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ABSTRACT
Signature-based intrusion detection system (IDS) approaches rep-
resent the brunt of modern threat detection methods. This is pri-
marily due to their specificity and low false-positive rates and in
spite of scalability issues. The inherent scaling issues have meant
that measurements of these systems generally ignore the scaling
of systems beyond conventional parameter spaces. In particular,
while signature-based systems are conventionally measured for to-
tal packet processing throughput and false alarm rates, performance
is highly dependent on ruleset size. While IDS packet processing
performance may appear to be well understood, IDS scaling per-
formance has not been adequately characterized beyond available
rulesets. In this paper I present my measurement methods, describe
a straightforward method for generating large random rulesets, and
present an analysis of the scaling performance of the Snort IDS
system.

1. INTRODUCTION
Signature-based detection systems rely on explicit patterns within

input traffic. Such approaches offer very precise detection of known
threats at the cost of poor recall and poor coverage in the face of
new threats and new variants of old threats. On many networks,
qualified events (those resulting in an alert within the IDS) account
for only a small portion of total network traffic. As a result, the
usable coverage of signature-based IDS systems is severely lim-
ited. Expanded coverage and partial match information might be
retained by an IDS if it were not for poor performance scaling.

Commonly, commercial systems must often be tuned for a par-
ticular environment to achieve acceptable performance[1]. The
most common "tuning“ method is simply to remove unused sig-
natures. The costs of performing a signature-based detection are
roughly proportional to the sum of packet length and total signa-
ture length[2]. As network bandwidths have increased, so have the
number and variants of threats, driving the need for expanded cov-
erage, but remaining bounded by proportional increases in detec-
tion costs. It is the belief of the author that the high cost of modern
IDS, is inextricably due to poor coverage. If performance scaling
of these systems is well-understood, methods may be identified to
ameliorate long-term performance degradation.

The contribution of this paper is an experimental analysis of
Snort IDS scaling performance as ruleset size is varied. In addi-
tion to performance scaling, the frequency distribution of events is
assessed and an assessment of IDS alerts in respect to their infor-
mation content. The remainder of this paper reviews prior research
in the field, defines a set of metrics and cost functions for describ-
ing performance scaling of signature-based systems, and describes
the result of series of experiments used to determine the scaling
performance of recent versions of the widely used Snort IDS.

2. BACKGROUND

2.1 Signatures & Coverage
Signature-based IDS are precise and due to their simplicity have

been employed within many large-scale, commercially available
systems. In many systems each input (e.g. header, packet, TCP ses-
sion, event, event sequence, derived feature set, etc.) is compared
against sets of thousands of signatures in a more-or-less brute-force
manner. The patterns used and the algorithms employed for pattern
matching are very efficient. Significant gains have been made in
the last two decades in the area of pattern matching, leading to sub-
stantial performance improvements[3, 4, 5, 6, 7].

Commonly, signatures are written to be very precise with re-
spect to vulnerabilities, exploits, and other “known bad" sequences.
False negatives are common and false-positives are often manually
“tuned" out of rulesets over time[11]. Such systems have the ben-
efit of precision, but are generally poor at detecting new exploits
and are very labor intensive to maintain in the face of large num-
bers of vulnerabilities and exploits. The rule-tuning process of-
ten consumes a significant portion of the time spent managing a
signature-based system’s ruleset. Adaptive systems have been pro-
posed and constructed to alleviate some of these issues[12, 13, 14].
In many instances adaptation occurs only in direct response to oper-
ator feedback in identifying false-positives or operator information
overload.

There has been a number of independent studies regarding the
expansion of IDS coverage. Aikelin et al. describe an approach
to expanding Snort’s coverage of previously undetected variants by
relaxing and varying signature parameters[10]. In their approach,
rules are generalized by allowing lower-priority partial matches
when most of the features of a rule are matched. By generaliz-
ing each rule in this way, expanded coverage is gained. Other
approaches by Brumley et al. have focused on automated gener-
ation of vulnerability signatures[15, 16]. This has the benefit of
potentially catching zero-day attacks, but appears to be limited to
host-based detection systems. Network-based detection has also
benefited by the advent of automated signature generation, such
as the polymorphic worm signature approach by Zhang et al..[17]
or the use of honeypots and attack fingerprints by Portokalidis et
al[18]. As automated signature generation techniques evolve, the
need for improved IDS detection performance characteristics be-
come paramount.

