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Abstract. The stochastic block model is a powerful tool for inferring
community structure from network topology. However, it predicts a Pois-
son degree distribution within each community, while most real-world
networks have a heavy-tailed degree distribution. The degree-corrected
block model can accommodate arbitrary degree distributions within com-
munities. However, since it takes the vertex degrees as parameters rather
than generating them, it cannot use them to help it classify the vertices,
and its natural generalization to directed graphs cannot even use the
orientation of the edges. In this paper, we present variants of the block
model with the best of both worlds: they can use vertex degrees and
edge orientations in the classification process, while tolerating heavy-
tailed degree distributions within communities. We show that for some
networks, including synthetic networks and networks of word adjacencies,
these new block models achieve a higher accuracy than the standard or
degree-corrected block models.
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1 Introduction

In many real world networks, vertices can be divided into communities or mod-
ules based on their connecting patterns. Social communities can be forged by
interactions in daily activities like karate training [22]. The blogosphere contains
groups of linked blogs with similar political views [1]. English words can be
tagged as different parts of speech based on their adjacencies in large texts [15].
Understanding these taxonomic structures is crucial in deciphering these topol-
ogy data. There has been a great deal of work on efficient algorithms for com-
munity detection in networks (see [10, 19] for reviews).

The Stochastic block model (SBM) [9, 11, 20, 3] is a popular model-based ap-
proach for functional community detection. It partitions the vertices into com-
munities or blocks, where vertices belonging to the same block are stochastically
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equivalent [21] in the sense that the probabilities of a connection with all other
vertices are the same for all vertices in the same block. With this general defi-
nition of functional communities, block models can capture various community
structures, including assortative, disassortative, satellite communities and mix-
tures of them [16, 17, 14, 13, 8, 7].

Given the block memberships, the SBM assumes that each edge is generated
independently, and follows a Bernoulli distribution solely determined by block
memberships of its endpoints. Since edges in the SBM are independent, and
since every pair of vertices in a given pair of blocks have a link with the same
probability, for large n the degree distribution within each block is Poisson. As
a consequence, the SBM dictates that vertices with very different degrees are
unlikely to be in the same block. This leads to problems when modeling the
networks like the political blogs, since within each community, e.g. liberal or
conservative, there are both highly popular and isolated vertices at the same
time.

Recently, Karrer and Newman [12] developed the degree-corrected block model
for undirected networks (DC). They add a parameter for each vertex, which
controls its expected degree. By setting these parameters equal to the observed
degrees, the DC can accommodate arbitrary degree distributions within commu-
nities. This removes the model’s tendency to separate high-degree and low-degree
vertices into different communities.

On the other hand, the degree-corrected model cannot use the vertex degrees
to help it classify the vertices, precisely because it takes the degrees as param-
eters rather than as data that needs to be explained. For this reason, DC may
actually fail to recognize communities that differ significantly in their degree
distributions. Thus we have two extremes: the SBM separates vertices by degree
even when it shouldn’t, and DC fails to do so even when it should.

For directed graphs, the natural generalization of DC, which we call directed
degree-corrected block model (DDC), has two parameters for each vertex: the
expected in-degree and out-degree. But this model cannot even take advantage
of edge orientations. For instance, in English adjectives usually precede nouns
but rarely the other way around. The ratio of each vertex’s in- and out-degree
could be very indicative for its block membership, and leveraging this part of
the degree information would be essential.

In this paper, we first propose the oriented degree-corrected block model
(ODC), which combines the strengths of the degree-corrected and uncorrected
block models. ODC is able to utilize the edge orientations for community detec-
tion by only correcting the total degrees instead of the in- and out-degrees sep-
arately. We show that for networks with strongly asymmetric behavior between
communities, including synthetic networks and networks of word adjacencies in
English text, ODC achieves a higher accuracy than either the original stochastic
block model or the degree-corrected block model.

