of the player executing the function.

5. EVOLUTIONARY COLLECTION
PROTOCOL

5.1 Protocol Description
ECP is a collection protocol based on Collection Tree Protocol
(CTP) [10], a well-known protocol used in sensor networks that
collects information at sensor nodes and send it towards the root
node. The original CTP is a best-effort, multi-hop delivery
protocol. ECP is designed to have the same basic features but
adds an evolutionary fault-tolerance mechanism and some
performance and energy-optimization features.

ECP is implemented as an evolutionary game using a virtual
biological community. Players are the same as described in
section 4.2, with Messengers, Advertisers and Guardians.

The protocol is constructed using the following steps:

1. Create a process flow for each high-level function. ECP
has five of these functions: Message Send, Message
Receive, Advertising Send, Advertising Receive and
Check Fault. Figure 2 shows the details for Advertising
Receive.

2. For each flow created in the previous step, pick the
components to optimize and assign them to some player
species. In Figure 2, Neighborhood Update is assigned
to Guardians; Check Fault Game, Advertising Game,
Update Neighbor and Update Mote are assigned to
Advertisers.

3. Create additional components representing internal one-
to-one games to satisfy the optimization or fault-
tolerance requirements, and to speed up the evolutionary
process. In Figure 2, components Check Fault Game
and Advertising Game are created to detect crashed

nodes and decrease the overhead generated by routing
tables updates.

Figure 3 shows a layered architecture for a sample application, the
ECP layer is composed of the five process mentioned in step 1.
The colored-faces layer contains the game and player definitions.
The operating system layer is based on TinyOS, the same
platform used for the reference CTP implementation.

The five functions for the current ECP implementation are:

• Message Send: send data messages to other nodes.

• Message Receive: receive and process data and beacon
messages received from other nodes.

• Advertising Send: periodically advertise the node to the
network.

• Advertising Receive: provide specific processing for
beacon packets. This flow contains the two internal
games (advertising and check fault) required to
optimize the advertising process and fault-tolerance.

• Check fault: implement monitoring of neighbor nodes.
This flow is complementary to Check Fault Game.

5.2 Game Design
The proposed game structure is simple enough that we can have
many players on each sensor node, and the population dynamics
generated by the natural selection process can help to produce the
desired results. Each player is composed of three elements:

• A numeric identifier for the species.

• A state value, usually composed of a few bit fields.

• A strategy set represented by an array of bits (32 bits for
the current implementation), where independent
strategies are represented by subgroups of bits.

Each value for a strategy represents a different implementation of
the corresponding function. For example, Messengers have a pick
next hop strategy, the system can have several implementations of
this function, the natural selection process provides the evaluation
over time of each implementation.

The full set of strategies for Messengers, Guardians and
Advertisers is:

Messengers strategy set

• Next hop: pick the next hop towards the root node.

• Message timing: pick the time to move to the next hop.

• Replication: pick the time and the number of replicas
for next replication.

Figure 2: Process flow for Advertising Receive for ECP

Figure 3: Layered design for ECP

Advertisers strategy set

• Beacon timing: pick the time to send a beacon, when
playing the advertiser role.

• Check-fault timing: pick the time to check for neighbor
failures, when playing the neighbor monitor role.

• Energy saving: provide thresholds for some parameters
of the advertising game.

• Replication: pick the time and the number of replicas
for next replication.

Guardians strategy set

• Timer management: implement the strategy for
managing the system timer.

• Neighborhood management: implement the strategy for
adding, updating, and replacing neighbors from the
routing table.

• Replication: pick the time and the number of replicas
for next replication.

Figure 4 shows a layout of the game data structures created at
each sensor node. The neighborhood, node management, local
resources management, and the queues are used for players to
execute all their functions, replication is executed inside the
rooms.

6. PRELIMINARY RESULTS

6.1 Evolutionary Software Framework
A software tool to start running evolutionary applications is the
first important result of the project. ECP protocol is the first
evolutionary example. Figure 5 shows a block diagram of the
framework:

• Micro Component Framework provides the underlying
support to create applications using micro-components.

• Evo Game System enable the game definition and the
creation of strategies as micro-components.

• Evo Components and Other Evolutionary Components
are complementary components supporting the
implementation of higher level components.

• ECP protocol is the implementation of the collection
protocol.

6.2 Population Dynamics and Evolution
The evolution of strategies for Advertisers can be tested with a
simple TinyOS application that starts running the ECP protocol,
no transmission of data packets is required because the routing
tables are updated automatically by Advertisers.

To produce some initial results about population dynamics and
evolution of strategies, we have simulated tests with the following
parameters:

• A network with 16 nodes, organized in a grid topology,
with a distance of 6 meters between nodes.

