
The Value of Inflammatory Signals in Adaptive

Immune Responses

Soumya Banerjee1, Drew Levin1, Melanie Moses1, Frederick Koster2, and
Stephanie Forrest1

1 Department of Computer Science, University of New Mexico, USA
2 Department of Pathology, University of New Mexico, USA

Abstract. Cells of the immune system must search among billions of
healthy cells in order to find and neutralize a small number of infected
cells before pathogens replicate to sufficient numbers to cause disease or
death. The immune system uses information signals to accomplish this
search quickly. Here we use a computationally tractable and scalable dif-
ferential equation model and a spatially explicit agent based model to
determine how much the information in capillary inflammation decreases
the time taken by the first CTL to find infected cells, increases the num-
ber of CTLs by day 5 post activation in infected tissue and decreases
the number of infected cells at day 5. We find that the inflammation
signal localized in a small region of infected tissue significantly reduces
search times. We suggest that simple models of infection and immune
response can reveal the role of local information signals in improving
immune function.

1 Introduction

Rapid search is crucial for an effective immune response: immune system cells
must find, identify and neutralize pathogens before those pathogens replicate to
sufficient numbers to cause disease or death. The natural immune system (NIS)
has a small number of pathogen-specific cells that must search for and neutralize
a small number of initially localized pathogens in a very large tissue space. We
investigate the value of inflammatory signals by how they accelerate this search
for a ”needle in a haystack”.

Lymph nodes are small localized locations where pathogens are presented
to B-cells and T-cells to determine which of them can recognize antigens and
eventually neutralize them. Previous work [1–3] shows how the architecture of the
lymphatic network enables the NIS to detect antigen and respond by producing
antibodies in time that is nearly invariant with animal size. In this work we
focus on another phase of the search process, specifically how T-cells which have
recognized pathogens within the LN can rapidly find and neutralize infected cells
in tissue with the help of inflammatory signals.

We focus on how T-cells flow between the the LN and lung through the
cardiovascular system and peripheral tissue, and how that flow facilitates rapid
neutralization of influenza virus in the lung. We do not attempt to model the



entire immune system; nor do we consider how immune response differs for dif-
ferent pathogens. Instead we attempt to characterize a particular component of
immune response to a particular pathogen in a particular organ. However the
principles that guide search are relevant more broadly.

The immune response against influenza virus combines a local innate re-
sponse (interferon production and cell recruitment) with the rapid development
of cell mediated immunity. We focus here on the response of cytotoxic T lym-
phocytes (CTLs) because it has been clearly shown that recovery from influenza
pneumonia requires neutralization of infected cells by CTLs [9].

CTLs are activated within the infected site LN and are released into the
bloodstream. CTLs are delivered to the human lung by a cardiovascular network
with on the order of 214 arterioles which enter a large capillary network between
the lung airspaces [16]. Capillaries in infected regions of the lung are permeated
by an inflammatory signal which causes CTLs to exit the capillary and enter
the lung tissue where a chemokine gradient guides the CTL to infected cells.
When CTLs recognize the antigen displayed on the surface of infected cells, they
neutralize those cells. The information represented by the inflammatory signals
is local, and occurs in an initially small region of the lung surface, possibly
as small as 1 in 214 capillaries. We ask how much the local inflammatory signal
reduces the time for CTLs to find the site of infection and eradicate the influenza
pathogen.

If there were no inflammatory signal to inform lymphocytes circulating through
capillaries that they had reached an area of inflammation and infection, then the
search for infected tissue becomes a problem of search by random walking. With-
out any signal to indicate which capillaries are near infected tissue, a CTL would
have to exit whatever capillary it was in and begin to crawl through the lung
tissue to search for chemokines (other signals released near infected cells) or
infected cells themselves. As we show below, this would require a long search
because T-cells move at rates measured in microns per minute, and the surface
area of a human lung is measured in roughly one hundred square meters. In this
paper we examine how a simple highly localized inflammatory signal in capillar-
ies in infected regions reduces the time for CTLs to find and eradicate influenza
in the lung.