We then propose the degree-generated block model (DGBM), which treats
the expected degree of each vertex as generated from prior distributions in each
community, such as power laws with different exponent and cutoffs in each com-
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munity. We then include the probability of these degrees in the likelihood of a
given block assignment. In this way, the model captures the dependence of the
degree distributions on the community structure. These degree-generated block
models automatically strike a balance between allowing vertices of different de-
grees to coexist in the same community on the one hand, and using vertex degrees
to separate vertices into right communities on the other. DGBM works especially
well for detecting community structures where communities have highly inhomo-
geneous degree distributions. These degree distributions differ enough between
communities so that we should use vertex degrees to help us classify the vertices.

Empirical study show that DGBM are indeed a very robust choice especially
when the connecting pattern alone is not enough to detect the community struc-
ture. DGBM has a further advantage in faster convergence as it reshapes the
landscape of the parameter space, providing the searching algorithm a short cut
to the desired community structure.

These new variants of the stochastic block model give us the best of both
worlds: they can tolerate heavy-tailed degree distributions within communities,
but can also use degrees and edge orientations to help classify the vertices. In
addition to their performance on these networks, our models illustrate a valu-
able point about generative models and statistical inference: when inferring the
structure of a network, you can only use the information that you try to generate.

2 The models

In this section, we review the degree-corrected block model of [12], and present
our variations on it, namely oriented and degree-generated block models.

2.1 Background: degree-corrected block models

Throughout, we use N and M to denote the number of vertices and edges, and
K to denote the number of blocks. The problem of determining the number of
blocks is a subtle model selection problem, which we do not address here.

In the original stochastic block model, the entries Auv of the adjacency matrix
are independent and Bernoulli-distributed, with P (Auv = 1) = pgu,gv . Here
gu is the block to which u belongs, where p is a K × K matrix. Karrer and
Newman [12] consider random multigraphs where the Auv are independent and
Poisson-distributed,

Auv ∼ Poi(θuθvωgu,gv ) .

Here ω replaces p, and θu is an overall propensity for u to connect to other ver-
tices. Note that since the Auv are independent, the degrees du will vary some-
what around their expectations; however, the resulting model is much simpler
to analyze than one that controls the degree of each vertex exactly.

The likelihood with which this model generates a graph G is then

P (G | θ, ω, g) =
∏
u,v

(θuθvωgugv )
Auv

Auv!
exp (−θuθvωgugv ) . (1)
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To remove the obvious symmetry where we multiply the θ’s by a constant C
and divide ω by C2, we can impose a normalization constraint

∑
u:gu=r

θu = 1
for each block r. Under these constraints, the maximum likelihood estimates
(MLEs) for the θ parameters are θ̂u = du/κgu where κr =

∑
u:gu=r

du is the
total degree of the vertices in block r. For each pair of blocks r, s, the MLE
for ωrs is then mrs, the number of edges connecting block r to block s (where
edges within blocks are counted twice). Substituting these MLEs for θ and ω
then gives the log-likelihood

logP (G | g) =
1

2

K∑
r,s=1

mrs log
mrs

κrκs
. (2)

2.2 Directed and oriented degree-corrected models

The natural extension of the degree-corrected model to directed networks, which
we call the directed degree-corrected block model (DDC), has two parameters
θinu , θ

out
u for each vertex. The number of directed edges from u to v is again

Poisson-distributed,
Auv ∼ Poi(θoutu θinv ωgu,gv ) .

With the constraints
∑
u:gu

θinu =
∑
u:gu

θoutu = 1 for each block r, the MLEs for
these parameters (see the online version) are

θ̂outu =
doutu

κoutgu

, θ̂inu =
dinu
κingu

, ω̂rs = mrs , (3)

where κinr , κ
out
r denote the total in- and out-degrees in block r and mrs is the

number of directed edges from block r to block s. Substituting these MLEs gives
the log-likelihood

logP (G | g) =

K∑
r,s=1

mrs log
mrs

κoutr κins
. (4)

In the DDC, the in- and out-degrees of each vertex are completely specified
by the θ parameters, at least in expectation. Thus the DDC lets vertices with
arbitrary in- and out-degrees to fit comfortably together in the same block. On
the other hand, since the degrees are given as parameters, rather than as data
that the model must generate and explain, the DDC cannot use them to infer
community structure. Indeed, it cannot even take advantage of the orientations
of the edges, and as we will see below it performs quite poorly on networks with
strongly asymmetric community structure.

