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Abstract— BECCA (a Brain-Emulating Cognition and Con-
trol Architecture software package) was developed in order
to perform general reinforcement learning, that is, to enable
unmodeled embodied systems operating in unstructured en-
vironments to perform unfamiliar tasks. It accomplishes this
through automatic paired feature creation and reinforcement
learning algorithms. This paper describes an implementation
of BECCA on a seven Degree of Freedom (DoF) Barrett Whole
Arm Manipulator (WAM) undergoing a series of experiments
designed to test the reinforcement learner’s ability to adapt
to the WAM hardware. In the experiments, the following is
demonstrated, 1) learning to transition the WAM between
states, 2) learning to perform at near optimal levels on one, two
and three dimensional navigation tasks, 3) applying learning
in simulation to hardware performance, 4) learning under
inconsistent, human-generated reward, and 5) combining the
reinforcement learner with Probabilistic Roadmap Methods
(PRM) to improve scalability. The goal of the paper is to
demonstrate both the scalability of the BECCA reinforcement
learning approach using different formulations of the state
space and to show the approach in this paper operating on
complex physical hardware.

I. INTRODUCTION

Robotic path planning and control is a challenging task
and often requires intimate knowledge of a specific platform
to build a path planner for it. Reinforcement learning is
an alternative approach to hand designing a path planner.
There are many different reinforcement learning techniques
but they all have the machine learn how to find a path which
maximizes a metric called the reward by exploring state-
action sequences [1], [11], [5], [4], [3], [2], [12]. Abtahi
et al. in [1] describe a reinforcement learning technique
which combines deep belief networks with a function-
based reinforcement learner. [11] combines a traditional
reinforcement learning algorithm with additional input from
a human trainer. The work in [5] deals with combining the
approximation value function approach with the discretiza-
tion approach to reinforcement learning. Cuccu’s work in
[4] uses a type of reinforcement learning for artificial neural
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networks operating on the mountain-car benchmark. Clouse’s
work on reinforcement learning in [3] is about combining
a traditional reinforcement learner with apprentice learning
or mimic learning. Finally, the work of Legenstein et al.
discuses a technique for handling high dimensional inputs
[12].

The Barrett Whole Arm Manipulator (WAM), as seen in
Fig 1, is a 7 DoF robotic system. Instead of handcrafting a
control and path planning algorithm for the WAM, machine
learning techniques can be used to learn how to control and
path plan the WAM. BECCA is a general reinforcement
learner designed to learn how to control arbitrary robotic
platforms. In this paper BECCA is implemented on subsets
of the WAM platforms DoFs. The goal of this work is to
first provide a proof of concept on a physical platform and
then to investigate the scalability of different approaches.The
reinforcement learner is combined with the Probabilistic
Roadmap Methods (PRMs) in order to improve scalability.

Fig. 1. Whole Arm Manipulator (WAM).

II. RELATED WORK

Creating a general learning machine has been one of the
grand goals of artificial intelligence (AI) since the field was
born. Efforts to achieve this goal may be divided into two
categories. The first category uses a depth first approach,
solving problems that are complex, yet limited in scope, such
as playing chess. The assumption underlying these efforts is
that an effective solution to one problem may eventually be
generalized to solve a broad set of problems. The second
category emphasizes breadth over depth, solving large classes
of simple problems. The assumption underlying these efforts
is that a general solution to simple problems may be scaled



up to address more complex ones. An example of the first
category would be a master level chess playing agent, while
an example of the second category would be an agent with
the capabilities of an ant worker. The work described here
falls into the second category, focusing on breadth. The moti-
vating goal for this work is to find a solution to natural world
interaction, the problem of navigating, manipulating, and
interacting with arbitrary physical environments to achieve
arbitrary goals. In this context, environment refers both to the
physical embodiment of the agent and to its surroundings,
which may include humans and other embodied agents.
The agent design presented here is loosely based on the
structure and function of the human brain and is referred to
optimistically as a Brain-Emulating Cognition and Control
Architecture (BECCA) [16], [17].