We use an ordinary differential equation (ODE) model and an agent based
model (ABM) to quantify the value of the inflammatory signal in terms of reduc-
ing the time for CTLs to reach an influenza infected site in the lung, reducing
the time to eradicate influenza from the lung, and reducing the number of CTLs
that must be produced in order to clear influenza. The ABM has the advantage
of being able to incorporate the spatial aspect of virus spread and CTL mediated
killing of infected cells while the ODE model has the advantage of being able to
scale up to billions of cells, for example in the human lung. First, we model an
immune response without inflammatory signals in which CTLs exit in tissue at
the first capillary they encounter and search by walking randomly through the
lung until they find a chemokine gradient that then guides CTLs to infected cells.
Second we model an immune response with inflammatory signals in which CTLs



exit into tissue only when the capillary has an inflammatory signal, and CTLs in
capillaries without inflammatory signals recirculate through the cardiovascular
network until they do end up in inflamed capillaries.

We suggest that localized signals like the inflammatory signal are enormously
important to immune functionality. Here we take a first step toward quantifying
the value of that signal in terms of time required to get T cells to sites of infec-
tion. This has important consequences for understanding the role of information
signals in the NIS, and also the role that local information signals can play in
other complex biological systems [12, 13] and in artificial immune systems where
decentralized search requires effective use of local signals to solve computational
problems [2, 3].

The rest of the paper is organized as follows: we review relevant features of
the NIS, outline our hypothesis, and introduce our model. We first introduce the
ODE model, and compare predictions to empirical data. We then use an ABM
to verify some of the ODE predictions and produce more realisitic spatially
explicit simulations that include spread of the pathogen during the CTL search.
We conclude by quantifying how much inflammatory signals improve immune
response in these models.

2 A Review of the Relevant Immunology

This study characterizes how a key type of adaptive immune cell (cytotoxic T
lymphocytes, also called CD8+ T cells or CTL) [6] searches for and neutralizes a
common respiratory tract pathogen (influenza) in the principle target organ, the
lung. Among the many immune cells and molecules involved in providing defense
against influenza [15], there is a complex set of interactions to guide CTLs to the
site of infection and to produce chemokines and other information signals to help
contain the infection. We outline the role of only a few of these control pathways
here. Influenza virus is inhaled and establishes infection in epithelial cells lining
the airways and the air sacs (alveoli) of the lung. Epithelial cells provide the
first line of innate defense through activation of interferon, and different strains
express different replication efficiencies within the epithelial cells [10]. Epithelial
cells also secrete chemokines to attract immigrant inflammatory cells such as
macrophages capable of amplifying the chemokine signals [11]. Inflammation
increases local blood flow to the infected region and amplifies the chemokine
signal. To initiate the adaptive immune response, resident lung dendritic cells
capture virus and carry it to the draining lymph nodes (LN) in the mediastinum
and bronchus-associated lymphoid tissue (BALT) [7]. LNs provide a dense tissue
in which T and B lymphocytes and antigen-loaded dendritic cells encounter each
other efficiently. Antigen-specific CTLs are activated within the LN, undergo
cell division, and leave the LN to enter the blood circulation. CTLs activated in
BALT have a predilection to home to lung.

The cardiovascular network in the lung follows the fractal branching of the
airways that bifurcate in a precise fashion 14 times in the human lung [16]. The
arterioles nourishing the airway tissue also branch 14 times, ending in a deep cap-



illary network nourishing the airsacs (alveoli) of the lung. Entering the capillary
network, the CTL has two outcomes, either encountering inflammation (very low
probability early in infection) or most likely encountering un-inflamed capillaries.
When an activated CTL reaches an un-inflamed capillary, it may wander short
distances through the capillary network until it encounters a chemokine signal,
or leave the network before any signal is encountered and recirculate in blood.
When an activated CTL reaches an inflamed capillary within a chemokine gra-
dient, however, its movement along the capillary endothelial wall is arrested and
it exits the capillary into lung interstitial tissue. Climbing the chemokine gra-
dient, the CTL locates the infected epithelial cells and reduces viral replication
by multiple mechanisms. The chemotactic signals are composed of cytokines,
chemokines and antigen. In this work we consider only one chemotactic signal
which subsumes all its components.

