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Abstract—The increasing size and complexity of high
performance computing (HPC) systems have lead to major
concerns over fault frequencies and the mechanisms nec-
essary to tolerate these faults. Previous studies have shown
that state-of-the-field checkpoint/restart mechanisms will
not scale sufficiently for future generation systems. There-
fore, optimizations that reduce checkpoint overheads are
necessary to keep checkpoint/restart mechanisms effec-
tive. In this work, we demonstrate that checkpoint data
compression is a feasible mechanism for reducing check-
point commit latency and storage overheads. Leveraging
a simple model for checkpoint compression viability, we
show: (1) checkpoint data compression is feasible for many
types of scientific applications expected to run on extreme
scale systems; (2) checkpoint compression viability scales
with checkpoint size; (3) user-level versus system-level
checkpoints bears little impact on checkpoint compression
viability; and (4) checkpoint compression viability scales
with application process count. Lastly, we describe the
impact checkpoint compression might have on projected
extreme scale systems.
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I. INTRODUCTION

High-performance computing (HPC) systems have
been increasing dramatically in size, and this trend is
expected to continue. On the current Top 500 list [1],
300 (or 60%) of the 500 entries have greater than 8,192
cores, compared to 17 (or 3.4%) just 5 years ago. Also
on this list, four of the systems have more than 200K
cores; an additional seven have more than 128K cores,
and another 10 have more than 64K cores. This year,
the Lawrence Livermore National Laboratory schedules
to deploy its 1.6 million core system, Sequoia [2], and
future extreme scale systems are projected to have on
the order of tens to hundreds of millions of cores by
2020 [3].

Future high-end systems are also expected to increase
in complexity; for example, heterogeneous systems like
CPU/GPU-based systems are expected to become much
more prominent. We expect increased system sizes

along with this increased complexity to yield extremely
low mean times between failures (MTBF). Recent stud-
ies indeed show that system failure rates depend on the
numbers of processor chips and that system MTBF for
the biggest systems on the Top 500 lists are expected
to fall below 10 minutes in the next few years [4]

In HPC, checkpoint/restart is perhaps the most com-
monly employed fault-tolerance mechanism for appli-
cations. Yet, as we describe in Section II, increas-
ing checkpoint/restart overheads coupled with higher
failure frequencies threaten to make checkpoint/restart
infeasible for future systems. Compressing checkpoint
data is, perhaps, an obvious strategy for improving
checkpoint/restart efficiency, but compression is not
viable if its benefits do not outweigh its costs. Alas,
the majority of applications and systems that use
checkpoint/restart do not compress checkpoint data. In
this work, we demonstrate that given the current and
increasing gap between processing and data transfer
capabilities, checkpoint compression can be a very
effective strategy for improving both the time and space
efficiency of checkpoint/restart-based fault tolerance.
We use a combination of mini-applications or mini
apps [5] and a representative scientific application,
LAMMPS [6] along with the Berkeley Lab Check-
point/Restart (BLCR) framework [7] and a set of off-
the-shelf compression utilities to study the viability of
checkpoint compression. In this paper, we present the
result of this study and make the following contribu-
tions:

• We offer a viability model for checkpoint data
compression that accounts for the cost and benefits
of compression for both checkpoint commit and
recovery operations;

• We show that checkpoint data compression can be
a very effective strategy for reducing checkpoint
and restart latencies;



• We show what compression algorithms are best
suited for checkpoint data compression;

• We show that application scale, in terms of mem-
ory footprint size, process counts, or run time can
bear little impact on the effectiveness of checkpoint
data compression;

• We show that checkpoint data compression can
be effective for both application-level and system-
level checkpoints;

• We show that checkpoint data compression can
improve significantly an application’s makespan,
the application’s time to solution in the presence
of failures; and

• We offer a discussion of checkpoint data compres-
sion given current high performance processor and
I/O technologies and trends.

The organization of this paper is as follows: in
the next section, we give a background of the check-
point/restart mechanism and a survey of related check-
point compression work. In Section III, we present our
checkpoint compression viability model and describe
how we can use it to model both coordinated and
uncoordinated distributed checkpointing protocols. In
Section IV, we describe the applications, compression
algorithms and the checkpoint library that comprise our
evaluation framework as well as our experimental re-
sults. We conclude with a discussion of the implications
of our experimental results for future checkpoint/restart
research, development and deployment.