A Brain-Emulating Cognition and Control Architecture
agent interacts with the world by taking in actions, making
observations, and receiving reward (see Fig. 2). Formulated
in this way, natural world interaction is a general rein-
forcement learning problem, [19] and BECCA is a potential
solution. Specifically, at each discrete time step, it performs
three functions:

1) reads in an observation, a vector o ∈ <m | 0 ≤ oi ≤ 1.
2) receives a reward, a scalar r ∈ < | −∞ ≤ r ≤ ∞.
3) outputs an action, a vector a ∈ <n | 0 ≤ a ≤ 1.
Because BECCA is intended for use in a wide variety of

environments and tasks, it can make very few assumptions
about the environments beforehand. Although it is a model-
based learner, it must learn an appropriate model through
experience. There are two key algorithms to do this: an
unsupervised feature creation algorithm and a tabular model
construction algorithm.

Fig. 2. At each timestep, the BECCA agent completes one iteration of
the sensing-learning-planning-acting loop, consisting of six major steps: 1)
Reading in observations and reward, 2) Updating feature set, 3) Expressing
observations in terms of features, 4) Predicting likely outcomes based on
an internal model, 5) Selecting an action based on the expected reward of
action options, and 6) Updating the model.

The feature creator component identifies repeated patterns
in the input vector [15]. It then groups loosely correlated
elements of the input vector. The groups are treated as
subspaces and unit vectors of these subspaces are features
[15]. New inputs are also projected onto existing features
and the single feature in each group which has the greatest
response is turned on while all others in that group are turned
off [14] [15] [18].

The reinforcement learning component receives feature

activity, reward, and direct input from the environment. Each
feature is associated with an approximate reward. It keeps
track of recent actions and recent features in working mem-
ory which is then used to update the model. The actual model
is a table of cause-effect pairs. The cause is the working
memory and the effect is the current feature. Considering
this in standard reinforcement learning language, the model
can be thought of as a sequence of state-action pairs. Entries
in the table which are rarely observed are deleted from the
model [14] [15] [18].

To chose an action the reinforcement learner compares
the current working memory to the entries in the model and
selects the entry which both matches the current working
memory and which has the highest recorded reward. With a
set probability, an exploratory action is chosen instead [14]
[15] [18].

III. METHODS

The methods section first describes the WAM hardware,
then the interface with the WAM, and finally, how a general
task is built for BECCA to utilize the WAM interface.
The reinforcement learner is designed for general purpose
learning on any platform but there is still a small amount
of configuration needed to allow it to interface with a
specific hardware. A task is a framework for incorporating
the specific requirements for any hardware. A task is a
translator for the action vector produced by BECCA to the
hardware, and a translator for the sensory information into
an input vector for the reinforcement learning approach. The
task also is responsible for calculating the reward for any
given state.

A. Robotic Hardware

The Barrett Whole Arm Manipulator (WAM) platform
used in the experiments is a seven degree of freedom (DoF)
robotic arm as seen in Fig. 1. It is a cable driven system
controlled with joint position encoders and torque sensors.
For the experiments in this paper, the WAM has been
connected to a GE Intelligent Platforms reflective memory
network in a spoke design that allows multiple computers to
share memory at speeds ranging from 43 MB/s to 170 MB/s.
The reflective memory network allows remote computers
to handle the planning, learning processing, and sensor
processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

B. WAM Interface

The WAM is connected to a xPC Target Kernel running
Matlab Simulink 7.7.0 R2008b [13]. The controller for the
WAM is written in Simulink and interfaces with remote
computers via the reflective memory network. The Simulink
code responsible for directly issuing commands to the WAM,
henceforth the WAM controller, receives a command vector
by reading a specific block of reflective memory. The com-
mand vector is a length seven vector containing the desired
joint angles in radians of each for the seven WAM joints.

The WAM controller, upon receiving a command vector,
places the command vector into a buffer, which only stores



one move. The command vector is first sanitized so that
each entry is within the WAM’s joint limits. If the WAM
is not executing a move, it compares its current location to
the command vector buffer. If the command vector buffer
is sufficiently different from the current location, the WAM
controller computes a linear interpolation in joint space
between the two joint angles and executes the path within the
allowable WAM workspace. However, the velocity follows
a fifth-order smooth polynomial as seen in Fig 3, and is
used both for safety and for mimicking biological motion
[6]. Slow beginnings and endings to moves provide safe
joint torques. In the current architecture a move cannot be
interrupted.
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Fig. 3. Example Velocity Profile for a Single Joint.