3 Goals and Hypotheses

Inflammatory signals and chemotactic gradients are examples of signals which
serve to guide search processes in the NIS. We hypothesize that these, and other,
information signals enable the NIS cells to find and neutralize pathogens more
quickly than in the absence of such signals. We hypothesize that inflammation
in the capillaries that signals to CTLs that they have reached a site of infection
greatly reduces the time for CTLs to find infected tissue and eradicate infection.
We aim to quantify the value of information which serves as an exit signal for
activated CTLs.

We model an adaptive immune response without inflammatory signals (CTLs
walking randomly through lung tissue) and an adaptive immune response with
inflammatory signals (CTLs recirculating through the circulatory network until
the presence of inflammation signals them to exit). We model how fast the first
CTL finds the infected region, how fast CTLs build up their numbers in infected
tissue, and how many cells are infected in a specified time period in models with
and without inflammatory signals. We quantify the value of the information
signal as the ratio of these measures with the signal to the measures without the
signal. We use an ODE to determine the value of the inflammatory signal in mice
and humans that are vastly different sizes, and we use the ABM to incorporate
spatial dynamics and growing infections.

4 Ordinary Differential Equation Model

We use an ODE model to analyze how quickly CTLs arrive a the site of infection
with and without an inflamation signal. We model the region of infection as a
circular region (region A) of infected tissue (expressing chemokines, inflamma-
tory signals and antigen) of radius r. This region is surrounded by a region of
uninfected tissue (a concentric circle of radius R (region B)) without inflamma-
tion or chemokines. We assume that the 214 capillaries are distributed evenly
throughout the entire lung (region A and B) (Fig. 1).
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Fig. 1. A region of infected tissue of radius r (shaded region A) expressing chemokines
and inflammatory signals. This region is surrounded by region B which does not have
any infected cells and hence does not express either chemokines or inflammatory signals.
The 214 capillaries (red circles) are distributed evenly throughout the entire lung (region
A and B).

We assume that chemotactic signals only permeate the inside of region A
and do not reach region B. Hence any activated CTL that happen to flow to
capillaries in region A will have both an inflammatory signal that causes the CTL
to exit the capillary, and surrounding the capillary there will be a chemokine
gradient that will further direct CTLs to infected cells. In contrast, CTLs that
arrive in the lung via capillaries in region B will have no inflammatory signal
and no chemokines to guide it to infected cells in region A. We assume that
CTLs that exit into tissue do not back into circulation and ignore CTL death.

In the ODE model we ignore viral replication and just investigate the time
taken for activated CTLs to reach the initial site of infection. We also ignore
CTLs walking inside capillaries. We allow the infected region to grow over time
in our ABM. The ODE model has the advantage of being fast and scalable up to
billions of cells. It can also yield, in some cases, analytical results for biologically
relevant parameters like the time to reach a steady state. The dynamics of the
system are represented by three coupled ODEs. We parameterize the ODEs to
consider two cases. In the first case, CTLs search for virus only via a random walk
without an inflammation signal. In the second case CTLs receive an inflammation
signal in capillaries in region A, exit and follow the chemotactic gradient or if they
are in region B which has no inflammation signal, the cells recirculate through
the cardiovascular network until they find an inflamed capillary in region A.

4.1 Model 1: Dynamics with only Randomly Walking CTLs

We first model an immune response without inflammatory signals. In this sce-
nario activated CTLs immediately exit into tissue as soon as they reach a capil-
lary. There is no signal to inform CTLs in capillaries that they are in an infected
region and hence they immediately exit into tissue. We assume that the infected
site LN produces σ activated CTLs per hour, the initial infection is in a region
of radius r and that the total lung area is described by a circle of radius R.