II. BACKGROUND AND RELATED WORK

During normal operation, checkpoint/restart (or roll-
back recovery) protocols [8], periodically record process
state to stable storage devices, devices that survive
tolerated failures. Process state comprises all the state
necessary to run a process correctly including its address
space or memory footprint and register states. When a
process fails, a new incarnation of the failed process
is recovered from the intermediate state of the failed
process’ most recent checkpoint – thereby reducing the
amount of lost computation. Checkpoint/restart is a well
studied, general fault tolerance mechanism. However,
recent studies [4], [9], [10] predict poor utilizations
(approaching 0%) for applications running on imminent
systems and the need for dedicated reliability resources.

A. Checkpoint Optimizations

Focusing on the checkpoint on the checkpoint commit
problem, saving a checkpoint to stable storage, we can
consider two sets of checkpoint optimization strategies.
The first set of strategies hide or reduce (perceived)
commit latencies without actually reducing the amount

of data to commit. These strategies include concurrent
checkpointing [11], [12], diskless or multi-level check-
pointing [13]–[15], remote checkpointing [16], [17] and
checkpointing filesystems [18]. The second set of strate-
gies reduce commit latencies by reducing checkpoint
sizes. These strategies include memory exclusion [19]
and incremental checkpointing [20]–[22]. In Section V,
we discuss the potential interplay between these opti-
mizations and checkpoint compression.

B. Related Compression Research

Li and Fuchs implemented a compiler-based check-
pointing approach, which exploited compile time infor-
mation to compress checkpoints [23]. They concluded
from their results that a compression factor of over
100% was necessary to achieve any significant ben-
efit due to high compression latencies. Plank and Li
proposed in-memory compression and showed that, for
their computational platform, compression was benefi-
cial if a compression factor greater than 19.3% could
be achieved [24]. In a related vein, Plank et al also
proposed differential compression to reduce checkpoint
sizes for incremental checkpoints [25]. Moshovos and
Kostopoulos used hardware-based compressors to im-
prove checkpoint compression ratios [26]. Finally, in a
related but different context, Lee et al study compression
for data migration in scientific applications [27].

This work focuses on the use of software-based
compressors for checkpoint compression. Given recent
advances in processor technologies, we demonstrate that
since processing speeds have increased at a faster rate
than disk and network bandwidth, data compression can
allow us to trade faster CPU workloads for slower disk
and network bandwidth.

III. A CHECKPOINT COMPRESSION VIABILITY
MODEL

Intuitively, checkpoint compression is a viable
technique for improving the performance of check-
point/restart protocols when the benefits of checkpoint
data reduction outweigh the costs of reducing the
checkpoint data. Our viability model is inspired by
the concept offered by Plank et al [24]. Plank et al
focused solely on the impact of compression for the
checkpoint commit phase. Our model addresses the cost
and benefits of compression for both checkpoint and
recovery phases. In Section IV-E, we use the results
from this model to determine the overall impact of
checkpoint compression on application performance.

We assume that individual processes of a distributed
application are checkpointed in a coordinated fashion:
all processes coordinate at the end of each checkpoint
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interval to checkpoint a globally consistent application
state comprised of one checkpoint per process. This is
the commonly employed strategy in the HPC domain.
We also assume that there are an equal number of
checkpoint and recovery operations. Our justification for
this latter assumption follows: optimally, an application
takes a single checkpoint before each failure – upon
failure, only the most recent checkpoint is used, there-
fore, other checkpoints are not useful. The application
only needs to recover once per failure. Therefore, in
the optimal case, the number of checkpoints equals
the number of failures, which equals the number of
recoveries. There are various works that define optimal
checkpoint intervals [28], [29]. Finally, we assume that
checkpoint commit is synchronous; that is, the primary
application process is paused during the commit oper-
ation and is not resumed until checkpoint commit is
complete.

