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Abstract

Nakamura [1974], and later independently, Toffoli [1978] and Nehaniv [2002]
proved that any synchronous cellular automaton can be simulated by an asynchronous
cellular automaton. Their constructions effectively discard many of the updates in
order to create a limited artificial synchrony between the cells. We consider the over-
head cost of this procedure, assuming that cells update in random order. In particular,
we prove explicit upper bounds on this overhead that depend only on the maximum
degree of the network.

1 Introduction
When you think of cellular automata, what example comes to mind first? For many, the
answer would be John Conway’s Game of Life, in which the cells of a square lattice
change states from alive to dead and back according to simple rules, which nevertheless
lead to surprisingly complex behaviors over time. This CA is synchronous in the sense
that, depending on our exact implementation, the cells must either all update simultane-
ously, or at least in a more or less deterministic order; therefore, some sort of global clock
is required to ensure that none of the cells race ahead or lag behind, in terms of how many
times they have updated.

Since one of the nice features of cellular automata is the extent to which all compu-
tation is done locally, we would prefer to avoid the need for globally coordinated update
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timing. Indeed, we would like our computation to be almost totally independent of the
order in which cells are updated.

Fortunately, this is always possible! As first shown in 1974 by Nakamura [1], and later
independently rediscovered by Toffoli [3] and Nehaniv [2], there is a simple construction
that allows any synchronous CA to be simulated by a completely asynchronous CA, as
long as each cell eventually updates infinitely often. The elegant idea is to augment each
cell’s state space slightly, to maintain a mod-3 counter of the number of times it has
successfully updated, and to ensure that each cell only changes state when its neighbors
have all caught up to it or are one step ahead.

This construction ensures that each cell will go through the same sequence of updates
as the original synchronous CA, although each cell does this on its own schedule. For two
cells that are far apart in the network, the coupling between their update schedules may
be very loose indeed.

In this paper, we examine the overhead incurred by the above construction, in terms
of the fraction of attempted updates which must be wasted because the counters of neigh-
boring cells have fallen behind. For simplicity, we will assume that, at any given time,
the next cell to update is chosen uniformly at random. More specifically, we will think of
each cell as updating at each ring of its own independent Poisson clock, that rings with an
average rate of 1.

Our main result is the following, which partially answers open problems (1) and (2)
from [2]. For a fixed graph G, define the asymptotic slowdown, S, as the asymptotic ratio
of the elapsed time to the number of successful updates of a given cell.

Theorem 1. Let G be a graph with maximum degree ∆. Then, assuming i.i.d. Poisson
updates, the asymptotic slowdown, S, for asynchronous simulation of any synchronous
CA network on G, satisfies

S exp(1− S) ≥ 1

1 + ∆
,

or, equivalently,

S ≤ W−1

(
−1

e(1 + ∆)

)
,

where W−1 denotes the lower branch of the Lambert W function.

Note that in the worst case when G is the complete graph on n vertices, the slowdown
equals the expected time for the standard Coupon Collector problem, i.e., ln(n). The
bound from Theorem 1 is approximately ln(n) + ln(ln(n)) in this case.
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Lattice ∆ S ≤
1-D (or path or cycle) 2 3.289
2-D square lattice 4 3.994
3-D cubic lattice 6 4.436
2-D square lattice with diagonals (Game of Life) 8 4.757

Figure 1: Bounds to the slowdown of some lattices of interest

2 Preliminaries
We will assume throughout the paper, that the automata network is given by the graph G
on n vertices with maximum degree ∆. We will be concerned with the following random
process, which models the number of successful updates at each vertex.

Each vertex v has its own i.i.d. Poisson clock, with parameter 1. At time t, we denote
by c(v, t) the count of successful updates at v. Initially, c(v, 0) = 0. Subsequently, each
time v’s Poisson clock rings at time t, we set c(v, t) = c(v, t−) + 1 if, for all w ∈ N(v),
c(v, t−) ≤ c(w, t), and otherwise, c(v, t) = c(v, t−). Here, the shorthand t− refers to any
time before t but after the preceding ring of v’s Poisson clock.