We assume that r remains constant with time. The the time taken for CTLs to
recirculate in blood is denoted by trc. We also assume that the infection is not
growing with time (r remains the same always). The system is represented by
the following differential equations -

dNc

dt
= σ − Nc

trc
(1)

dNw

dt
=

(R2 − r2) · Nc

R2 · trc
− D · trc · Nw

π((2/3(R − r) + r)2 − r2)
(2)

dNf

dt
=

r2 · Nc

R2 · trc
+

D · trc · Nw

π((2/3(R − r) + r)2 − r2)
(3)

Equation (1) describes the change in the number of recirculating activated
CTLs in the cardiovascular system (Nc) due to the rate of production of new
CTLs in the LN (σ), and CTLs that exit capillaries and enter tissue regardless
of a signal to search using a random walk. Since the ”time step” in this setting is
the minimum time taken for CTLs to complete one circuit through the arterial
and venous circulation system (the recirculation time trc) and is different from
the simulation time step (dt), we adjust by dividing all rate constants by trc.

Equation (2) describes the change in the number of CTLs (Nw) that are in
tissue and searching for infected cells by executing a random walk. The change in
Nw is due to rate at which CTLs exit into region B from circulation (a fraction
of Nc

trc

) and a rate at which CTLs leave the pool of walking CTLs and find region
A. The fraction of circulating CTLs that enter capillaries in region B is given

by the relative area of region B (R2
−r2

R2 ). The number of CTLs that find region
A at each time step is calculated as follows: an average CTL in region B will be
at a distance 2/3 from the periphery of region A (obtained by integrating over
all CTLs at each distance in region B). The mean area that this CTL will cover
before reaching region A is given by the quantity π((2/3(R−r)+r)2−r2), and the
mean time in which this area is covered is this quantity divided by the diffusion
constant for random walk (D), again adjusted for the recirculation time. The
reciprocal of this time gives the rate at which a single CTL enters region A.
To complete the analysis we multiply this quantity by the number of randomly
walking CTLs. Finally, Equation (3) describes the change in the number of CTLs
(Nf ) that have found infected cells (in region A), and this is composed of the
loss term from the pool of randomly walking CTLs from Equation (2) and the
fraction of the recirculating CTLs that enter capillaries in region A (represented
by the area of region A relative to the total lung area).

In order to numerically integrate Equations (1)-(3) we first estimate the
diffusion speed. Since we are not aware of any published values of diffusion speeds
of activated CTLs within tissue, we used measured mean square displacements
of T cells within the LN from literature [4]. Following Beauchemin et al. [4],
the equation relating mean square displacement of a random walking particle in

two dimensions at time t is given by | m |=
√

4Dt
Γ ( 3

2
)

Γ ( 1

2
)

where | m | is the mean



square displacement, D is the diffusion constant and Γ is the gamma function.
Analyzing data on mean square displacement from [4] we found that the diffusion
constant (D) was approximately 56(µm)2 / hour.

We assume that the infected site LN in mice produces 2900 activated CTLs
per hour (calculated from experimental data and detailed in the next section)
and the time to recirculate (trc) is 6 seconds [14]. The initial infection is in a
region of radius (r) 1 mm (personal observation for seasonal strains in mice) and
that the total lung area is described by a circle of radius (R) 10 cm. The latter
number comes from a lung area of approximately 100m2 in humans [5] scaled
down 10000 times for mice.

We observe that the number of circulating CTLs reaches a steady state at
approximately 50 activated CTLs. So few CTLs are in circulation because they
exit the LN, spend only 6 seconds in blood, and go immediately to search in the
lung. We numerically simulated the ODE system and found that the time for
the first randomly walking CTL to reach the site of infection (region A) is ap-
proximately 4 hours post activation in the LN (Fig. 2, Panel A). Approximately
40 CTLs find the infected region at day 5 post activation.

The ODE model has the advantage of being able to scale up and produce
predictions for even larger organisms. Scaling up to a human which is approxi-
mately 10,000 times larger than mice, we see that R is 10 meters, r remains the
same, the CTL recirculation time (trc) increases to 6 seconds since recirculation
times scale as M1/4 where M is the mass of the animal [18]. Lastly, we expect
the LN output rate (σ) to scale as M3/7 since LNs in larger animals are expected
to be larger and have more high endothelial venules to release activated CTLs at
a faster rate [3]. The calculation yields a value of σ of approximately 107 CTLs
per hour and numerically simulating the ODE system we see that the predicted
time for a CTL to find an infected cell in a human lung is approximately 28
days, which is much longer than the time taken to resolve influenza infections
(approximately 10 days) [9].

