
Using Prediction to Improve Network Intrusion Detection Performance

Sunny James Fugate
University of New Mexico

Department of Computer Science

Abstract

Signature-based and anomaly/behavioral detection of-
fer complementary approaches with respect to preci-
sion and recall. My current research effort focuses on
signature-based detection due to the need for signifi-
cant expansion of Network Intrusion Detection System
(NIDS) coverage while maintaining precision and im-
proving performance. Modern NIDS offer precise de-
tection of known threats but suffer poor recall and poor
coverage of new threats and polymorphic variants.
My research focuses on three complementary tech-
niques to achieving better coverage, performance, and
scalability for NIDS: partitioning of large-scale deci-
sion procedures into semantic equivalence classes; pre-
diction of equivalence class likelihoods based on known
priors; and decision procedure assignment to in-situ in-
formation streams to improve performance. These re-
finements allow us to “bootstrap” and improve detec-
tor performance by (counter-intuitively) expanding IDS
coverage. The predictor is then used to perform an an
intelligent prioritization of future IDS rule applications
which results in better performance per signature.

Introduction
My approach is inspired by biological cognitive systems
which perceive objects within the world via mechanisms
of predictive bias (Gregory 1994; Summerfield et al. 2006;
Nowak and Hermsdörfer 2006; Norris and Kinoshita 2008)
(e.g. masked priming, spreading activation, selective atten-
tion, sensory feedback, context effects, etc.). Without such
bias, accurate and timely perception of a large number of ob-
jects is not a likely phenomenon. Such perceptual bootstrap-
ping mechanisms enable the perceptual apparatus of almost
any known organism to dwarf the capabilities of even our
most sophisticated computing systems. It stands to reason
that such organisms must reason abductively about almost
everything that is perceived, leaping to conclusions first and
only checking as time permits or necessity mandates. I be-
lieve that this biologically inspired approach has general ap-
plicability to any detection task which requires a large de-
cision procedure that can be partitioned and which has suf-
ficient structure in the temporal relationships of incoming
data for accurate predictions of future events.

In its most general form the problem of optimizing NIDS
performance is a resource allocation optimization. In the lit-

erature this has been done globally across the entire IDS
configuration either as component of IDS tuning(Yu, Tsai,
and Weigert 2008) or as a late optimization based on mea-
sured performance degradation(Lee et al. 2002). Central to
my approach is the notion of “wasted information” in terms
of mutual information between partitions of large decision
procedures. Wasted information (information gain) is used
to model the fitness of a predictively refined decision proce-
dure. In this paper I will discuss the details of the approach,
its ancillary benefits, and describe my progress. I will also
discuss a prototype system and some initial results.

Problem
Whether or not existing Network Intrusion Detection Sys-
tem (NIDS) approaches adequately address current threats is
a matter of debate. A review of existing literature and famil-
iarity with the commercial capabilities suggests that existing
network-based IDS approaches generally lack adequate cov-
erage, have at best linear complexity scaling, and suffer from
poor performance (inadequate to cover all possible exploits
and polymorphic variants).

More precisely, we can define these three aspects of an
IDS or similar decision procedure as follows:

• A scalable system grows in computing cost at a rate sub-
linear in respect to the growth of its input size.

• Alert coverage A, is the union of the sets of vulnerabili-
ties Ev , exploits Ex, victim characteristics Cv , and attacker
characteristics Cx which are accurately identified (in re-
spect to true positives and true negatives) by an IDS (i.e.
A = Ev ∪ Ex ∪ Cv ∪ Cx).

• Performance is defined using the conventional measures
of precision, recall, accuracy, and specificity.

Ignoring differences in the cost of different types of signa-
tures, current NIDS techniques requireO(n ·p) comparisons
of p packets with n signatures. More state-full IDS (over
TCP sessions for example) have an equivalent complexity.
This is true even when clever algorithms are used to con-
struct optimal decision trees over a set of feature signatures
(Li and Ye 2001; Kruegel and Toth 2003). Decision tree
search degenerates to exhaustive enumeration of the leaves
of a much smaller binary tree. O(p log n) scaling is possi-
ble, but requires all branch feature values to participate in



feature discrimination at each branch of the tree. If only sin-
gle depth-first traversals are performed important alerts may
be missed.