C. Tasks

BECCA is designed to be a reinforcement learner for
general robotic applications. Thus, there is a simple interface
between the external world and its internal representation of
the world. At the simplest level, it takes a vector of inputs and
transmits a vector for outputs. The structure of the inputs and
outputs is intended to be irrelevant to BECCA and so it must
learn the structure of both. Therefore, a designer must define
an input vector and an action (output) vector as well as a
reward structure for each task. The task must also define how
to interpret an action vector, and how to translate a sensory
information into an input vector. The manner in which the
task interprets outputs and delivers inputs to BECCA is
completely at the discretion of the task designer. Algorithm
1 is a pseudocode example of an interpretation of an action
vector, for a 1 DoF task.

For the 1 DoF task the joint space is partitioned into
equally spaced bins and BECCA is constrained to move
between bins. Algorithm 1 calculates the direction and
number of bins the action vector specifies to move. Line
1 first calculates the offset move for a given action vector.
For this task the action vector is treated much like a stepper
motor move. The vector has 8 components that are either 0
or 1. Vector component 1 corresponds to a move of one bin
to the right while component 2 corresponds to a move of
one bin to the left. Components 3 and 4 represent a move
of two to the right or two to the left and so on for the rest
of the components. A total move is calculated by summing
together all of the components to determine how many bins
to move and in which direction. Lines 2 and 3 calculate

Algorithm 1 interpretActionVector(action)
1: move← 1 ∗ action[1]− 1 ∗ action[2]

+2 ∗ action[3]− 2 ∗ action[4]
+3 ∗ action[5]− 3 ∗ action[6]
+4 ∗ action[7]− 4 ∗ action[8]

2: currentPos← getJointPositionFromWam()
3: actualMove← (move ∗ 0.3142 + currentPos[4])
4: if actualMove < jointMinLimit then
5: actualMove← jointMinLimit
6: end if
7: if actualMove > jointMaxLimit then
8: actualMove← jointMaxLimit
9: end if

10: return actualMove

the current position of the arm and then calculate the joint
angle that the arm should be at given the desired bin move.
Lines 4 through 9 then sanitize the actual move to be within
the joint limit constraints. It is important to note that at
initialization, BECCA does not know the transition function
between states, where a state corresponds to a particular input
vector, and an input vector is a vector of all zeros except for
the bin the WAM is currently in is a 1. It must learn what
each action vector does in a given state.

A task is a specific instance of a problem for BECCA to
learn. Algorithm 2 outlines the basic steps in a simple task.
In line 1 the action vector is retrieved from BECCA and then
interpreted by the task in line 2 by calling Algorithm 1. In
line 4 the move is sent to the WAM via the WAM interface
discussed in section III.B. An input vector is then generated
given the new state and sent to the reinforcement learner
in lines 5 through 10. Finally, a reward is calculated based
on the new state by lines 11 through 17. In the Algorithm
2 example, there is a single reward bin, which is given a
reward of +10, the edge bins are punished by a reward of
-10 and any other bin is punished by a reward of -1.

IV. EXPERIMENTS

The experiments section starts with a simple binning
formulation for a 1-DoF pointing task. It then progresses
to a 2-DoF pointing task to demonstrate the scalability
issues reinforcement learners have with specific problem
formulations. The manual training section then demonstrates
that BECCA can be used in a real time human-trained
environment for simple tasks. This is important since in order
for learning robots to be useful they will need to be trained by
human operators in specific tasks. Finally, the PRM section
proposes a solution to the scaling issues presented by the
simple binning formulation.