To deal with this, we present a partially degree-corrected block model capa-
ble of taking advantage of edge orientations, which we call the oriented degree-
corrected block mode (ODC). Following the maxim that we can only use the
information that we try to generate, we separate the generation of the edge
orientations from the degrees.
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Let Ḡ denote the undirected version of a directed graph G, i.e., the multi-
graph resulting from erasing the arrows for each edge. Its adjacency matrix is
Āuv = Auv+Avu, so (for instance) Ḡ has two edges between u and v if G had one
pointing in each direction. The ODC can be thought of as generating Ḡ accord-
ing to the undirected degree-corrected model, and then choosing the orientation
of each edge according to another matrix ρrs, where an edge (u, v) is oriented
from u to v with probability ρgu,gv . Thus the total log-likelihood function for
such a model is

logP (G | g, ρ) = logP (Ḡ | g) + logP (G | Ḡ, g, ρ) . (5)

Writing m̄rs = mrs + msr and κ̄r = κinr + κoutr , we can set θu and ωrs for the
undirected model to their MLEs as in Section 2.1, giving

logP (G | g) =
1

2

K∑
r,s=1

m̄rs log
m̄rs

κ̄rκ̄s
. (6)

The orientation term is

logP (G | G, g, ρ) =
∑
rs

mrs log ρrs =
1

2

∑
rs

(mrs log ρrs +msr log ρsr) , (7)

For each r, s we have ρrs + ρsr = 1, and the MLEs for ρ are

ρ̂rs = mrs/m̄rs . (8)

As (7) is maximized when ρ̂rs are near 0 or 1 for r 6= s, the edge orientation
term prefers highly asymmetric inter-block connections. Since ρ̂rr = 1/2 for any
block r, it also prefers disassortative mixing, with as few connections as possible
within blocks.

Substituting the MLEs for ρ and combining (6) with (7), the total log-
likelihood is

logP (G | g) =

K∑
r,s=1

mrs log
mrs

κrκs
. (9)

As we show in the online version, we can also view the ODC as a special
case of the DDC, where we add the constrain θinu = θoutu for all u. Moreover,
if we set θu = 1 for all u, we obtain the original block model, or rather its
Poisson multigraph version where each Auv is Poisson-distributed with mean
ωgu,gv . Thus

SBM ≤ ODC ≤ DDC ,

where A ≤ B means that model A is a special case of model B, or that B is an
elaboration of A.
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2.3 Degree-generated block model

Another way to utilize the degree information for community detection is through
the degree distributions in each community. In all block models, the degree of
each vertex is asymptotically Poisson-distributed. But in the SBM, all the ver-
tices in each community have the same expected degree, while DC or DDC fully
specify each vertex’s expected degree using θ.

A natural way to make explicit use of the degree information is to force the
model to generate the vertex degrees in each community according to some dis-
tribution whose parameters differ from one community to another. To maintain
the tractability of the random multigraph, we generate the parameters θ, and
thus the expected degree of each vertex, rather than the degrees themselves.
Given a vertex u, we first generate its expected degree θu from a prior degree
distribution according to its block membership, then use it as the θ parame-
ter in the degree-corrected block model to generate edges. The degree-generated
block model is thus a hierarchical model, which extends previous degree-corrected
block models by adding a degree generation (DG) stage on top.

Likelihood functions and parameter estimation
Given the number of vertices N and number of blocks K, the generative process
for undirected networks is described in Table. 1.

Table 1. Degree-generated block model (undirected)

For each vertex u = 1, ..., N
Generate θu| gu, ψ1..K ,∼ Fgu(·|ψgu)

For each pair of vertices (u, v)
Generate Auv ∼ Poi(θuθv ωgugv )

In the table, ψr are the hyper parameters of the degree distributions for block
r. The form (cdf) of the degree distributions are denoted as Fr(·|ψr), which are
given using domain knowledge. If such prior knowledge does not exist, we shall
pick distributions which best fit the observed degree sequence. Note that the
second stage is just the DC model (1), and we call the whole model DG-DC.