While O(p · n) is linear scaling and not immediately
alarming, the number of threats appears to be increasing ex-
ponentially (Figure 1). The number of required signatures
is growing as a function of the number of instances, ver-
sions, and vulnerabilities of deployed software applications,
hardware instantiations, and protocols. As a result, without
strong sub-linear scaling these systems are not sufficiently
scalable. As an example, the Snort IDS ruleset is distributed
with approximately 4,500 rules enabled with around 20,000
rules available. The number of potentially detectable threats
is already large by comparison, ranging from 100s of thou-
sands to millions of unique event types. The number of rules
is kept small to achieve the best cost per performance ratio
for a deployed IDS. Numerous statistical anomaly detection
methods have also been created to achieve better scalability,
but generally result in unacceptably high false-positive rates.

Figure 1: Cataloged vulnerabilities per calendar year
(Carnegie Mellon CERT 2011)

IDS researchers, developers, and users need better perfor-
mance, better coverage, and long-term scalability. It is my
perspective that there is no need to trade performance for
coverage. Instead, we can intelligently leverage increased
IDS coverage to directly improve performance.

Research
It is the thesis of my research that in the context of large-
scale detection tasks such as those of NIDS, predictive
refinements to a decision procedure can enable an effec-
tive prioritization of signature applications, saving process-
ing cycles which would otherwise be wasted. Current ap-
proaches are signature-limited. A conventional detection en-
gine requires computing resources proportional to the total
number of signatures. A cleverly designed predictive ap-
proach should decrease average computing cost per signa-
ture when new signatures provide “good” predictors over a
set of semantic equivalence classes. More research and more
formal analysis is needed to show that this is the case. It
is clear, however, that such signatures will need to use the

the same set of features as the original ruleset. The intent
is that the quality of each predictor should improve with in-
creased coverage. A simple example would be a set of sig-
natures which identify host operating system and provide
the straight-forward prediction that only rulesets which are
relevant to a previously detected operating system are rel-
evant. Such an approach is bounded by the specificity and
accuracy of the predictions. This proposed bootstrapping ap-
proach should require a diminishing average cost per addi-
tional signature and result in the desired sub-linear scaling.

Interestingly, there may also be several ancillary bene-
fits to utilizing a predictive bootstrapping approach to detec-
tion. The approach should result in fault-tolerance to several
forms of attack to the NIDS itself (e.g. flooding, denial-of-
service, scanning, misdirection). This would result from the
predictor “short-circuiting” the decision procedure to a spe-
cific equivalence class for attacks that utilize easily predicted
repetitions and sequences. Additionally, the use of multiple
independent predictors has the potential for increased ro-
bustness against NIDS attacks due to ready parallelizability
of the resulting decision procedure. Each predictor operates
over subunits of the global decision procedure. This decou-
pling should enable advantageous cache working set behav-
ior, although these effects may be small. Finally, the predic-
tion threshold can be dynamically varied to perform intel-
ligent dynamic load-shedding. In conventional approaches
these incidental beneficial properties are commonly dealt
with using specialized (and often costly) preprocessing.

This research effort thus far has focused on signature-
based detection, although the proposed approach may be
equally suited for online optimization of other decision pro-
cedures, including statistical anomaly detection. The ap-
proach should apply equally well to those IDS (such as
BroIDS) which detect events over a longer period and more
state (e.g. TCP sessions instead of IP packets).

It is important to note that the proposed approach only
applies to decision procedures which are sufficiently com-
plex (and costly). Predictors which operate over trivial deci-
sions (e.g. branch prediction) cannot be improved using this
method. All possible equivalence classes are already repre-
sented. It is also necessary that a fraction of detected events
are conditionally dependent on prior events. It is not nec-
essary for events to be causally related, although causal re-
lationships provide a more sound justification for decision
prioritization.

The predictor can be constructed using a machine learning
approach (e.g. learning a stochastic matrix) or constructed
based on expert domain knowledge (e.g. attack graphs). The
benefit the former is the automation of predictor construc-
tion and adaptation to new network environments. However,
the latter would provide better explanations for the current
state of the predictor. Determination of equivalence classes
may be performed in a number of ways: k-means, hierarchi-
cal agglomerative clustering, or even imposing or extracting
taxonomic relations from alert annotations.