A. 1-DoF Task

The first experiment is a 1-DoF task. On the WAM joint
4, the elbow joint, is used for the single DoF. Joint 4 has a
range of motion from 0 radians to π radians. For simplicity,
the joint space is divided into 10 equally spaced bins, such
that any angle between 0 and 0.3142 radians is bin 1, any



Algorithm 2 Task Loop
1: loop
2: action← BECCA.getAction
3: move← interpretActionV ector(action)
4: sendMoveToWAM(move)
5: waitForMoveToF inish()
6: currentPos← getJointPositionFromWam()
7: bin← findBin(currentPos, numBins)
8: binV ector = [0, 0, 0, 0, 0, 0, 0, . . . , 0]
9: binV ector[bin]← 1

10: BECCA.inputV ector = binV ector
11: if bin == rewardBin then
12: BECCA.reward← 10
13: else if isEdgeBin(bin) then
14: BECCA.reward← −10
15: else
16: BECCA.reward← −1
17: end if
18: end loop

angle greater than 0.3142 and less than 0.6284 radians is
in bin 2 and so on until π radians. The binned joint space
becomes the state space and is used as the input vector to
BECCA. The input vector to BECCA is then of length 10,
and has zeros in every position except for the current bin. For
example if the WAM’s joint 4 is at angle 0.1125 radians then
it is in bin 1, and the input vector is: [1,0,0,0,0,0,0,0,0,0,0].

The action vector sent by BECCA for the 1-DoF task is a
length 8 vector and each entry in the vector is constrained to
be either a 0 or a 1. For the 1-DoF task, the action vector is
interpreted by Algorithm 1. The action vector for the 1-DoF
task was chosen to be a simple design without significant
regard for how well the reinforcement learner would handle
it. Algorithm 1, shows how the action vector for the 1-DoF
task is interpreted. Once the action vector and the input
vector operations have been specified they can be used in the
1-DoF task. Lastly, a reward function must be specified. In
this experiment, the basic algorithm (Algorithm 2) is altered
so that bin 5, the center bin, is given a reward of +10, and
every other bin is given a reward of -1 except the edge bins
1 and 10 which are given a -10 reward.

BECCA is first trained in simulation and then ported to
hardware partially through the experiment. Each data point
is the cumulative reward the reinforcement learner receives
after 100 iterations (100 iterations is a block).

Fig. 4 is an average of 10 runs on the 1-DoF task. BECCA
was first trained in simulation and then ported to hardwar
at block 25. Averaging the runs slightly smoothes out the
learning curve for BECCA and better illustrates the climb to
optimal performance at 700 units of reward. Fig. 4 is a proof
of concept for interfacing with a specific task. It appears that
BECCA does poorly, reaching only approximately 700 units
of rewards, however there is a 30 percent exploration rate at
minimum, thus on the simple 1-DoF task 700 units of reward
is approximately optimal due to the -10 edge punishment and
the fact that some exploratory actions have no effect. Here

optimal is receiving maximal reward.
It should be noted that even on the relatively small state

space of 10 bins and an action vector of length 8, BECCA
still takes on average 3,000 iterations to converge on optimal
behavior. 3,000 iterations with an average move time of
2 seconds on the WAM is approximately 1.7 hours of
operation time on the WAM, which presents a problem for
larger state/action spaces. The design of the WAM controller
interface allows for BECCA to be run in simulation mode
until convergence and then be connected to the WAM. A
simulation of the WAM is not a perfect matching to the
actual hardware due to idiosyncrasy of the hardware differing
minutely from the theoretical. However, BECCA is a general
learning program and is able to compensate for the difference
between simulation and real hardware after exposure to
the hardware. Thus, the experiments can be safely run in
simulation, which operates significantly faster than hardware
and reduces the time it takes BECCA to learn a task. An
iteration in simulation takes a fraction of second, while in
hardware a single iteration takes approximately 2 seconds.
In Fig. 4 the structures, which have been learned, are ported
to the WAM hardware at block 25.
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Fig. 4. Average of 10 1 DoF Task Learning Curves. The black vertical
bar shows the transition from simulation to the WAM hardware.