Checkpoint compression is viable when the time to
compress and write or commit a checkpoint and the time
to read and decompress that checkpoint is less than the
time to commit and read the uncompressed checkpoint.
Assuming the times to read and write are the same:

tcomp + 2tcc + tdecomp < 2tuc

where tcomp is compression latency, tdecomp is decom-
pression latency, tcc is the time to read or write the
compressed checkpoint and tuc is the time to read or
write the uncompressed checkpoint. This expression can
be rewritten as:

c

rcomp
+ (2× (1− α)× c

rcommit
) +

c

rdecomp
< 2× c

rcommit

where c is the size of the original checkpoint, com-
pression factor α is the percentage reduction due to data
compression, rcomp is compression speed or the rate
of data compression, rdecomp is decompression speed,
and rcommit is commit speed or the rate of checkpoint
commit or reading (including all associated overheads).
The last equation can be reduced to:

2α× rcomp × rdecomp

rcomp + rdecomp
< rcommit (1)

Equation 1 defines the minimal ratio between check-
point commit rate and compression rate, decompression
rate and compression factor in order for the overall time
savings of checkpoint compression to outweigh its costs.
Of course, checkpoint compression has the additional
benefit of saving storage space, but we do not factor
that into our model.

IV. AN EVALUATION OF CHECKPOINT
COMPRESSION

In this study, we seek to answer several fundamental
questions regarding checkpoint data compression:

• Can benefit of compressed checkpoints outweigh
the additional latencies necessary to compress and
decompress the checkpoint?

• Do the time or space scales of an application
impact checkpoint data compression?

• Does the viability of checkpoint data compression
change for application-level versus system-level
checkpoints?; and ultimately

• What real impact can checkpoint compression have
on the execution time of an application?

We now describe the applications, tools and experiments
we use to answer these questions and discuss the
conclusions we have made based on our experimental
and modeling results.

For all but our scaling experiments, we used a 64-
bit, four core Intel Xeon processor with a 2.33 GHz
clock cycle rate and 2 GB of memory. For our scaling
study, we collected checkpoints from application runs
on a Cray XT5 series machine. However, for uniformity
and ease of access to the compression utilities, these
checkpoints also were compressed/decompressed on our
four core workstation.

A. Evaluation Tool Chain

We used a range of applications, libraries and utilities
in this study. In this section, we describe these various
components.

1) The Mini Applications: We chose four mini-
applications or mini apps from the Mantevo Project [5],
namely HPCCG version 0.5, miniFE version 1.0, pH-
PCCG version 0.4 and phdMesh version 0.1. The first
three are implicit finite element mini apps and phdMesh
is an explicit finite element mini app. HPCCG is a con-
jugate gradient benchmark code for a 3D chimney do-
main that can run on an arbitrary number of processors.
This code generates a 27-point finite difference matrix
with a user-prescribed sub-block size on each processor.
miniFE mimics the finite element generation assembly
and solution for an unstructured grid problem. pHPCCG
is related to HPCCG, but has features for arbitrary scalar
and integer data types, as well as different sparse matrix
data structures. PhdMesh is a full-featured, parallel,
heterogeneous, dynamic, unstructured mesh library for
evaluating the performance of operations like dynamic
load balancing, geometric proximity search or parallel
synchronization for element-by-element operations.
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Mini apps are small, self-contained programs that
embody essential performance characteristics of key
applications. While the Mantevo mini apps are not (yet)
as popular as other HPC benchmarks, like the NAS
Parallel Benchmarks or the HPC Challenge Benchmark,
we believe the mini apps are much better suited for this
study. HPC benchmarks generally target the evaluation
of computer system performance. On the other hand, the
mini apps are meant to be lightweight application prox-
ies for the heavyweight counterparts. In other words,
the mini apps are intended to mimic real application
characteristics including the memory footprint proper-
ties relevant to this checkpoint compression study.

2) A Full Application: LAAMPS: We use LAMMPS
(the Large-scale Atomic/Molecular Massively Parallel
Simulator) to evaluate checkpoint compression on a full
featured scientific application. LAMMPS [6], [30] is a
classical molecular dynamics code developed at Sandia
National Laboratories. LAMMPS is a key simulation
workload for the U.S. Department of Energy and is
representative of many other molecular dynamics code.
In addition, LAMMPS has built-in checkpointing sup-
port that allows us to compare generic, system-based
mechanisms with an application specific mechanism.
For our experiments, we used the embedded atom
method (EAM) metallic solid input script, which is used
by the Sequoia benchmark suite.