Various temporal logic semantics can be used to learn
the stochastic matrix, in particular Next and F inally. The
most straightforward is the Next semantics calculated on a
per-connection basis over IDS alerts. Figure 2 describes the
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Figure 2: Temporal logic semantics over IDS events (ρ) and
alerts (α)

differences between the temporal logic semantics being as-
sessed in the context of IDS events and output alerts. The
primary issue with the Next semantics is the sparseness of
the resulting stochastic matrix. This semantics also assumes
that being predicted as the next event is more important than
predicting an event which will eventually happen. The bene-
fit of the Next semantics is that the algorithm used to gener-
ate the predictor needs to retain much less state (i.e. at most
a single reference to an event ID or equivalence class per
connection tuple, O(1), versus O(p) per connection tuple).
For reasonably sized datasets and offline learning this differ-
ence does not matter. The Next semantics over events (Fig-
ure 2 A) is expected to only capture predictions of the sim-
plest types of noisy probes, scans, and denial-of-service. The
Next semantics captures the instances where each packet (or
event) in a sequence results in an IDS alert.

Progress
I am currently in the process of producing my initial re-
search. I am looking for guidance from the community and
searching for potential collaborators.

An initial architecture has been defined and a proto-
type is being constructed (Figure 3). The prototype as cur-
rently conceived performs prediction external to the IDS.
This is intended to allows swapping the forward inferenc-
ing component (the IDS) and testing refinement of fun-
damentally different IDS engines (e.g. BroIDS, Snort, and
one or more anomaly detection systems). The current de-
sign utilizes the experimental PF RING kernel module for
dynamic packet filtering and forwarding (Deri 2007). The
PF RING module filters and forwards packets to the appro-
priate IDS instances, of which there is one per equivalence
class. I am in the process of evaluating the approach when
applied to both the Snort and Bro intrusion detection sys-
tems utilizing both a private corporate data-set as well as
the 1998 DARPA IDS Evaluation data-set (McHugh 2000;
2000).

In Figure 3 the decision procedure T maps packet fea-
tures {ρ ∈ P} to alerts {α ∈ A}. The attack predictor G
maps dependencies between attacker actions β and associ-
ated probabilities p(β). The function Φ(α) maps alerts to
attacker actions and Γ(β) maps predicted actions to equiva-
lence classes of alerts ξ = {α ∈ A|α ∼ ξ}.

Figure 3: Predictive IDS architecture

The proposed dual-layer architecture implements a
forward-inferencing decision procedure which is ”matched”
with a Naive Bayes predictor. This entails learning a stochas-
tic matrix of alert predictors from training data and then
clustering alerts predictors (rows of the stochastic matrix)
over the distributions of alert predictions.

Packets are directed to a particular IDS instance based on
prior activity for the same “connection”, where a connec-
tion is defined as a tuple over IP address pairs, ports, proto-
col, and potentially other Layer 3 or Layer 4 features. The
specific tuple which is most useful for prediction is under
investigation but will most likely depend upon the type of
alert and the network layer in which the attack is performed.

Table 1: High Occurrence Alert Sequences

sid → sid Occurrences Description
469 → 469 13997 ICMP PING NMAP → ICMP PING NMAP

1620 → 1620 478128 Non-Standard IP protocol → Non-Standard IP protocol
1620 → 13949 123893 Non-Standard IP protocol → Spoof of domain
1620 → 15934 48766 Non-Standard IP protocol → DNS for 172.16/12
1620 → 15935 13821 Non-Standard IP protocol → DNS for 192.168/16
13310 → 2925 17638 Apache DOS attempt → Web bug 1x1 gif attempt
13310 → 13310 138106 Apache DOS attempt → Apache DOS attempt
13948 → 1620 24901 DNS cache poisoning → Non-Standard IP protocol
13949 → 1620 109765 Spoof of domain → Non-Standard IP protocol
13949 → 13948 24888 Spoof of domain → DNS cache poisoning
15934 → 1620 54953 DNS for 172.16/12 → Non-Standard IP protocol
15935 → 1620 14923 DNS for 192.168/16 → Non-Standard IP protocol

1,049,782

Figure 4 shows a stochastic matrix generated from
360,591 alerts from Snort’s stateful preprocessing engines
prior to clustering. The first column of this matrix represents
events for which no subsequent event was seen. The first row
represents events for which no prior event was seen. The di-
agonal represents events which predict sequences of iden-
tical events (e.g. scans, malformed packets, ICMP activity,
statistical threshold violations, etc.). The built-in event gen-
erators for Snort represent many of these classes of events.
For the purposes of my research, I will be ignoring these
stateful detectors (and stream processors) and focusing on
the non-stateful detection which represents the bulk of the
signature set and computing cost.