2.2 Costs & Concessions
When implementing an IDS some form of cost analysis (e.g.

computing, latency, hardware, training, etc.) is generally performed
in order to choose the right IDS technology and ruleset for a given
network. There are many trade-offs which result in sub-optimal de-
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tection, but which decrease the IDS cost substantially. Many mod-
ern IDS also rely on labor-intensive tuning and rule-refinement to
match particular network characteristics and known host vulnera-
bilities. While improving performance, this process also introduces
a greater chance of false negatives. Work by Fan, et al. describe
cost metrics in terms of operational costs, attacker induced dam-
age, and incident response, citing the need to consider cost within
the development and deployment of IDS[13]. Others have cleverly
incorporated cost assessment into decision support systems to pro-
pose or enact response actions[19], IDS reconfiguration, and dy-
namic performance tuning[14].

Cost-driven optimizations allow IDS to be tractable given lim-
ited computing resources. However, they can easily be based on
tenuous assumptions. Any risk analysis which performs this type
of trade-off analysis needs to consider the possibility of attackers
gaming a system using knowledge of financial or computational
concessions. For example, the rule ordering of Snort and other
signature-based IDS are partially under user control and partially
under the control of engineering optimizations. This ordering mat-
ters. For example, the Snort IDS, by default only returns the first
(or at best a limited number) of alerts for a packet in order to elim-
inate as many comparisons as possible [20]. Careful management
of ruleset in order to achieve desired performance goals may also
mask performance issues and can actually decrease the usefulness
of IDS by removing contextual knowns from the stream of true-
positives being displayed to an analyst. In a perfectly “tuned" sys-
tem one might expect only the most high-priority events to be dis-
played and all other events to be discarded (or at least hidden). If it
were at all possible to perform intrusion detection without making
such concessions, we would greatly simplify the task of the IDS
designer (or maintainer). The challenge is achieving these goals
while also improving capabilities and performance.

2.3 Performance Measurement
IDS experimentation and test has tended to focus on three char-

acteristics, namely: detection performance, resource usage, and re-
silience[21]. Detection performance uses ground truth data to de-
termine detection rates: the true and false positives and negatives
detected by a system. The resources used by a particular system can
be measured as the average computing cost per packet or stream
processed, where packet sizes are specified as part of the test cri-
teria. Resilience has a broad array of meanings: performance in
resource constrained environments; effects of resource contention;
effects of high alarm rates during abnormal attacks; losses incurred
during high network loads; resilience to artificial attacks used to
mask attacker activities; and resilience to various attacks to the IDS
itself[21].

It is important to note that IDS performance characteristics are
generally not independent (though many experimenters have treated
them as such). Of primary importance is the coupling of resource
utilization and detector performance, performance degrading as con-
tention for the CPU or other shared resources increases[22, 23].
Similar to the approach given in this paper many studies also con-
sider the affect of ruleset size on successful packet processing rates
for a given system[22].

The use of synthetic or generated attack data is also common
for assessing IDS performance and resilience[24, 25]. Privacy and
confidentiality concerns are the primary motivation. As such, cre-
ating and making available labeled datasets is no easy task. Syn-
thetic approaches are not without their pitfalls, occasionally leading
to erroneous conclusions. Other testing approaches (such as those
used within the DARPA 1998 Evaluation) use real traffic on real
networks, but may still mis-characterize IDS performance due to

closed network topologies and unrealistic attack sequences[26]
I have taken a different perspective on IDS performance and have

chosen to measure its scaling performance in respect to ruleset sizes
well beyond rulesets which are commonly available. Within the
following experiments, the size of the IDS ruleset is intended to
serve as a proxy for IDS coverage. The actual coverage of an IDS
is is difficult to measure given that changing environments, vulner-
abilities, and network traffic each may contribute to whether alerts
occur or are relevant. I am concerned with the long-term scalability
of such systems as new threats emerge and new rules are added.

3. IDS SCALING PERFORMANCE

3.1 Generating Large Rule-sets
An obvious issue with testing an IDS’s rulesets size scaling per-

formance is that there don’t exist that many rules in the wild. A sig-
nificant deviation from traditional testing was the introduction of a
randomly generated ruleset. This was necessary in order to test the
performance of the system beyond the scale and scope of available
signature sets. It was desirable that the generated rules were sta-
tistically similar to the existing ruleset in respect to the string and
regular expression features used. For the purposes of generating
a large number of random rules, a straightforward algorithm using
non-parametric statistics was used to generate a ruleset of approxi-
mately 800K rules. It is important to note that the random rules do
not have any semantics and are solely used to test scalability of the
IDS. As such, traditional performance measures (such as rates of
true positives and false negatives) are meaningless.