3) Compression Utilities: For this study, we focused
on the popular compression algorithms investigated in
Morse’s comparison of compression tools [31]. We
do not present results from some algorithms that did
not perform well. Additionally, some algorithms can
be parameterized to trade between execution time for
compression factor. We only present the parameter set
that represents the best trade-off.

• zip: zip is an implementation of Deflate [32], a
lossless data compression algorithm that uses the
LZ77 [33] compression algorithm and Huffman
coding. It is highly optimized in terms of both
speed and compression efficiency. The zip algo-
rithm treats all types of data as a continuous stream
of bytes. Within this stream, duplicate strings are
matched and replaced with pointers followed by
replacing symbols with new, weighted symbols
based on frequency of use.

zip takes an integer parameter that ranges from
zero to nine, where zero means fastest compression
speed and nine means best compression factor. For
our experiments, “zip(1)” represents the best
trade-off.

• 7zip [34]: 7zip is based on the Lempel-Ziv-

Markov chain algorithm (LZMA) [35]. It uses a
dictionary scheme similar to LZ77.

• bzip2: bzip2 is an implementation of the
Burrows-Wheeler transform [36], which utilizes
a technique called block-sorting to permute the
sequence of bytes to an order that is easier to com-
press. The algorithm converts frequently-recurring
character sequences into strings of identical letters
and then applies move to front transform and
Huffman coding.

In bzip2, compression performance varies with
block size. bzip2 takes an integer parameter that
ranges from zero to nine, where a smaller value
specifies a smaller block size. For our experiments,
“bzip2(1)” represents the best trade-off.

• pbzip2 [36]: pbzip2 is a parallel implementa-
tion of bzip2. pbzip2 is multi-threaded and,
therefore, can leverage multiple processing cores
to improve compression latency. The input file to
be compressed is partitioned into multiple files that
can be compressed concurrently.
pbzip2 takes two parameters. The first param-

eter is the same block size parameter as in bzip2.
The second parameter defines the file block size
into which the original input file is partitioned. For
our experiments, “pbzip2(1,5)” represents the
best trade-off.

• rzip: rzip uses a very large buffer to take advan-
tage of redundancies that span very long distances.
It finds and encodes large chunk of duplicate data
and then uses bzip2 as a backend to compress
the encoding.

Similar to zip, rzip takes an integer pa-
rameter that ranges from zero to nine, where
zero means fastest compression speed and nine
means best compression factor. For our experi-
ments, “rzip(3)” represents the best trade-off.

4) Checkpoint/Restart Utilities: The Berkeley Lab
Checkpoint/Restart library (BLCR) [7], a system-level
infrastructure for checkpoint/restart, is an open source
checkpoint/restart library and is deployed on several
HPC systems. For most of our experiments, exclud-
ing some application specific checkpoints taken with
LAMMPS, we obtained checkpoints using BLCR. Fur-
thermore, we use the OpenMPI [37] framework, which
has integrated BLCR support.

For our scaling study we used a user-level check-
point library built into LAMMPS. LAMMPS can use
application-specific mechanisms to save the minimal
state needed to restart its computation. More specifi-
cally, it saves each atom location and speed. The largest
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data structure in the application, the neighbor structure
used to calculate forces, is not saved in the checkpoint
and is recalculated upon restart. This scheme reduces
per-process checkpoint files to about one eighth of the
applications memory footprint.

B. Evaluating Checkpoint Compression Effectiveness

We compressed and decompressed many checkpoints
collected from our application suite using the different
compression utilities. For each experiment, we mea-
sured the performance metrics the performance met-
rics necessary to determine checkpoint viability using
Equation 1 from Section III, namely compression factor,
compression speed and decompression speed.