Figure 5 represents a stochastic matrix produced over
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Figure 4: Example stochastic matrix generated from the
DARPA 1998 training dataset and Snort’s default alert gen-
erators (genid,sid) and the Next temporal semantics. The
y-axis are event priors and the x-axis the consequents. The
first row and column are events with no priors and events
with no consequents respectively.

the entire DARPA 1998 training dataset. This dataset repre-
sents approximate 3GB of capture packet data (13,620,149
packets) which results in 1,096,099 packet-level Snort alerts
using a recent release of the Snort VRT ruleset (ignor-
ing stream and specialized preprocessor alerts)(SourceFire
2011). Of particular interest are the events which show a
high correlation with future alerts for the same connection
tuple. Table 1 describes all sequences which occur more than
10,000 times.

These events account for 95% of the alerts. At least for
the DARPA dataset, we have a small set of superb predic-
tors which account for almost the entire set of alerts and
predict temporal correlations with relatively high degree of
confidence. The extent to which the predictor events cover
the packet events also gives the upper bound on perfor-
mance speedups when each distinct signature is an equiva-
lence class. For the DARPA dataset, with perfect predictors
this would result in at best 1049782

13620149 = 7.7% of the events
being predicted and detected with a O(1) computing cost.
This is consistent with an identical set of tests run against a
2GB sample of a real-world corporate dataset.

It is interesting to note that there are a large number of
symmetries in the stochastic matrix. These symmetries ac-
count for 50% of the correlations in the DARPA testing
dataset and 62% of the correlations in the corporate sam-
ple dataset. For the sample dataset the significantly higher
symmetry is most likely due to the short time-frame (6 min-
utes) over which the sample extends. These symmetries may

Figure 5: Stochastic matrix generated from the DARPA
1998 training dataset and the entire set of available rules
(genid,sid) and the Next temporal semantics. For clarity,
this plot is shown using using a fixed value for all events
matching the temporal constraint. The bottom right box is
the same as that in Figure 4

also represent an artifact of the SnortIDS processor or rule-
sets. Further analysis is needed to determine the underlying
meaning of the symmetries.

The sample dataset also exhibits similar super-
exponential event frequency distribution (Figure 6).
This implies that even for the case where the ruleset is kept
constant that significant gains can be achieved by utilizing
trivial predictors over small sets of noisy alerts.

The relatively small proportion of alerts to packets also
elucidates one of the primary performance issues with these
types of detection systems and a thesis of this work. Over
90% of the information gained in using the decision pro-
cedure against incoming packet data is discarded. Since no
alert fires, any features extracted (either real or potential)
cannot be used for future optimizations. Each packet passes
through the decision procedure. If new rules were added to
provide better predictors over the set of packets not associ-
ated with an alert, then the performance gains which might
be achievable span the entire dataset.

Future Work
While my initial analysis is promising I have not yet demon-
strated the principal thesis of the work: that these types of
systems can be optimized using prediction such that adding
rules improves overall performance. I hope to have initial
performance results using the rudimentary prototype prior
to the student conference. This summer I plan to extend the
approach to see or improve predictive performance gains in
several ways:
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Figure 6: Marginal frequency histogram of event priors of a
2GB corporate dataset.

• A better theoretical presentation of the concept and results

• Increasing the overall coverage of the IDS

• Including signatures which identify exposure of host char-
acteristics

• Exploring clustering methods for determining useful
equivalence classes

• Exploring more robust predictors and ensemble methods

• Exploring alternative approaches as elucidated by interac-
tions with the broader research community

• Demonstration of sub-linear scaling at the same perfor-
mance points
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