To generate a large number of random rules: First, an existing
ruleset is split into individual features and each feature appended
to a file according to its label. Each labeled file contains as many
duplicates and unique features as there are duplicates and unique
features in the actual ruleset, totaling approximately 27,000 unique
features. Second, based on the number of rules desired, each rule in
an actual Snort ruleset is permuted thousands of times by replacing
each labeled feature with a sample drawn randomly from the la-
beled file for the feature. This was done in order to retain a similar
distribution of the feature labels and total number of features that
were used. As a result, random rules were generated that have the
same distribution of features and feature values as rulesets that are
normally used. Lastly, invalid and duplicate rules were removed by
eliminating rules which did not pass Snort’s rule parser.

One issue with this approach is that many invalid and duplicate
rules are generated and must be removed in order for the ruleset to
be used. Of 1.2M rules randomly generated, only 800K could be
retained after removal of duplicates. This leads to the random rules
being slightly biased towards more complex rules with a larger
number of features. As this results in an overestimate of perfor-
mance costs it is not an issue in respect to my research goals.

3.2 Measuring Performance Costs
Although the true cost function for performing detection using

a given IDS configuration and computing system is unlikely to be
known, it can be estimated using experimental measurements. In
particular, we can easily define a performance metric incorporating
cost functions Ctime (total CPU time) and Closs (percent packet
loss) and parameterized by the signature set size |n|. The cost func-
tions can be multiplicatively combined to mean CPU-time per % of
packets processed, appropriately penalizing high CPU-time or high
packet loss. Note that the cost function will change (particularly
with respect to packet drop rates) as the line speed is decreased.
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Figure 1: 5th order polynomial fit for Snort’s startup time as mea-
sured in seconds. R2: 0.9998.

C(n) = Ctime(n) · Closs(n) =
Ctime(n)

1− Closs(n)
(1)

The cost functions Ctime and Closs, need to be experimentally
determined. Depending on the application, the cost functions should
represent conservative estimates of the actual performance costs.

My test system was an Ubuntu Linux 11.04 system running on
a pair of 2GHz Dual-core AMD Operation processors, 28GB of
RAM, and consumer-grade Broadcom BCM5780 Gigabit ethernet
cards. The default Snort configuration (for version 2.9.0.3) was
used, but with secondary detection engines disabled or suppressed.
When a traditional ruleset was used, it was using the SourceFire R©

provided “VRT" release downloaded on Oct. 17, 2011.
My measurement approach obtains functional forms of the cost

functions for a particular system and IDS configuration. Many
of the performance characteristics of IDS systems are highly de-
pendent on system and software configuration[22]. Even small
changes in configuration or run-time options can have significant
effects on overall performance[23]. Hardware configuration, sys-
tem settings, and software configurations were kept consistent be-
tween tests.

3.2.1 Startup Performance
One of the first issues discovered in the current version of Snort

is extremely slow startup times for large ruleset sizes. Startup per-
formance is relevant as it can result in experiment run-time being
dominated by startup time. As a result, experiment sizes were kept
relatively small (< 50K rules) in respect to the ruleset available
(∼ 800K rules). Startup time was also required so that measure-
ments could be delayed until the IDS was ready for input.

An experiment was run to determine startup time which would
limit experiments. This experiment made use of the Linux “time"
program while running Snort against a small file containing a small
sample of 10 packets. The packet processing time in this case did
not have a measurable impact on the results for the sizes of rule-
sets tested. 10 trials were run at increments of 1,000 rules for each
ruleset size between 0 and 45, 000 (n = 450). Figure 1 shows
a best-fit polynomial function for Snort’s startup time on my test
system. A single test run using 100K rules required approximately
17 minutes which corresponded closely to the polynomial fit. Con-
sequently, the current startup performance hinders experimentation
with extremely large rulesets. Large rulesets might still be used, but
would need to be split between multiple Snort instances to achieve
reasonable startup times. It is also possible that there are configu-
ration options which may alleviate the issue, though these are not
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Signature set size vs CPU Time (n=400)

Linear fit: 
y = 103634 x + 4.01621e+09
rms = 0.768 seconds
χ2 = 214.47
σ = 1.06 seconds

Figure 2: Linear scaling of total CPU time of the Snort IDS with
ruleset size. Test system was Linux Ubuntu 11.04, running on a
pair of 2GHz Dual-core AMD Opteron processors.

known.

3.2.2 CPU Time Scaling Performance
Since we are comparing the cost of Snort instances running with

various sized rulesets, we can gauge the computing cost by measur-
ing the performance on a test platform as ruleset size is increased
and finding an acceptable function to model the system’s behavior
as shown in Figure 2.