• The noise model for wireless transmission was set to a
very a low level, to simulate ideal conditions.

• Tests include only creation of routing tables, then only
strategies for Advertisers are tested for beacon timing
optimization. Eight values for time between beacon
packets are tested for evolution.

• The rooms of participating players are initialized with
random samples of players, using only values of
allowed strategies, to 50% of the capacity of the room.

• The set of possible strategies is restricted to test
independent parameters of the system.

For these tests the timing between beacon packets is optimized
and the strategies with greater time are expected to survive when
the metric or cost to move from node to node is stable.

Figure 6 shows snapshots of population dynamics. Columns
represent the 8 possible strategies, rows represent the simulation
time for each snapshot. Each entry (i, j) of the grid contains the
number of organisms using strategy j at time i. Starting at row 3,
some entries have a zero value meaning that all players using the
corresponding strategy died.

Last row shows strategy 4 having the majority of individuals, only
a few players using strategy 1, and all other strategies did not
survive. Note that strategy 4 starts with less individuals than
strategy 1, but over time it evolves and become the evolutionarily
stable strategy (ESS).

Figure 5: Block diagram of the software tool created

Figure 4: ECP game structures

Strategy ID

Time 1 2 3 4 5 6 7 8

00:05:22 38 36 27 15 61 41 91 68

00:20:30 94 2 9 52 119 3 190 110

00:40:02 187 1 1 110 121 0 109 44

00:50:47 276 1 0 134 80 0 63 26

01:22:32 341 0 0 189 29 0 13 8

01:47:25 391 0 0 174 13 0 3 0

03:07:01 439 0 0 144 0 0 1 0

03:57:18 455 0 0 128 0 0 0 0

30:01:45 185 0 0 403 0 0 0 0

50:06:50 5 0 0 581 0 0 0 0

99:02:52 4 0 0 586 0 0 0 0

Figure 6: Evolution of strategies for Beacon Timing

7. FUTURE WORK
Interesting next steps for this research include identification of
evolutionary strategies for specific topologies and network
environments, and identification of sections of the network with
organisms using different strategies because of different failure
rates and changes in the environment.

Another worthwhile experiment would be to devise new metrics,
parameters and algorithms for more complex network behaviors.
For example: adaptations of ant colony optimization algorithms
for advertising.

Implementation of stochastic and reinforcement learning
strategies, or the creation of more complex organisms with higher-
level functions are also considered as future improvements.

8. RELATED WORK
Many theoretical and practical research projects on WSN are
inspired by biological systems because of the amazing results we
can find in complex systems in nature. In this section we describe
the basic differences from our research project with some
previous projects having a similar approach.

[11], [12], [13] propose a theoretical layered architecture to create
fault-tolerant sensor networks. In this approach, sensor nodes are
players for some evolutionary game. They propose extensions to
classical failure models to represent real-time and dynamic hybrid
models. Our project uses some ideas about fault-tolerance models
proposed on this work but. On another hand, they propose
evolutionary games as a layer of the model but there is no clear
process for evolution of strategies, and they do not define a
population dynamics based on a fitness function.

[3], [4], [5] presents a different example of biologically-inspired
sensor network platform, based on the behavior of bees. They
define a system with an evolutionary process; they also have
players, population dynamics, migration from node to node,
adaptation, and a selection process. The model defines a
procedure for player replication and death, based on energy levels

of players. But this system also lacks a well defined group of
strategies to characterize the species of players. They do not have
a clear evolutionary process for the strategy sets of players, with a
fitness function to provide a metric for the resulting evolution.

[8] propose evolution of cooperation in a large WSN with a static
population. They define network nodes as players in the context
of an evolutionary game motivated by the iterated prisoners
dilemma game with strategies and fitness functions. They have a
fitness function but there is no population dynamic because
population is fixed, and they only prpopose the solution for a
specific problem involving cooperation.

Related to fault-tolerance, [2] presents a survey of different fault-
tolerant routing techniques, based on retransmission and
replication schemes, with information being transmitted several
times, or replicated for redundancy. [16] describes a layered
structure including node, network, sink and back-end to propagate
faults in WSN. They describe detection techniques for self-
diagnosis, group detection, hierarchical detection, and recovery
techniques such as active replication and passive replication, but
none of these techniques consider different failure models for
each device on the network, and there are not considerations for
real-time behavior of components.

Finally, [1] presents a theoretical definition to design congestion
control protocols, using the TCP protocol as reference. With that
approach, you can compare different versions of the protocol by
changing values for some parameters. This allows to compare
and select the best version according to the selected values. We
have used some of the conceptual ideas proposed on this research
to design our example protocol ECP.

