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Abstract—There are few studies that look closely at how
the topology of the Internet evolves over time; most focus on
snapshots taken at a particular point in time. In this paper,
we investigate the evolution of the topology of the Autonomous
Systems graph of the Internet, examining how eight commonly-
used topological measures change from January 2002 to January
2010. We find that the distributions of most of the measures
remain unchanged, except for average path length and clustering
coefficient. The average path length has slowly and steadily
increased since 2005 and the average clustering coefficient has
steadily declined. We hypothesize that these changes are due
to changes in peering policies as the Internet evolves. We also
investigate a surprising feature, namely that the maximum degree
has changed little, an aspect that cannot be captured without
modeling link deletion. Our results suggest that evaluating models
of the Internet graph by comparing steady-state generated
topologies to snapshots of the real data is reasonable for many
measures. However, accurately matching time-variant properties
is more difficult, as we demonstrate by evaluating ten well-known
models against the 2010 data.

I. INTRODUCTION

The Internet is growing rapidly, having more than tripled
in size in the last decade, from 10,000 Autonomous Systems
(ASes) in 2002 to 34,000 in 2010. However, few studies have
looked carefully at the time evolution of the Internet topology
at the AS-level. Most studies consider a snapshot of the AS-
level topology of the Internet, derived from the latest data
available at the time of the research, e.g. [1], [2], [3], [4].

In this paper, we are interested in how the topology of the
AS-level Internet changes over time. We take the common
approach of regarding the Internet as a graph, where the
vertices are ASes and the edges are routing links between
them. There are many properties of the Internet graph that can
be investigated, from the simple degree distribution to more
complex measures such as betweenness centrality. We select
a set of eight commonly used measures that are relevant to
the way the Internet functions. The measures are described in
section II.

We investigate how the selected measures change over the
period from January 2002 to January 2010, and present the
results in section IV. We find that the distributions for most
of the measures remain unchanged except average path length
and clustering coefficient. Since 2005, the average path length
has slowly and steadily increased and the average clustering
coefficient has steadily declined. These results may signify
changes in peering relationships in the Internet; we discuss
this idea in section VI.

Our results imply that Internet topology models can be
evaluated using single snapshots of the topology in time for
many measures but not all. We can expect that models that
matched invariant measures five years ago will still match
today. To this end we include a brief summary of 10 well-
known models and their performance on the latest data set in
subsection IV-C. We find that models that were accurate when
originally proposed, often many years ago, still accurately
predict many time-invariant AS features (such as centrality),
while doing a poorer job on the time-variant measures, such as
clustering coefficient. In addition, the unchanging maximum
degree of the Internet is often poorly predicted.

II. TOPOLOGICAL PROPERTIES OF THE INTERNET

We selected a set of eight measures for our analysis of
Internet topology evolution. Although many more measures
are available, e.g., [5], [6], [7], [8], we chose those most
commonly used in the past to evaluate both generative models
and data of the actual AS topology [9]. Further, we selected
measures that seem most relevant to understanding the func-
tioning of the Internet. Table I summarizes the measures and
our rationales for choosing them. Given space limitations,
we restrict our attention to graph-based measures, ignoring
network operation constraints, traffic flow analysis, and distri-
butions of AS relationship types.

The measures are divided into four categories: Node Cen-
trality, Path Length, Community Structure, and Scale Free
Structures. We also track simple properties such as the maxi-
mum and average degree of ASes.

A. Node Centrality

Node centrality measures are related to the prominence of
ASes, which is important when evaluating the implications
of ISP regulation [10] or the robustness of the Internet [11].
We use three measures of centrality: the node degree, the be-
tweenness, which is the fraction of all shortest paths that pass
through a node [12], and the page rank, which is the number
of times that a node will be visited on a sufficiently long
random walk on the graph [13]. The betweenness centrality is
inversely related to the robustness of the graph to removal of
nodes, because the more paths that pass through a node, the
more damage will be done when that node is removed.
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Measure Rationale
Degree Centrality Simplest way to measure AS prominence
Betweenness Centrality AS prominence under best (shortest-path) routing. Inversely related to robustness to node deletion
Page Rank Centrality AS prominence under average (random) routing.
Path Length Related to routing efficiency (hops between source and destination)
Clustering Coefficient Related to the peering structure of the Internet, and routing resilience (number of alternative routes)
K-Cores Decomposition Related to tier structure of the AS Graph
Assortativity Relevant to peering relations
S-Metric Distinguishes among scale-free graphs, alternate measure of assortativity

TABLE I
SUMMARY OF MEASURES.