For our baseline experiments, we were not concerned
about scaling along either the time our space dimen-
tions. We chose problem sizes that allowed each appli-
cation to run long enough to generate 5 checkpoints.
The three implicit finite element mini apps, HPCCG,
pHPCCG and miniFE were given a 100x100x100 prob-
lem size. phdMesh and LAMMPS were given a 5x5x5
problem size. Each application was run using 2–3
MPI processes, except for phdMesh, which was run
without MPI support. Checkpoint intervals for miniFE,
pHPCCG, HPCCG and LAMMPS were 3, 3, 5 and 60
seconds, respectively. For phdMesh the 5 checkpoints
were taken at simulation timestep boundaries. BLCR
was used to collect all checkpoints, which ranged in
size from 311 MB to 393 MB for the mini apps to
about 700 MB for LAMMPS.

Figure 1 shows how effective the various algorithms
are at compressing checkpoint data. We can see that all
the algorithms achieve a very high compression factor
of about 70% or higher for the mini apps and about 57-
65% for LAMMPS, where compression factor is com-
puted as: 1 − compressed size

uncompressed size . This means, then that the
primary distinguishing factor becomes the compression
speed, that is, how quickly the algorithms can compress
the checkpoint data.

Figures 2(a) and 2(b) show compress and decompres-
sion speeds, respectively. In general, and not surpris-
ingly, the parallel implementation of bzip2, pbzip2,
generally outperforms all the other algorithms. Decom-
pression is a much faster operation than compression,
since during the compression phase, we must search
for compression opportunities, while during decompres-
sion, we simply are using a dictionary or lookup table
to expand compressed items.

Based on the above results and Equation 1

2α× rcomp × rdecomp

rcomp + rdecomp
< rcommit,

Figure 1. Checkpoint compression factors for the various algorithms
and applications. Higher is better: a factor of 90% means that file size
was reduced by 90%.

which represents our viability model, Figure 3 demon-
strates the checkpoint read/write bandwidths that make
compression viable. For each application, the highest
bar of all the compression algorithms represents its
worse case scenario. For the worse case application,
LAMMPS, checkpoint compression is viable unless a
system can sustain a per process checkpoint read/write
bandwidth of greater than about three GB/s. In the best
case, phdMesh, the necessary per process checkpoint
read/write bandwidth raises to greater than 11 GB/s.
In Section V, we describe the impact of these results
in the context of extreme scale systems. The executive
summary is that checkpoint compression is a very viable
solution for current and projected HPC systems. (Since
pbzip2 and zip performance dominate those of the other
compression utilities, for the remainder of this paper, we
only present results for these two algorithms.)

C. Evaluating the Impact of User versus System Level
Checkpoints

Next, we examine the compression effectiveness of
system-level checkpoints versus that of application spe-
cific checkpoints. We use LAMMPS for this testing
due to its optimized, application specific checkpointing
mechanism described in the previous section. For these
tests we compare application generated restart files with
those generated by BLCR. In each case, we take 5
checkpoints equally spaced throughout the application
run.

System-level checkpointing saves a snapshot of the
application context such that it can be restarted where
it left off. Application specific checkpointing only needs
to save the data needed to resume operation. As a
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(a) Compression (b) Decompression

Figure 2. Checkpoint Compression and Decompression Speeds.

result, for a fixed problem, system level checkpoints are
typically much larger in size. In our tests, LAMMPS’
application specific checkpoints were 170MB in size
compared to about 700MB BLCR generated check-
points. However, based on our results in Table I, we
observe that checkpoint compression is viable for both
application specific and system level checkpoints.

There is, however, a qualitatitve difference in the
break-even points for checkpoint compression. Our data
reveals that the major reason is that, system level
checkpoints compressed better than user level check-
points (for example, pbzip2 compression factors are

Figure 3. Checkpoint Compression Viability: Unless, checkpoint
read/write bandwidth exceeds our viability factor (y-axis), checkpoint
compression should be used.

56.5% compared to 43.3%). Additionally, the average
compression and decompression speeds were higher for
system level checkpoints than for user level checkpoints
(again for pbzip2, 94.8 MB/s compared to 87 MB/s).

pbzip(1,5) zip(1)
System Checkpoint 3.38 GB/s 2.13 GB/s
Application Checkpoint 2.79 GB/s 1.77 GB/s

Table I
COMPRESSION BREAK-EVEN POINTS FOR SYSTEM LEVEL AND

APPLICATION SPECIFIC CHECKPOINTS.