A linear fit resulted in a simple estimated cost function in terms
of nanoseconds of CPU time:

Ctime(x) = 103634x+ 4.01621× 109 (2)

The y-intercept represents the total CPU-time for the entire sys-
tem when the IDS isn’t doing anything. The slope of the function
represents the cost in nanoseconds of CPU-time incurred due to
ruleset size increases. It was expected that the scaling performance
of the Snort IDS was linear in respect to ruleset size as the ver-
sion of Snort being assessed uses an Aho-Corasick algorithm for
string matching[2, 6]. This algorithm’s complexity is linear in the
sum of the length of patterns, the string being matched, and out-
put length[28]. Snort’s resource usage appears to scale linearly as
shown in Figure 2 with the glaring exceptions of startup time and
packet drops as described in the next section.

3.2.3 Packet Drop-rate Scaling Performance
Unfortunately, estimating performance by simply measuring to-

tal system CPU-time is eventually confounded by shared-resource
issues when measuring performance of Snort running with large
rulesets. Large rulesets, while incurring only a proportional in-
crease in CPU-time, result in substantial packet loss on the front-
end of the IDS. This finding is the reason that packet loss is in-
cluded in the cost function for the system. Without considerations
of packet loss we might only slightly overestimate performance
costs for small rulesets but we would grossly underestimate per-
formance costs for larger rulesets.

Several experiments were run to learn the packet drop rates as a
function of ruleset size. The randomly generated ruleset was used
to determine a worst case scaling rate. For these tests, the alert-
ing and logging facilities of Snort were disabled. In this way Snort
will not block due to I/O constraints on output alerting and logging
costs. This is particularly relevant when measuring performance
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Figure 3: Packets dropped by Snort as ruleset size increases (n=60).
Packets were replayed at the network card’s maximum throughput
(∼ 400 Mbps).
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Figure 4: 10 trials at each of 1K through 40K ruleset sizes for a
1M packet sample on a live ethernet interface. Packets were re-
played at the maximum interface speed (∼ 400 Mbps). The non-
monotonicity is due to high packet drop rates. Coverage measure-
ments must therefore be based on cached PCAP data to eliminate
drops from I/O blocking and CPU contention.

in respect to ruleset size as even small sets of randomly generated
rules are likely to produce a larger number of alerts than conven-
tional rules.

Figure 3 demonstrates that while rulesets of size n increase the
system overhead proportionally, the larger complexity of the ruleset
increases packet drop rates by up to a factor of 10. The cause for the
high packet drop rate is likely that the Snort process is starved for
CPU-time due to processor contention or conflicting I/O IRQs, pos-
sibly due to configuration issues such as a high NAPI (New API)
budge rate as suggested in [23]. The unfortunate side effect is that
the total number and type of alerts produced is not monotonically
increasing as ruleset size increases (see Figure 4).

High packet-loss issues have been noted by others and various
methods have been used to limit packet loss[23]. In our case, how-
ever, as the number of rules is increased, contention for the CPU
will eventually result in the same problem. As a result, the overall
shape of the packet loss function is unlikely to change significantly,
though this has not been thoroughly explored.

If we measure Snort’s packet processing rate using the built-in
performance monitor we can estimate the performance bottleneck
as an exponential function in terms of the percentage of received
packets processed. On my test system, an acceptable functional
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Figure 5: (a) Over-estimating fit for packet processing rate. (b)
Curves estimating packet processing rate as ruleset size is in-
creased.
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Figure 6: The cost function for the Snort IDS running on a test
system. CPU Time per percent packet units are nanoseconds per %.

model was found:

PacketProcessingRate ≤ 1.0392−0.008x + 0.0583 (3)

As can be seen from Figs. 5a and 5b, this fit is a gross over-
estimation of experimental measurements, but sufficient for our
purposes. An over-estimation of the number of packets success-
fully processed will result in an under-estimate of the effects of
increasing the number of rules in a particular IDS instance. For my
test system the packet-loss rate is:

Closs(n) ≥ 0.9417− 1.0392−0.008n (4)

It is important to reiterate that other architectures, operating sys-
tem kernels, and configurations will result in different scaling per-
formance, though the basic functional shape is likely to remain sim-
ilar. Figure 6 shows the scaling performance of the Snort IDS for
my test system. Note that the default ruleset size is well below the
knee of the performance curve.

4. DISCUSSION & FUTURE WORK
The basic measurement approaches presented here are not novel

except for the explicit representation of scaling performance be-
yond traditional ruleset sizes. As is the case with many scaling per-
formance studies, I have simply abused the IDS system by forcing it
to perform detection outside of its design parameters. However, the
end goal of all of this hand-wringing over IDS performance scal-
ing is to show how the performance characteristics are amenable to
new optimization methods[30, 31]. The promise is that much larger

4



rulesets might use the less computing power by trading an increase
in unlikely false negatives for smaller detector costs. For prediction
to play a significant role in improving IDS performance, new rule-
sets with superior coverage are needed along with new performance
models and testing methods.
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