B. Manual Training

BECCA is also capable of being trained manually. In the
current version, version 0.3.9, manual training can be tedious
given the number of iterations required for convergence.
To compensate for the convergence time, a very simple 3
bin task with an action vector of length 4 is used during
the manual training experiment. A trainer can reward or
punish BECCA at any time, however only the last reward
or punishment is registered per move, where a move is a
single loop through Algorithm 2. Thus, this task differs from
the normal training task in that the reward function is at the
discretion of the trainer. The trainer can choose to change
how BECCA is rewarded at will. Standard training tasks
have a reward function which is coded directly into the task.
The 1-DoF manual training task is running on the WAM
robot without simulation bootstrap training. The trainer only
rewards BECCA when joint 4 is in the middle bin, which
places the elbow joint at π/2.



Fig. 5 shows the results of a typical manual training task.
In Fig. 5 BECCA is only rewarded for being in state 2.
The trainer sometimes intentionally fails to give reward for
being in state 2, to demonstrate that BECCA can handle
inconsistent rewards which it will likely receive in practice
from a human trainer. The trainer never gives punishment
during the experiment. Fig. 5 is slightly different from the
previous cumulative reward figure in that the block size is
only 5 iterations, and the reward is at most +10 per iteration
making the maximum 50 units of reward. The cumulative
reward seen in Fig. 5 shows that BECCA has converged
at around 50 iterations (block 10 on the independent axis).
The rapidity of convergence is due to the simplicity of the
task, but it demonstrates that BECCA can learn a task with
inconstant reward and can be trained by hand.

Fig. 6 shows the percentage of time spent in each bin. The
blue vertical striped bar shows the overall percentage of time
BECCA has spent in a bin, while the red horizontal striped
bar shows the percentage of time spent in a bin for the last
5 iterations. On average 70 percent of its time is spent in
bin 2, which is the only bin it receives reward in. 70 percent
is optimal due to a 30 percent exploration rate. The red bar
being at 100 percent in bin 2 indicates that BECCA chose
to spend all of its time in bin 2 over the last 5 iterations.
The results of both Fig. 5 and Fig. 6 show that BECCA is
correctly learning to select bin 2 over the other two bins
during the manual training task.
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Fig. 5. Manual Training 1 DoF Task Learning Curve.

C. 2-DoF Task

The previous two experiments have been on a single
degree of freedom and have had relatively small and simple
state spaces and action vectors. The 2-DoF task has an
exponentially larger state space than the 1-DoF task. The
2 degree of freedom task uses joint 2 and joint 4. Joint 2 has
a range of motion from -1.99 radians to 1.99 radians. Both
joint 2 and joint 4 are divided into 10 bins each, meaning that
the state space is now a 10 by 10 matrix of states. The action
vector must also be enlarged to 16. The first 8 components
control joint 2 and the second 8 components control joint
4 in the same way as the first 1-DoF task. Thus the state
spaces from the 1-DoF and 2-DoF task can be compared.
The state space for the 1-DoF task had 10 states with an

Fig. 6. Percentage of Time BECCA Spends in a Bin. This graph
corresponds to block 15 in Fig 5. The red horizontal striped bar shows that
BECCA chose to spend every step in bin 2, and thus received maximum
reward for that block.

action vector of length 8, resulting in a state/action space
of 10 ∗ 28 because BECCA can send an arbitrary bit string
of length 8. The state space for the 2-DoF task has 100
states and an action vector of length 16 giving a state/action
space of 100 ∗ 216. The reward function has been modified
to Reward = rJ2(Joint2Bin) + rJ4(Joint4Bin) where
rJ2 and rJ4 are defined as:

rJ2(x) =


10 if x = 5

−10 if x = 0 ∨ x = 10

−1 otherwise

rJ4(x) =


10 if x = 5

−10 if x = 0 ∨ x = 10

−1 otherwise

In rJ2 and rJ4 bin 5 corresponds to the middle bin, and
bins 0 and 10 correspond to the first and last bin, so the robot
will be in a right angle when it is in the correct location.

Fig. 7 shows the cumulative reward for the 2-DoF task.
After approximately 5000 iterations the reward stabilizes to
an oscillation between 500 and 1500 units of reward. Based
on the reward structure the maximum reward is 2000 per
block, which indicates that the 2-DoF task is performing
under optimum. The reason for the underperformance can
be better seen by looking at Fig. 8 and Fig. 9, which show
the percentage of time each joint spends in a particular bin.
Fig. 8 indicates that BECCA spends the majority of its time
in bin 5 for joint 2, but Fig. 9 indicates that not enough
time is spent in bin 5 for joint 4. The underperformance
stems from not fully learning the large state/action space.
If BECCA correctly finds joint 2 it still must find joint 4
simultaneously in order to locate the optimal state. An action
of length 16 has 216 possible bit vectors, and there are 100
states, thus BECCA would have to visit 100∗216 state action
combinations to fully explore the environment.