By the asymptotic efficiency, we mean the limit

1

S
:= lim

t→∞

c(v, t)

t
,

of the number of successful updates to the expected number of total updates. We refer to
the inverse efficiency, S, as the asymptotic slowdown.

Our assumption of continuous time is really just a convenience. By standard tech-
niques, all our results immediately translate into analogous results in discrete time, as-
suming each vertex is sampled independently uniformly at random.

3 A Comparison Argument for the 1-D Case
Note that, although the successful update counts ct(v) = c(v, t) tend to infinity, if we
mod out by additive constants, there are only finitely many possibilities, for a fixed graph,
G. Indeed, in this case, the function ct − min ct is a finite Markov chain with respect to
the continuous time parameter t. It follows from general principles that there is a unique
stationary distribution that this chain approaches in the limit as t→∞.

The asymptotic slowdown is therefore a function of this stationary distribution. In-
deed, we make the following observation.
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Observation 2. If, for a vertex v, the stationary probability is p that, for all w ∈ N(v),
c(v) ≤ c(w), then S = 1/p.

Note that this probability cannot depend on the vertex v, since no two vertices can
ever have their counts differ by more than n (we assume G is connected).

Unfortunately, the stationary distribution for ct (mod translation) is not so easy to
describe. In this section, we consider the special case when G is a 2n-cycle, for which a
slight variant of the Markov chain ct converges to a uniform distribution. Thereby, through
an easy comparison argument, we can prove a clean upper bound on the slowdown for
this graph.

Definition 3. Define the variant count functions c̃(v, t) by the same update rule as c(v, t),
but with the initial condition

c̃(v, 0) =

{
0 if v is even
1/2 if v is odd

Now, c̃ differs from c in that, for adjacent vertices v, w, we can never have a tie,
c̃t(w) = c̃t(v). Surprisingly, this leads to the following consequence. For convenience,
we will assume that c̃ is only defined up to translation by additive constants.

Lemma 4. The stationary distribution for 2c̃ is uniform over all functions 2c̃ : [2n]→ Z
that satisfy |c̃(i + 1)− c̃(i)| = 1, for all i, where i + 1 is computed mod 2n.

Proof. It is clear by induction that every c̃ is of the form described. A greedy construction
shows that every function of the form described is achievable starting from c̃0. All that
remains is to verify that the uniform distribution is stationary.

To see this, fix a function c̃t. Observe that the following are all equal:

• the number of distinct successor states from c̃t

• the number of distinct predecessor states to c̃t

• 1 plus the number of local maxima of c̃t

• 1 plus the number of local minima of c̃t.

This is clear, because each successful update converts a (preceding) local minimum into a
(subsequent) local maximum. And the number of maxima equals the number of minima
because ties are not allowed, so minima and maxima must alternate. Thus, under the
uniform distribution, the detailed balance condition is satisfied.
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Lemma 5. The c̃t process has asymptotic slowdown ≤ 4.

Proof. Consider a sequence of 2n coin flips used to generate c̃t (heads correspond to
a change of +1/2 from the previous value, tails to a change of −1/2). Since a local
minimum corresponds to a tails followed by a heads, we expect a 1/4 fraction of these.
This is in fact the asymptotically correct value for the slowdown as n → ∞, by an
application of the central limit theorem. However, for small n, the expected number
of local minima is larger, because the cycle topology creates some negative dependence
between successive differences.

Lemma 6. The ct process on the cycle has asymptotic slowdown ≤ 4.

Proof. For any fixed order of vertex updates, the process c̃t − c̃0 will always be ≤ ct.
Whenever they are equal, the c̃t process declines to update the odd cells unless they are
strict local minima, whereas the ct process will allow updates to non-strict local min-
ima. Since successful updates always increase the counts by 1, there is no way for c̃ to
“come from behind” to pass up c. The result follows from Lemma 5 and the definition of
slowdown.