B. Path Length

The average shortest path length from a node to all other
nodes in the graph (the geodesic distance)1 is important
because it relates to the number of routing hops between
ASes. Not all packets travel along the shortest paths because
of business agreements (such as the valley-free rule), but to a
first approximation, routing distances (hops on the AS graph)
are largely determined by the shortest paths.

Alternative path length measurements include diameter,
which is the longest of the shortest paths between all pairs
of nodes, and the effective diameter, which is the path length
that defines the 90th percentile of all paths [15]. In the Internet,
the distribution of path lengths has small variance, so diameter
and effective diameter are only slightly larger than the shortest
average path length and highly correlated with it. Hence we
use only the average shortest path length.

C. Community Structure

Community structure measures how groups of nodes form
substructures within the graph and is relevant to understanding
various aspects of the Internet, such as the tiered structure
and resilience to node deletions. Although there are many
community structure measures [16], [17], we chose three that
reveal important features of the AS graph. The first measure
is the local clustering coefficient, which is the number of
edges among the neighbors of a node as compared to the
maximum possible number [18].2 The clustering coefficient is
related to the resilience of the routing infrastructure, because
it reflects the number of alternative routes between pairs of
nodes (for example, a tree has a coefficient of 0 and the
removal of any edges will partition the graph). The second
community structure measure is degree assortativity, which
measures whether nodes tend to connect to others of similar
degree [19]. The final measure is k-cores decomposition, which
measures successive maximally connected subgraphs [20]. We
report two measures for k-cores: the distribution of k-cores
values, and the size of the maximum core, k-max.

1This is sometimes referred to as closeness centrality, though there are
other definitions for closeness centrality [14].

2We do not use transitivity, which is an alternative definition of the
clustering coefficient, because it tends to be highly correlated with the average
degree and so does not yield additional useful information.

D. Scale-free Structures

The power-law degree distribution of the AS graph is a
scale-free property often cited as a distinguishing feature of the
Internet, e.g., [3]. If the AS graph can be described as scale-
free it may share properties with other scale-free networks,
for example, the tendency to be ‘robust yet fragile’ or the
preferential attachment growth dynamic. However, Li et al [21]
showed that it is possible to construct graphs and general data
sets that have similar scale-free properties but very different
structures. To address this issue, Li et al. propose the s-
metric—the sum over edges of the product of the degree of the
two nodes an edge connects. This computation yields a single
value that measures the extent to which a graph is actually
scale-free.

III. DATA SETS

To investigate how the Internet changes over time, we
collected a set of AS graphs covering the period from January
2002 to January 2010 by parsing monthly snapshots of BGP
routing table dumps from Oregon Route Views and RIPE.3

Although BGP routing tables are dumped every few hours,
monthly snapshots were of sufficient temporal resolution given
the long time scale of the analysis. The monthly snapshots
were compiled by parsing all of the dumps from the first day
of each month, taking every adjacent pair in the ASPATH and
adding them to the graph for that month. We did not filter out
self loops, private Autonomous Systems Networks (ASNs),
or any other potential spurious or inaccurate results from the
dumps, as it is generally assumed that the number of false
positives of this type are small [22].

One potential problem with the BGP data is that nodes
and edges disappear and reappear due to the way the data
are sampled. While there are other ways of dealing with
disappearing edges and nodes [15], we assumed that nodes and
edges that temporarily disappear from the BGP tables actually
exist throughout from first appearance to last. Our data set is
available4 in networkx5 format.