D. Probabilistic Roadmap Methods and BECCA

PRMs are a path planning technique used with robots with
high DoFs to reduce the complexity searching in a high-
dimensional and continuous space of possible conformations.
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Fig. 7. 2-DoF Task Cumulative Reward.

Fig. 8. 2-DoF Task Percentage of Time Spent in Each Bin for Joint 2. The
blue vertical striped bar shows the cumulative percentage of time spent in
a bin, while the red horizontal striped bar shows percentage of time spent
in a bin during the last block.

They have been applied to a variety of complex robot
types including manipulators [9], walking robots [8], and
nonholonomic robots [7]. PRMs tackle the planning problem
by working in conformation space (C-space) rather than the
workspace. In regards to joints, this means that each DoF of
a joint is mapped to a single dimension in C-space. Then,
the path planning problem is reduced to finding a sequence
of feasible states in this conformation space, those in C-free.

PRMs work by building a roadmap of possible feasible
motions in C-free [10]. They do this by randomly selecting
points in C-free. Then, nearby points are connected by
simple connection methods. Nearby can be defined by low-
cost Euclidean distance calculation to identify the k nearest
neighbors. Connection can be achieved using straight-line
interpolation.

The goal of incorporating PRMs was to help guide the
searching. For example, BECCA was successful at automat-
ically searching the large search space with 2 joints, however,
it struggled. This would be magnified with a 3 joint problem
moving from 100 states to 1,000 states, which would increase
the complexity at least by a factor of 10. Incorporating PRMs
allowed us to reduce the state space for 3-DoF tasks to the
number of nodes in the roadmap. For the results shown, the
state space has 50 nodes, but the number of nodes can be
adjusted.

For the 3-DoF task, joints 1, 2, and 3, are mapped into a 3

Fig. 9. 2-DoF Task Percentage of Time Spent in Each Bin for Joint 4. The
blue vertical striped bar shows the cumulative percentage of time spent in
a bin, while the red horizontal striped bar shows percentage of time spent
in a bin during the last block.

dimensional C-space. Then, fifty random points are sampled
in the C-space using a uniform distribution. The fifty points
are then connected probabilistically based on the distance
between the points, such that closer points have a higher
probability of being connected. Fig. 10 shows an example of
a PRM generated for the 3-DoF task.

Fig. 11 shows the cumulative reward per block for BECCA
operating on the 3-DoF PRM task. The maximum reward that
can be receive per iteration is 100, making the maximum
per block 10,000 units of reward. The reward structure for
the PRM task assigns a reward of 100 to the target node, a
reward of 10 to all neighbors of the target node, and a reward
of 1 to the neighbors of the neighbors. Every other node is
given a reward of 0. The goal state is chosen at random
from the 50 points, without loss of generality. BECCA’s
action vector is interpreted as which neighbor to transition
to. Each node in the PRM is numbered and the input vector
is 50 long, with each entry in the vector corresponding to a
particular numbered node. All values in the vector are set to
0 except for the current node’s number is set to 1. The PRM
covers a wide area in the WAM’s range of motion, but only
takes 900 iterations to reach a very high cumulative reward.
900 iterations is significantly fewer than the 5,000 iterations
required for the 2-DoF task to converge, which indicates that
PRM’s are very effective at reducing the convergence time
of BECCA.