Before going on, we observe that the uniformity of the stationary distribution of c̃
allows us to prove all sorts of other nice properties of it, such as that, with high probability,
maxv c̃(v, t)−minw c̃(w, t) = O(

√
n). Unfortunately, it seems that the actual distribution

of c(v, t) is quite far from uniform. Furthermore, we do not know how to generalize the
techniques of this section to higher dimensions.

4 Proof of Theorem 1
To prove a bound on the slowdown for general graphs, we will consider the ways a missing
update at some other vertex could interfere with the counter at vertex v reaching a certain
value. Fortunately, the locality of updates in a CA network means that the count at each
cell can only be influenced by events taking place within a certain “light cone” in space-
time (Figure 2). In our context, space is measured through the shortest-path distance in
G, while local time is measured in rings of the Poisson clock at a node.

Proof of Theorem 1. Construct a “space-time” graph G′ = (V ′, E ′), where V ′ = V ×
{0, 1, 2, 3, . . . }, and E ′ consists of all directed edges ((v, t), (w, t + 1)), where either
v = w or {v, w} ∈ E. See Figure 3.

In this graph, the node (v, t) corresponds to the event that the count c(v, t′) is at least
t. The edges into (v, t) correspond to the requirements that v and all of its neighbors must
previously have reached at least t− 1.
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Figure 2: A Light Cone.
[Source: Wikimedia Commons Image:World line.png]

(a) First layer of G′ (b) First two layers of G′ (c) First three layers of G′

Figure 3: A “past” light cone when G is a path or cycle.

Say that node (v, t) in G′ is occupied at time t′ if c(v, t′) ≥ t. Then, starting from
c0 = 0, each time the Poisson clock at a node u rings, we find the maximum t such that
all in-neighbors of (u, t) are occupied, and make (u, t) occupied, if it was not already.

The time it takes for a node v ∈ V to achieve ` updates equals to the time it takes
for node (v, `) to be occupied. By an easy induction, this in turn equals the sum of times
between consecutive Poisson clock rings along the slowest path from the base layer to v`.

Now, for any fixed path of length `, the probability that t time units do not suffice for
the ` Poisson clocks to ring in the correct order, equals

e−t
∑
j<`

tj

j!
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Thus, by a union bound over the (1 + ∆)` paths into (v, `), the probability that (v, `) is
unoccupied at time t is at most

(1 + ∆)`e−t
∑
j≤`

tj

j!

Setting t = S` and approximating the sum by its dominant term, corresponding to j = `,
we obtain

(1 + ∆)`

eS`
(S`)`

`!
≤
(

eS(1 + ∆)

eS

)`

which tends asymptotically to zero exactly below the threshold from the Theorem state-
ment. Since the convergence is exponential in `, the approximation of the `-term sum by
its maximum cannot affect the answer. Therefore, the proof is complete.

It is worth noting that despite our inability to describe the stationary distribution, and
the huge union bound in its proof, Theorem 1 still gives a noticeably better result in the
1-D case than the comparison argument from Section 3 (namely 3.289 instead of 4).

5 Tugs-of-War on Distributions

Brain-teasers of the style “What is the value of
√

1 +
√

1 +
√

1 + . . .” are commonplace.
In this case, the answer is well-defined, namely the golden ratio, 1.618.... We can view
this as a “tug-of-war” between alternating operations: “add one” and “square root.” The
first tends to drive us upward towards its fixed point at +∞, while the second tends to
drive us down towards its fixed point at 1. In general, the question of which of two
operations will “win” in the long run can be quite interesting.

Consider the following pair of operations A2,M2, on distributions. For a distribution
X , to sample from A2X , take two independent samples from X , and average them. To
sample from M2X , take two independent samples from X , and return the larger one.
More generally, we can consider operations Ak,Mk that sample k times independently
and then average or max respectively. The M operation increases its argument. The A
operation concentrates its argument, while keeping its mean fixed. Both operations have
the same infinity of fixed points, namely all distributions supported on a single real value.
What can we say in general about which operation wins in a tug-of-war?
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Figure 4: A visual representation of repeatedly maxing and averaging on a space-time
graph. Here the underlying topology is one-dimensional, and the alternating operations
are M4 and A2.