D. Evaluating the Impact of Scale

For our scaling experiments, we use the LAMMPS
and its its built-in checkpoint mechanism. We observe
how checkpoint viability scales with (1) memory size;
(2) time (between checkpoints); and (3) process counts.

In our first set of scaling experiments, we evaluate
the first two scaling dimensions, checkpoint size and
time between checkpoints. We progressively increased
the LAMMPS problem size while keeping the number
of applicaiton processes fixed at two. In this manner,
memory footprint and checkpoint sizes increases. This
also means that the application runs for a longer time,
since the per process workload has been increased. For
each LAMMPS process, five checkpoints were taken
uniformly throughout the application run. The check-
points we collected from these tests averaged about
168MB, 336MB, 470MB and 671MB for the various
problem sizes.
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(a) Scaling Checkpoint Sizes and Application Runtime. (b) Scaling Process Counts.

Figure 4. Results from our Scaling Experiments.

Figure 4(a) shows the viability results from these
experiments. We readily observe that in no case did
checkpoint size show any impact on the viability of
checkpoint compression for LAMMPS.

For the study of scaling in terms of process count,
we compare the compression ratios for a weak scaling
LAMMPS EAM simulation for between 2 and 128
MPI processes. In each test, the per-process restart file
size is over 170 MB. In these runs we take 5 equally
spaced checkpoints. Figure 4(b) shows once again that
application process counts did not bear an impact on
checkpoint compression viability. We have no reason to
believe these results will be different for larger process
count runs.

E. Performance Impact of Compression

To outline the impact of checkpoint compression on
application time to solution, we created a performance
model for expected time to solution for an applica-
tion with checkpoint/restart. This model is based on
Daly’s higher order model [28], which assumes node
failures are independent and exponentially distributed.
The model takes as input the mean time between failures
(MTBF) for the system, the checkpoint commit time,
the checkpoint restart time, the number of nodes used
in the application and the time the application would
take to complete in a failure-free environment.

We modified this model to integrate checkpoint com-
pression and decompression. For the checkpoint commit
time we included the time to compress the checkpoint
image as well as the time to write this compressed image

to stable storage on the parallel system. Similarly, on
restart we included the time to read the compressed
checkpoint image and perform the decompression step.

In Figure 5, we show the result of this model. In
this figures we show the efficiency of an application
computation. This efficiency metric is defined as the
time to solution in the failure environment divided by
the time to solution in a failure-free environment. For
this figure we use the best compression ratio and rates
for each application described previously in the paper.
In addition, this model assumes each node uses 2GB
of memory and that 1

3 of that memory is written on
each checkpoint. These values are representative of what
we have observed at the Sandia National Laboratory
for our capability workloads. Finally, we assume a five
year node MTBF as has been measured in current
studies [38].

Regarding file I/O rates to stable storage, we use a
report based on a study of I/O performance on Argonne
National Laboratories 557 TFlop Blue Gene/P system
(Intrepid) [39] to select I/O rates for our model. This
work executes an I/O scaling study majoring maximum
achieved throughput for carefully selected read and
write patterns. From this report, the best observable
per process I/O bandwidths 1 MB/s for both reading
and writing. This performance scales to about 32,768
processes and then decreases. For example, at 131,072
processes, per process read bandwidth is 385 KB/s and
per process write bandwidth is 328 KB/s. At any rate,
for our study, we optimistically choose the best observed
per process I/O bandwidth of 1 MB/s.
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Figure 5. Impact of Checkpoint Compression on Application
Efficiency.

From this figure we see that each of the compres-
sion rates measured in this work have a dramatic and
positive influence on the performance of traditional
checkpoint/restart at scales seen in today’s systems as
well as the expected scales of future systems.

V. DISCUSSION

A. Compression versus Checkpoint I/O Bandwidth

The relationship between compression performance
(compression factor and compression and decompres-
sion speeds) checkpoint I/O bandwidth is the key factor
of the viability of checkpoint compression. As Fig-
ure 3 shows, for our worse case application, LAMMPS
with pbzip2 compression, compression is viable if per-
process checkpoint bandwidths are less than 3 GB/s. In
the best case, phdMesh with pbzip2 compression, per
process checkpoint bandwidths must exceed 11 GB/s.
In Section IV-E, we described the best observed per
process I/O bandwidths that we found in the literature,
1 MB/s. For comparison, the Oak Ridge Cray XT5
Jaguar petascale system has peak per-node and per-
core checkpoint bandwidths of 5.3 MB/s and 1 MB/s,
respectively, three orders of magnitude less than needed.
Similarly, the Lawrence Livermore Dawn IBM BG/P
system has a peak per-node checkpoint bandwidth of
about 2 MB/s 1 As a result, aggressive use of checkpoint
compression appears to be viable and indeed desirable
on current large-scale platforms.