To better see the convergence speed of the PRM method
compared to the engineering solution presented in the first
3 experiments, another experiment was performed as seen
in Fig. 12. In this last experiment, two 3-DoF tasks are
created, a simple and a hard task, using the same method
as the 2-DoF task except a third joint is added. The simple
3-DoF task has 3 bins per joint, and an action vector of
length 12. The hard 3-DoF task has 4 bins per joint, and
an action vector of length 18. Both simple and hard tasks
are rewarded by +(100/3) for being in bin 2 and receive
0 reward for being in any other bin. The reward structure
has been altered so that the simple and hard tasks have a
reward structure more similar to the PRM task. The altered
reward structure has a maximum reward of 100 per iteration
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Fig. 11. PRM Cumulative Reward for a 3-DoF Task.

and thus 10,000 per block, just like the PRM experiment.
The simple task has 27 possible states. The hard task has 64
possible states and the PRM has 50 states. Thus, the simple
and hard tasks bound the PRM in number of states. However,
it is important to note that the simple and hard tasks have
larger action vectors than the PRM due to how they were
engineered. Fig. 12 shows that the PRM method converges
much faster than either the simple 3-DoF or hard 3-DoF
task. The PRM method has reached the optimal of 7,000
units of reward by around 1,000 iterations while, the simple
3-DoF task has only reached approximately 6,000 units of
reward by 7,000 iterations. The 3-DoF hard task has only
reached approximately 3,500 by 7,000 iterations. Thus we
can see that the PRM task converges much faster than either
the simple or hard task.

To further show the scalability of the PRM approach we
produce Fig. 13 which plots the average reward of 10 runs
for each DoF from 1 to 7. This graph confirms that PRM-
BECCA is unaffected by the Degrees of Freedom with a
constant number of nodes. However, there is a problem with
just testing the Degrees of Freedom and holding the number
of nodes constant. By holding the number of nodes in the
PRM constant, the density of nodes decreases as the DoF
increases. Thus we must also test to see how BECCA scales
with the number of nodes.

In the following experiments we vary the number of nodes
from 60 to 200 in steps of 20, and the k neighbor parameter is
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Fig. 12. Cumulative reward for PRM, 3-DoF Simple, and 3-DoF Hard
tasks. The 3-DoF simple task has 3 bins per joint, giving a state space of
33. The 3-DoF hard task has 4 bins per and an action vector length of 18,
giving a state space of 43. The PRM task has 50 points which correspond
to 50 states.
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Fig. 13. Cumulative reward per block of 1-DoF to 7-DoF with
PRMs.

set to 4. Since the previous experiment showed that BECCA
would converge at the same number of steps regardless of
DoF we chose to do this experiment with 3 DoF. Again 10
runs are done for each number of nodes and the results are
averaged. Fig. 14 shows the average cumulative reward for
each test. It shows us that BECCA also converges at the same
time regardless of number of nodes in the graph. Fig. 14 is
practically indistinguishable from Fig. 13, thus showing that
BECCA converges at the same rate regardless of DoF and
regardless of the number of nodes in the PRM.
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Fig. 14. Reward per Block for Varying Number of Nodes.

It is important to note that this is a novel use of PRMs. In
previous work, they have been used to plan the motions for
complex robot systems [7], [8], [9]. However, by integrating
PRMs with BECCA, we are able to demonstrate automatic
learning of controls to achieve motion in complex problems.

V. CONCLUSIONS

BECCA is intended to be a general reinforcement learning
operating in unmodeled environments. The experiments in
this paper demonstrate BECCA running on a single WAM



platform under different constraints. BECCA performs very
well on small state/action spaces as seen in the 1-DoF task,
but struggles under larger state/action spaces as seen in the
2-DoF task. Large state/action spaces are a problem for many
reinforcement learning algorithms. The experiments in this
paper show that BECCA can learn how to operate a complex
machine such as the WAM in state/action spaces with varying
complexity. However, the experiments also show that the
complexity of those environments has a large impact on the
convergence time of BECCA. The hope is that BECCA can
learn any unconstrained environment, but the complexity of
the environment is such a large factor that realistically the
state/action space of the environment has to be carefully
engineered to insure feasible convergence times.

The PRM formulation of the problem demonstrates that
careful construction of the state space allows the reinforce-
ment learner to overcome the scalability issues. BECCA
scales very nicely from 1 to 7 DoF and under varying num-
bers of nodes in the roadmap using the PRM formulation.
However, it fails to scale using the binning formulation.
Therefore, PRMs work to improve the efficiency of the
BECCA reinforcement learning agent.
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