This question is motivated by an alternative approach to Theorem 1 that proved to be
less general. Basically, the idea is that in our time-space graph G′, the delay to occupy
vertex (v, 2) along a particular path equals the average of two independent Poisson clocks.
The overall delay to occupy vertex (v, 2) is the maximum of these delays, taken over the
3 different children of (v, 2). More generally, the recursive structure of the light cone
suggests a long alternating sequence of averaging and max operations. However, there
are two caveats: firstly, the max operations are not taken over independent samples (this
turns out to not really matter in our analysis), and secondly, in order to get the operations
to take the same number of arguments at each level, we take advantage of a high degree
of self-similarity for lattices, that is not present in more general graphs. See Figure 4
Although the application to slowdowns yields inferior results to Theorem 1, we feel that
this approach may be of some interest on its own.

If p is the probability that X ≤ A, where X is a random variable and A is constant,
then clearly the probability that the sum of ` independent copies of X is at most `A is at
least p`, since this is the likelihood that each Xi are at most A. The next result shows that,
for exponential moment bounds, something akin to a converse holds.

Lemma 7. If p is the best possible exponential moment bound for Pr (X ≤ A) then p` is
the best possible exponential moment bound for Pr

(∑` X ≤ `A
)

.

Proof. By Markov’s inequality we have the following exponential moment bound, for all
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t > 0,

Pr (X ≥ A) = Pr
(
etX ≥ etA

)
≤

E
(
etX
)

etA

A second application of Markov’s inequality gives the following exponential bound

Pr

(∑̀
X ≥ `A

)
= Pr

(
et

′ ∑` X ≥ et
′`A
)

≤
E
(
et

′ ∑` X
)

et′`A
=

E
(
Π`et

′X
)

et′`A
=

(
E
(
et

′X
)

et′A

)`

Setting t′ = t, where t was chosen optimally, we conclude

Pr

(∑̀
X ≥ `A

)
≤ p`

Now we are ready to prove that, as long as our starting distribution doesn’t decay too
slowly, each averaging operator beats every max operator.

Lemma 8. Suppose X has a finite exponential moment, and let k, ` ≥ 2 be fixed inte-
gers. Let Ak denote the ”average k i.i.d. copies” operator, and M` denote any operator
that takes the max of ` copies, arbitrarily correlated. Then the alternating sequence
(AkM`)

iX converges to a finite real number. Indeed, let p = (1/`)1−1/k. Then if a is such
that p is an exponential moment upper bound on Pr (X ≥ a), then (AkM`)

iX converges
to a real number between E (X) and a.

Proof. It is easy to verify that, when p is an exponential moment bound on Pr (X ≥ a),
that `p is an exponential moment bound on Pr (M`X ≥ a). By Lemma 7, we know that
(`p)k is an exponential moment bound on Pr (AkM`X ≥ a). But, by choice of p, (`p)k ≤
p. By an induction argument, we can deduce that the probabilities Pr ((AkM`)

iX ≥ a)
converge exponentially to zero, and hence the distributions (AkM`)

iX converge in mea-
sure to a distribution supported on reals ≤ a. Since the operator M` increases the expec-
tation of any non-constant distribution, it follows that (AkM`)

i converges in probability
to a real constant between E (X) and a.
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6 Conclusion
We have seen that, under a random vertex order, the overhead for implementing the asyn-
chronous simulation of synchronous CA’s is not only bounded as a function of the vertex
degrees, but is a rather small constant for most networks one might seriously consider
building. This can be viewed as further evidence of the practicality of such simulations,
and of the advantage of planning synchronously, but implementing asynchronously.

We conjecture that there are interesting results that remain to be proven about the
stationary distribution of the Markov chain ct. For instance, it seems plausible that the
“lag,” maxv,w c(v, t) − c(w, t) is O(

√
n) with high probability, which would tell us that,

viewed globally, the asynchronous local counters look much closer to being a distributed
global clock than we currently know.
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