4.2 Model 2: Dynamics with only CTL Recirculation and no

Randomly Walking CTLs

Here we model an immune response with inflammatory signals. CTLs only recir-
culate and exit into tissue only when there is an inflammatory signal, i.e. CTLs
never exit into tissue if there is no inflammatory signal. All the other parame-
ters are exactly the same as in the last case. The system is represented by the
following differential equations -

dNc

dt
= σ − r2 · Nc

R2 · trc
(4)

dNf

dt
=

r2 · Nc

R2 · trc
(5)

Equation (4) describes the change in the number of recirculating activated
CTLs in the cardiovascular system (Nc) due to the rate of production of new
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Fig. 2. Panel A: Plot of the number of recirculating CTLs (Nc) and CTLs that have
found infected cells (Nf ) vs. time post activation of the first CTL in LN for CTLs only
walking randomly (Model 1). The number of recirculating CTLs reaches a steady state
because once they enter the lung they never recirculate. Panel B: Plot of Nc and Nf

vs. time post activation for CTLs recirculating (Model 2 fit to experimental data).

CTLs in the LN (σ), and CTLs that exit capillaries expressing inflammatory
signals and enter infected tissue (region A). The latter quantity is a fraction of all
the recirculating CTLs (Nc) where the fraction is the relative area represented

by region A ( r2

R2 ). Since the ”time step” in this setting is the time taken for
CTLs to complete one circuit (the recirculation time trc) and is different from
the simulation time step (dt), we adjust by dividing all rate constants by trc.
Equation (5) describes the change in the number of CTLs which find infected
cells and this is just composed of the loss term from the pool of recirculating
CTLs from Equation (4).

We fit Model 2 (with an inflammatory signal) to experimental numbers of
CTLs in lung at various time points post infection for influenza in mice [9]. We
fit our ODE Model 2 to this dataset until the peak of CTL activation and do not
consider the dynamics causing the decline of CTLs after the infection is cleared.

The ordinary differential equations describing Model 2 (Equations 4 and 5)
were solved numerically using Berkeley Madonna [8]. The Runge-Kutta 4 method
of integration was employed with a step size of 0.0004. The ”curve fitter” option
in Berkeley Madonna was used to establish the best-fit parameter estimates. The
curve-fitting method uses nonlinear least-squares regression that minimizes the
sum of the squared residuals between the experimental and predicted values of
Nf . We weighed all the data points equally in our fitting procedure.

For Model 2, we fixed r to 1 mm, R to 10 cm, the recirculation time (trc)
to 6 seconds and estimated the LN rate of output of CTLs (σ). The best fit
parameter estimate of σ was approximately 2900 activated CTLs per hour. The
Model 2 output thus parameterized is shown in Fig. 2 Panel B (a list of all ODE
model parameters is given in Table 1). However Model 1 (CTLs only walking
randomly) cannot fit the empirical data since it predicts that the number of



CTLs that find infected cells should increase linearly whereas the empirical data
shows a quadratic increase.

Numerically simulating the ODE system, we estimated the time taken for the
first CTL to reach infected tissue to be approximately 30 minutes (Fig. 2 Panel
B). Approximately 105 CTLs find the infected region at day 5 post activation.
Finally the ODE Model 2 can produce predictions for CTL search times in human
lung. We used the same values as in the previous section (R = 10 meters, trc =
1 minute and σ = 107 CTLs per hour) and numerically simulated the ODE
system. The predicted time for an activated CTL to first find an infected cell in
a human lung is approximately 5 hours.

In summary, the presence of an inflammatory signal and a chemokine gradi-
ent around infected cells results in faster trafficking of activated CTLs to sites
of infection (5 hours compared to 28 days without an inflammatory signal in
humans and 30 minutes compared to 4 hours without an inflammatory signal in
mice for first detection of infected cells by CTLs).