The performance impact of checkpoint compression
on future systems depends highly on future computer
storage architecture developments. One report suggested
using multiple disks per processor to provide suffi-
cient storage bandwidth for high-speed checkpointing

1Oak Ridge’s Spider Lustre-based file system provides 240 GB/sec
of aggregate bandwidth [40], while Dawn’s Lustre file system is listed
as providing 70 GB/sec of peak bandwidth on LLNLL reference
pages [41].

(5 GB/sec per process) [3]. Other researchers have
suggested using similar approaches that combine non-
volatile memories with spinning storage to reduce the
potential costs of the checkpoint file systems [42],
though anticipated storage system costs are still $60M.
These aggressive bandwidths are at the boundary of
where checkpoint compression is viable, and so it is
unclear whether or not checkpoint compression would
be useful if such high-bandwidth (and expensive) I/O
systems were adopted.

Checkpoint compression also reduces the bandwidth
and storage pressures on checkpointing file systems. If
energy consumption and cost of such storage systems
are important design limiters compared to the CPU
power and costs, as is expected [3], checkpoint com-
pression could be an important technology in reducing
the demands on exascale storage systems.

B. Compression versus Other Checkpoint Optimizations

We believe that checkpoint compression is com-
pletely complementary to other known checkpoint op-
timizations such as the ones listed in Section II. La-
tency saving techniques diskless, multi-level and remote
checkpointing still require the transfer of data from
one node to another. As such, checkpoint compres-
sion can still significantly decrease the time it takes
to transfer a checkpoint. Additionally, techniques that
store checkpoints in remote DRAM memories to avoid
disk latencies benefit from reduced checkpoint sizes.
Particularly for capability class applications, which are
resource intensive and often memory-bound, checkpoint
compression would reduce storage pressures on the
memory system.

Optimization strategies that also aim at reducing
checkpoint sizes, like memory exclusion and incremen-
tal checkpointing, can benefit further from data com-
pression. For example, if applications employing these
optimizations have similar “memory footprint features”
as the applications in this study, the portions of the
application processes’ address space that still need to be
checkpointed would demonstrate the same compression
viability features as in this study.

C. Compression Viability Model Assumptions

In this study, we assumed coordinated distributed
checkpoints, In actuality, for our viability model, it does
not really matter how many processes are checkpointing
simultaneously. Our model specifies the minimum per
process (or per checkpoint) bandwidth render compres-
sion useless. This is the case whether all processes are
actively checkpointing simultaneously or some subset
thereof (including singleton sets).
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We also assumed an equal number of checkpoints
and recoveries. The equations in Section III can easily
be modified to accommodate a disproportionate number
of checkpoints to recoveries. Lastly, we assumed a
synchronous checkpoint commit mechanism in which
the target process is preempted until the checkpoint has
been written to stable storage. As such, we can safely
assume that the application is interupted completely
for the entire checkpointing operation. If checkpoints
could be committed asynchronously, our model would
have to account for the reduced perceived latency and,
therefore, reduced impact of checkpoint commit on
application performance.

D. Future Enhancements

Our results show that different compression algo-
rithms exhibit different performance on different ap-
plication checkpoints. We would like to understand
what aspects and features of the checkpoint data impact
compression algorithm performance. This would help
us predict the optimal compression algorithm for a
particular application as well as give us insights into
how we might improve an algorithms performance.

The positive results from standard, off-the-shelf com-
pression utilities suggests that we might be able to
yield even better results with some customizations. As
suggested above, a detailed study what makes a good or
bad compression algorithm for checkpoint compression
could lead to optimization opportunies. Another promis-
ing avenue, which we are now exploring, is the use of
GPUs for accelerating compression speeds.
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