9. CONCLUSIONS
This paper presents a biologically-inspired software framework to
create improved fault-tolerant protocols for WSN, using an
evolutionary game approach.

The system provides a software tool to test and compare different
strategies. It also produce adaptive behaviors by selecting the best
strategies, according to the conditions of the environment, and the
available strategy sets.

Preliminary results show that some strategy sets can become
evolutionarily stable (ESS) if the defined internal games provides
the right guidelines for the evolutionary process, according to
predefined application requirements.

10. REFERENCES
[1] Altman, E. et al. An evolutionary game approach for the

design of congestion control protocols in wireless networks.
6th International Symposium on WiOPT, 2008.

[2] Alwan, H. and Agarwal, A. A Survey on Fault Tolerant
Routing Techniques in Wireless Sensor Networks. Third
International Conference on Sensor Technologies and
Applications, 2009.

[3] Boonma, P. and Suzuki, J. Biologically-Inspired Adaptive
Power Management for Wireless Sensor Networks. In G.
Aggelou(ed.), Handbook for Wireless Mesh & Sensor
Networking, Chapter 3.4.8, pp. 190-202, McGraw-Hill,
September, 2008.

[4] Boonma, P. and Suzuki, J. A Biologically-Inspired
Architecture for Self-Managing Sensor Networks. In Proc. of
the 3rd IEEE Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), IWWAN
subtrack, Reston, VA, September, 2006.

[5] Boonma, P. et al. BiSNET: A Biologically-Inspired
Architecture for Wireless Sensor Networks. In Proc of the 2nd

IEEE International Conference on Autonomic and
Autonomous Systems, Santa Clara, CA, July, 2006.

[6] Bridges, P. et al. A Configurable and Extensible Transport
Protocol. ACM/IEEE Transactions on Networking, Vol. 15,
Issue 6, 2007.

[7] Charalambous C. and Cui Sh. A Biologically Inspired
Networking Model for Wireless Sensor Networks. IEEE
Network, May/June 2010.

[8] Crosby, G. and Pissinou, N. Evolution of Cooperation in
Multi-Class Wireless Sensor Networks. 32nd IEEE
Conference on Local Computer Networks, 2007.

[9] Darwin, C. The Origin of Species. Barnes & Noble Classics,
446 pp, 2004.

[10] Gnawali, O. et al. Collection Tree Protocol. Technical Report
SING-09-01

[11] Ma, Z. and A. W. Krings, Bio-Robustness and Fault
Tolerance: A New Perspective on Reliable, Survivable and
Evolvable Network Systems. Proc. IEEE Aerospace
Conference, March 1-8, 2008, Big Sky, MT.

[12] Ma, Z. and A. W. Krings. Dynamic Hybrid Fault Modeling
and Extended Evolutionary Game Theory for Reliability,
Survivability and Fault Tolerance Analyses. IEEE
Transactions on Reliability, Vol. 60, No. 1, March 2011.

[13] Ma, Z. and A. W. Krings. Dynamic Hybrid Fault Models and
the Applications to Wireless Sensor Networks. MSWiM'08,
October 27-31, 2008, Vancouver, BC, Canada.

[14] Maynard Smith, J. Evolution and the Theory of Games.
Cambridge University Press, 224 pp, 1982.

[15] Michod, R. Darwinian Dynamics, Evolutionary Transitions
in Fitness and Individuality. Princeton University Press, 262
pp, 1999.

[16] Moreira, L. et al. A Survey on Fault Tolerance in Wireless
Sensor Networks. http://www.cobis-online.de

[17] Tanenbaum, A., Steen, M. Distributed Systems Principles
and Paradigms. Prentice-Hall, pp 361-367, 2002.

[18] Vincent, T. L. and J. L Brown. Evolutionary Game Theory,
Natural Selection and Darwinian Dynamics. Cambridge
University Press, 382 pp, 2005.

	1. INTRODUCTION
	2. RESEARCH CONTRIBUTIONS
	3. PROBLEM DESCRIPTION
	4. EVOLUTIONARY APPROACH
	4.1 Evolutionary Games
	4.2 First evolutionary model
	4.3 Micro-component Framework

	5. EVOLUTIONARY COLLECTION
	PROTOCOL
	5.1 Protocol Description
	5.2 Game Design

	6. PRELIMINARY RESULTS
	6.1 Evolutionary Software Framework
	6.2 Population Dynamics and Evolution

	7. FUTURE WORK
	8. RELATED WORK
	9. CONCLUSIONS
	10. REFERENCES