To validate our results, we ran identical experiments using
data collected from the Cooperative Association of Internet
Data Analysis (CAIDA) [23], and obtained essentially identi-
cal results. The collectors of the CAIDA data sets went to great

3www.routeviews.org andwww.ripe.net
4https://ftg.lbl.gov/projects/asim/data-2/
5http://networkx.lanl.gov/

www.routeviews.org
www.ripe.net
https://ftg.lbl.gov/projects/asim/data-2/
http://networkx.lanl.gov/
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length to deal with various false-positive errors and the issue
of nodes and edges that temporarily disappear, so the close
agreement between the two data sets indicates that relatively
simple preprocessing of the data is adequate for the purposes
of our study.

Although false positives in the data are likely rare, false
negatives (missing links) are likely common because the BGP
dumps do not capture peering links between smaller ASes
on the edge of the graph.6 Although several studies have
attempted to quantify the number of missing links (e.g. [22],
[24], [25]), it is difficult to determine how exactly those hidden
links could affect the structure of the AS-graph. Consequently,
we focus on the visible Internet, in which we see subtle
topological changes (see section IV) that we speculate could
be caused by an increase in missing links.

IV. RESULTS

Most of the measures yield a distribution rather than a single
value. Although we can plot the distributions together, year by
year, it is also useful to have a single value for determining
the changes over time. A common approach to this problem
aggregates distributions, using measures of central tendency,
extent, or spread [9]. However, studying the distributions as a
whole before aggregating allows us to discover changes to the
shape of the distribution (e.g. a transition from an exponential
distribution to a power-law) that might not be revealed under
aggregation. Consequently, we test whether the distributions
between years differ using the Cramér–von Mises Criterion
(CMC) [26]. The CMC tests the hypothesis that two samples
of data are drawn from the same distribution. Although many
alternative tests and measures exist [27], [28], [29], the CMC
gives accurate comparisons and captures intuitive similarities
between plots that can be seen visually.

We used the CMC to identify year by year changes in
all of the measures that have distributions. Table II shows
the changes from one year to the next from 2002 to 2010.
For each year, we applied the measures to the AS-graph for
June; varying the month of data collection does not vary the
results. For measures that do not have distributions (k-max,
assortativity and the s-metric), Table II reports the absolute
values, rather than the year by year differences.

A. Unchanging Features

Table II shows that the node centrality measures (degree,
betweenness and page rank) stay constant over time. Figure 1
illustrates this point, showing that the power-law degree dis-
tribution is virtually identical over time. We obtain similar
results for betweenness and page rank—the distributions are
stable over time (data not shown).

In Figure 1 not only is the slope of the distribution un-
changing, but the extent (maximum degree) is nearly constant.
Only three ASes have had the maximum degree in the years
2002 to 2010: MCI Inc., Level 3 Communications, and Cogent
Communications (see Figure 2). MCI, which held the top

6Roughan et al [22] estimate that an AS graph extracted from public BGP
views is likely to miss 27% of links overall, and 70% of peer-to-peer links.
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Fig. 1. Complement cumulative distribution of the degree of ASes between
2002-2010
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Fig. 2. Degree changes in the three largest degree ASes.

position until late 2008, maintained a nearly constant degree,
while Cogent and Level 3 had a nearly monotonic increase in
degree over the same time period. Growth is not guaranteed
for an AS: 61% of all ASes experienced a month to month
decline in degree at least once between 2002 and 2010 and
fully 84% of ASes that have existed for five or more years
experienced at least one monthly decline.

Other clearly unchanging features in Table II are the k-
cores and the degree assortativity. The s-metric appears to
gradually increase over the entire period, but this could be a
meaningless change: According to Li et al. [21], graphs with
low s-metric values (below 0.1) are likely “scale-rich” and
difficult to differentiate from each other using the s-metric.