Table 1. The parameters used in the ODE and ABM with a short description of their
role and default value (§ measured in human cell lines)

Description Value Source

Release rate of activated CTLs (σ) 2900/h Fit to data in [9]

CTL recirculation time (trc) 6 s [14]

CTL diffusion coefficient (D) 56(µm)2/h Calculated from [4]

Radius of lung area (R) 10cm Calculated from [5] and scaled
down to mice

Radius of circle lung infected area (r) 0.1cm Personal observation

Length of cubic ABM simulation
compartment

2000µm -

Time between infection and secretion
§

10.5h [10]

Duration of productive infection § 17.15h [10]

ABM virus secretion rate § 2.6 virions/h [10]

ABM CTL sensing radius 10µm Model parameter

ABM Epithelial cell diameter 10µm Model parameter

ABM CTL diameter 4µm Model parameter

5 Agent Based Model

We use a spatially explicit ABM in order to explore the spatial and stochastic ef-
fects of CTL migration and recirculation, and incorporate CTL mediated killing
of infected cells. We use the CyCells [17] modeling tool to explicitly represent
healthy cells, infected cells, T-cells and influenza virions, and we represent cy-
tokines and chemokines as concentrations. We model the release of virions from



Fig. 3. A snapshot of the CyCells ABM in action. The epithelial cell layer is made
up of healthy cells (dark red), infected incubating cells (green), virus expressing cells
(blue), and dead cells (yellow). The area of lighter red surrounding the infection shows
that free virus particles (semi-transparent white) are present. T-cells (pink) are seen
swarming over locations with high virus concentration.
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Fig. 4. Panel A: Plot of the number of recirculating CTLs (Nc) and CTLs that have
found infected cells (Nf ) vs. time post activation for CTLs only walking randomly
(Model 1) in the ABM. Panel B: Plot of Nc and Nf vs. time for CTLs only recirculating
(Model 2) in the ABM. Panel C: Plot of the number of infected cells over time for Model
1 and Model 2 in the ABM.

infected cells, the diffusion of chemokines and inflamatory signals and chemo-
taxis of cells towards a chemokine gradient. A snapshot of the environment is
shown in Fig. 3.



5.1 Model 1: Dynamics with Randomly Walking CTLs

We start by modelling a 2mm by 2mm grid with a single infected cell in the
middle. CTLs enter the grid at a rate that accounts for the size of the grid
and the rate that CTL exit the LN, σ = 2900/hour. Infected cells produce
virions which then infect healthy cells. Virus infected cells were differentiated
into two populations: infected cells that are incubating but not secreting virus,
and expressing cells which are actively producing new virions. The parameters
describing the infection of healthy cells are taken from a previous study [10] in
human cell lines (summarized in Table 1). Some parameters (labeled as Model
parameter in Table 1) have been adjusted to yield reasonable infection sizes at
day 5 post activation. Our primary results that compare system dynamics with
and without inflammation signals do not depend on the these model parameters.

First we model a hypothetical immune response without inflammatory sig-
nals. The time taken for the first CTL to detect an infected cell is 3 minutes. The
number of CTLs which find infected cells in the discrete event simulator is 138
at day 5 post activation (Fig. 4 Panel A). The ABM also allows us to calculate
the number of cells that are infected which is 3308 at day 5 post activation.

5.2 Model 2: Dynamics with CTL Recirculation and no Randomly

Walking CTLs

Here we model an immune response with inflammatory signals. We simulated an
influenza infection in the same grid as ABM 1, but CTLs recirculate until they
encounter an inflammation signal. We evaluate the value of the inflammatory
signal by comparing the results of ABM 1 and ABM 2.

The time taken for the first CTL to find an infected cell is one hour and four
minutes. This is longer than the three minutes in model 1, however this is due
to 1 run of a highly stochastic event. Additional model runs are ongoing. The
number of CTLs which find infected cells reaches 28,104. Finally, we observe
that the number of infected cells remaining in the simulation is much lower for
ABM 2 (500) compared to ABM 1(3300). Hence the value of the inflammation
signal is a reduction in the number of infected cells at day 5 (from approximately
3300 without an inflammatory signal to approximately 500 with the signal).