B. Changing Features

Two measures exhibit distinct changes over time: the av-
erage path length and the clustering coefficient. The changes
in the distribution of path length, although statistically signifi-
cant, are not easily visible on a plot. The clustering coefficient,
on the other hand, has changes that are clearly visible, as can
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Year Nodes Edges Degree Betweenness Page Rank Path Length Clustering K-Cores K-max Assort. S-Metric
2002 13172 26695 16 -0.189 .0114
2003 15446 32089 NS NS NS **** NS NS 18 -0.188 .0121
2004 17722 39654 NS NS NS **** NS NS 22 -0.188 .0159
2005 20174 45505 NS NS NS **** NS NS 24 -0.196 .0176
2006 22708 50796 NS NS NS **** * NS 24 -0.189 .0183
2007 25691 58200 NS NS NS **** NS NS 26 -0.189 .0199
2008 28640 64111 NS NS NS **** ** NS 25 -0.192 .0203
2009 31645 69938 NS NS NS **** * NS 25 -0.195 .0210
2010 34055 71544 NS NS NS **** **** NS 21 -0.191 .0179

TABLE II
ANNUAL CHANGE OF MEASURES. WE REPORT COMPUTED VALUES FOR K-MAX, ASSORTATIVITY AND S-METRIC. FOR OTHER MEASURES, WE REPORT
THE STATISTICAL SIGNIFICANCE OF THE CHANGE BETWEEN YEARS (NS: NOT SIGNIFICANT, *: p < .1, **: p < .05, ***: p < .01, **** : p < .001).
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Fig. 3. Complement cumulative distribution of the local clustering coefficient
of the AS graph

be seen in Figure 3. Although the distribution changes little
in shape, there is a distinct downward trend over time.

The trends in path length and clustering coefficient are
evident in Figure 4, which plot averages over time. We can see
that around 2005, the structure of the visible AS graph began
to change. The average path length and average clustering
coefficient do not exhibit any clear trend until mid 2005, when
they began slowly increasing and decreasing respectively. In
addition, the k-max value was steadily increasing up to 2005,
after which it leveled off (see Table II). From these changes
we can infer that both the efficiency of the visible Internet (as
measured by number of hops on the shortest paths between
locations) and resilience to router failure, have been decreasing
since 2005. We discuss possible reasons for these changes in
section VI.

The shift in topology beginning in 2005 indicates that
the Internet has not reached steady-state. This observation
contradicts many models of the AS graph, in which measures
converge to a steady-state distribution. The next section studies
how well different models of Internet topology match the AS
graph on the different measures.
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Fig. 4. The change in the average path length and the average clustering
coefficient, plotted monthly. Both clustering coefficient and path length
experience a nearly constant variance of .16 and .3 respectively, and so we
do not report error bars in this figure.

C. Topological Models of the Internet

The relatively slow changes we see in the Internet imply that
generative models that give accurate results at one size should
do so at most sizes. To check this we generated topologies
from 10 different models and compared them to the AS graph
from June 2010. Table III lists the models we considered. In
each case, we generated a topology of 34,055 nodes, the same
number as our latest snapshot of the AS graph.

The comparisons of the different models to the AS graph are
shown in Figure 5. As expected, later models are more accurate
than earlier models (the models are ordered from oldest at the
top to most recent at the bottom). All models generate close
matches to the degree distribution, which makes sense because
this is typically the first measure authors use to evaluate a
model, and it has not changed over time. Further, most models
match the other measures of centrality quite well, presumably
because they are also time-invariant.

It is notable that all the models perform worst on the
measures that change the most, namely path length and cluster-
ing. In general, models match time-invariant measures better
than time-varying measures, with the exception of maximum
degree, which no model captures well.
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Name Abbr. Description Reference
Barábasi-Albert BA Original preferential attachment model [1]
Heuristically Optimized Trade-offs FKP Local optimization model [30]
Generalized Linear Preference GLP Modified preferential attachment model [31]
Univariate Heuristically Optimized Trade-offs UFKP Modified local optimization model [32]
Bivariate Heuristically Optimized Trade-offs BFKP Modified local optimization model [32]
Multivariate Heuristically Optimized Trade-offs MFKP Modified local optimization model [32]
Interactive Growth IG Modified preferential attachment model [33]
Positive Feedback Preference (1) PFP1 Modified IG model [33]
Positive Feedback Preference (2) PFP1 Modified PFP1 model [33]
ASIM ASIM Agent based topology generator [10]

TABLE III
SUMMARY OF MODELS EVALUATED.
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Fig. 5. Evaluating models. The color of each square corresponds to
the statistical significance level for the Cramér-von Mises criterion when
comparing the model to the January 2010 AS graph for a given measure.
The number of stars (0 to 4) is scaled between 0 and 1 for consistency
with the other measures. For k-cores, degree assortativity and the s-metric,
the color corresponds to the relative error. Hence lower values mean more
similar distributions. X’s indicate that the measure was reported in the original
publication of the model.

It is not surprising that most generative models we studied
performed well on the time-invariant measures the models
were originally tested on. However, most models perform
much worse on measures they were not originally tested
against. This indicates the importance of evaluating models
against a wide variety of measures, because many different
graphs can be similar in one measure, but it is much harder
for different graphs to be similar in multiple measures.

V. RELATED WORK

There are few studies that look at changes in topological
characteristics beyond the number of nodes and edges. Most
of those that do focus on inter-AS relationships, for example,
Chang et al [34] study the changes in customer-provider rela-
tionships and find that the number of providers is increasing
over time. Another approach was taken by Oliveira et al [35],
in which they investigate the changing relationship over time
between stub ASes and transit providers. They find that the
net growth of rewirings for transit providers levels off at the
end of 2005, around the same time our results show subtle

changes in the Internet. Gill et al [36] look more closely at
the evolution of peering relationships, and find that over time
large content providers are relying less on Tier-1 ISPs, and
more on peering with lower tiers. This finding is supported by
Labovitz et al [37], who report a rapid increase in the traffic
flow over peer links over time, resulting in a less hierarchical
Internet topology. These observations could potentially explain
some of our results, as we discuss in section VI.

In addition to studying business relationships, Dhamdhere
el al [38] reported on changes in average degree and average
path length over time. Their results on path length agree with
ours, although their study included only data up to 2007, so
the trends are less clear. Because the degree distribution does
not change, it is likely that the shift they see in average degree
is a result of a steadily increasing sample size. Another study
[39] used spectral analysis to investigate clustering on the AS
graph, and study coreness and changing path diversity. This
analysis, however, covers short time spans (at most two and a
half years), and only considers data before 2004.

The work of Zhang et al [40] is perhaps closest to ours. They
study changes in several topological measures over the time
period from 2001 to 2006. Because of this time period, their
results do not capture the trends we report post-2005. However,
the changes they document agree with what we observed in
the earlier period: They find the assortativity and k-cores are
stable over time and from 2004/2005 onwards, the k-max
value changes little. Further, they find the average clustering
coefficient starts declining around 2005, and the average path
length starts increasing gradually.

VI. DISCUSSION

We have reported a distinct shift in the topology of the
visible Internet since 2005: the average path length is in-
creasing, and the average clustering coefficient is decreasing
(Figure 4). On the surface, it would appear that the Internet is
getting both less efficient and less resilient. But this may not
actually be the case, because the the shift is likely caused by
changes in peering policies that affect the hidden Internet and
cannot be measured with public BGP dumps. As mentioned
in section V, there are several studies showing that content
providers are routing more traffic over hidden peer-to-peer
links, and relying less on the more publicly visible Internet
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infrastructure. Consequently they have less need to establish
new customer-provider links, and a decreasing number of new
customer-provider links increases the observed average path
length of the graph.

Most models match topological measures that are invariant
over time in the AS graph, particularly centrality. However
performance degrades when examining time-variant measures
such as average path length and clustering coefficient. Fu-
ture modeling efforts will need to focus on incorporating
mechanisms that can cope with such changing dynamics. For
example, few existing models allow for the loss of links
in the AS graph, a common feature according to our data.
Agent-based models such as ASIM are potentially a promising
direction for future AS topology modeling efforts because
they can naturally model economic pressures that lead to link
deletion. Further, robust statistical techniques such as the CMC
will be needed to verify topological results.

In conclusion, it is surprising that so few of the common
measures of Internet topology have changed over the past eight
years, even though the number of ASes has tripled during
this time period. Those measures that do change point to the
increasing importance of understanding the role of policy and
economics in determining Internet topology. Going forward,
it will be increasingly important to find ways to reveal hidden
links and evolving peering relationships.
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