6 Summary and Conclusions

In this study we used ODE and ABM to quantify how much inflammation in
the capillary at the local site of infection decreases the time for the first CTL to
reach the site of infection, increases the number of CTL that reach the site of
infection by 5 days post activation, and decreases the number of infected cells at
5 days post activation. The ODE shows that the time for the first CTL to arrive
in the infected region is approximately 8 times faster in mice, and 100 times
faster in humans when the inflammatory signal is present. The ODE shows that
the number of CTLs that reach the infected region by day 5 post activation is



Table 2. The value of inflammation in mice and humans for the ODE and ABM (§

measured at 5 days post activation). ∗ Based off of two high-variance parameters from
a single model run.

Mice Without Inflammation With Inflammation Benefit of Inflammation

Time to first detection
ODE 4 h 30 m 8

ABM 3m 64m .0469
∗

Arrived CTLs
ODE 40 105

2500

ABM 138 28,104 204

Infected cells
ODE - - -
ABM 3308 499 6.63

Humans Random Walk Recirculate Difference
Time to first detection ODE 28d 5h 134

Arrived CTLs §
ODE 0.2 600 3000

Infected Cells §
ODE - - -

approximately 2500 times more in mice, and approximately 3000 times more in
humans when the inflammatory signal is present. Finally, the ABM predicts that
the number of infected cells at day 5 post activation is approximately 7 times
lower in mice with an inflammatory signal.

The ODE model has the advantage of being computationally tractable, scal-
able to billions of cells, for example in humans, and yielding analytical solutions
in this case. This simple model with inflammation and recirculation is able to
replicate peak number of influenza specific CTL in the lung and the time to
reach that peak from empirical data on mice. The ODE model is able to pro-
duce predictions for the time taken for CTLs to find infected cells in lung and
the number of CTLs in lung at any given time post infection. We are then able
to use the ODE to extrapolate from small laboratory mice to make predictions
for humans.

We build an ABM incorporating the spatial aspects of virus spread and CTL
mediated killing of infected cells. Our ABM shows that the predictions of the
model in which CTLs walk randomly is in close agreement with the correspond-
ing ODE model. The ABM shows that the time for the first CTL to arrive in
the infected region in mice is approximately the same with or without a signal.
The ABM also shows that the number of CTLs that reach the infected region by
day 5 post activation is approximately 200 times more in mice with an inflam-
matory signal. In the model with an inflammatory signal (Model 2) the ABM
predicts that a higher number of CTLs should find infected cells. This could be
because of the interplay between a growing infected cell population and hence
a higher amount of information to the immune system in form of inflammation,
and CTLs killing infected cells and reducing the amount of information available
to the immune system. The ABM predicts that the information in inflammation
should allow CTLs to kill more infected cells and eradicate the virus faster than
would have been possible without inflammatory signals and chemokines to di-
rect CTLs. The value of the inflammatory signal is a reduction in the number of
infected cells at day 5 (from approximately 4400 without an inflammatory signal
to around 800 with the signal).



Together, these two models allow us to quantify the value of an information
signal in biologically relevant terms. The local inflammation signal in the capil-
lary allows search to be faster because it allows CTLs to recirculate when they
arrive in capillaries in uninflamed regions of the lung. Because the lung surface
area is so large, and CTL that have exited capillaries move so slowly relative to
circulating CTL, this information signal drastically changes the ability of CTL
to search the lung quickly. It allows CTL to effectively search the large surface
area of the lung in the relatively fast flow of the blood circulatory system, and
to exit only very near the site of infection.

By understanding the role of information signals in the immune system we
can build models to estimate biologically relevant parameters, for example, in
this case, the rate that LN produce activated CTL. More generally, this approach
allows us to understand how immune systems form distributed information ex-
change networks to search, adapt and respond to infections. Without central
control, the interactions among millions of communicating components enable
immune systems to search and respond to complex, dynamic landscapes effec-
tively. We hypothesize that ant colonies, immune systems and other complex
biological systems use common informational strategies to allocate components
effectively to tasks and direct their search in space [12]. This study shows that
a local inflammation signal can quickly direct CTL to sites of infection.

Our approach is useful for developing decentralized search in Artificial Im-
mune Systems [2, 3]. We anticipate that a quantitative characterization of in-
formation flow and its effect on performance will help in understanding why
systems of different sizes and in different environments use different informa-
tion, organizational structures and strategies to accomplish similar tasks.
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