Table 2. Degree-generated block model (directed)

For each vertex u = 1, ..., N
Generate θinu | gu, ψin

1..K ,∼ F in
gu(·|ψin

gu)
Generate θoutu | gu, ψout

1..K ,∼ Fout
gu (·|ψout

gu )
For each pair of vertices (u, v)

Generate Auv ∼ Poi(θuv ωgugv )
Generate Avu ∼ Poi(θvu ωgvgu)
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For directed graphs, we have ψin
r and ψout

r as the hyper parameters of the in-
and out-degree distributions for block r respectively. Their degree distributions
are denoted as F in

gu(·|ψin
gu) and Fout

gu (·|ψout
gu ). Both of them can be specified by

domain knowledge. For directed graphs, DG stage can precede either DDC or
ODC. This flexibility comes from the following options available for the degree-
correction term θuv, which we should name accordingly:

θuv =

{
θoutu θinv DG-DDC
θuθv DG-ODC .

Here θu = θoutu + θinu is the total degree of vertex u. We also have the option to
generate total degrees instead, then generate directed networks with orientation
parameters ρ as we did in (7). But for the rest of the paper, we use the above
directed version for DG-ODC.

 θv  θu 

Auv  

N2

ωgugv

 gu 

 gv 

N N

ψgv ψgu 

 out  in 

 out  in 

Fig. 1. Graphical model of DG-DDC

Under DG, θ parameters θ are now generated by hyper parameters ψ, as
demonstrated by the graphical model in Fig. 1. The log-likelihood function is
thus composed of two terms, for DG-DC:

logP (G | g, θ, ω, ψ) = logP (θ | g, ψ) + logP (G | θ, g, ω) . (10)

where the first terms is for degree-generation stage, with the second term for
edge-generation stage. Similarly, we have DG-DDC:

logP (G | g, θout, θinω, ψ) = logP (θout, θin | g, ψ) + logP (G | θout, θin, g, ω) .
(11)

And DG-ODC:

logP (G | g, θ, ω, ψ) = logP (θout, θin | g, ψ) + logP (G | θ, g, ω) . (12)
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The inference of all 3 DG models are very similar. For simplicity, we shall
focus on the parameter estimation of DG-DC. Readers can easily generalize the
result to DG-DDC and DG-ODC.

In hierarchical models like DG-DC, estimating MLEs for both θ and ψ is
usually difficult, as their joint distribution is often intractable. Here we shall
propose an simple approximation that is intuitive and efficient.

We first estimate θ to maximize only the second term in (10). Notice that if we
only consider the edge-generation term, we have the original DC model, and the
MLEs for θ are the observed degrees. Substituting θ with these degrees, we can
then estimate the hyper-parameters ψ to maximize the first term. As a result,
we simply reuse the degree-corrected block models and the degree-generation
term becomes the log-likelihood of generating the observed degrees.

As all the θ parameters are generated independently, for undirected networks
the degree generation term is

logP (θ | g, ψ) =
∑
u

log (Fgu(du|ψgu)) . (13)

Notice that if we use a uninformative piror, i.e., assuming P (θ | ψ) is a
uniform distribution, this approximation is exact. With any other prior, the
MLEs would be different. Under this approximation, the degree generation term
acts merely as a penalty term rather than an intergral part of the likelihood
function. However, it is enough to achieve our goal of leveraging the degree
information for community detection.

Degree independent community structures favored by the DC model are no
longer necessarily the most likely of the whole likelihood function. If they are
too far off the prior degree distribution, they will be properly penalized for their
poor fit. This would leave the door open for other community structures that
might not be as a good fit to the edges, but compensates with a much better fit
to the degrees.

Next, we shall show one of the most popular form for Fgu(·|ψgu), and the
corresponding estimation of the hyper parameter ψ under the approximation
θ̂u = du.

Power-law degree generation
We present a power-law DG here to illustrate how we can use DG to handle de-
gree sequences with power-law tail. Degree-generated block model for networks
with other degree distributions can be established in the same way. We focus on
power-law in this paper because it is prevalent in all kinds of real world networks.
First popularized by the Preferential attachment model [4], power-law degree dis-
tributions has been hot topic in networks across different disciplines [10, 19, 2, 5].

With a power-law distribution, the degrees are highly skewed and degree-
correction becomes necessary. Thus, power-law tail is an idea test bed for our
degree-generated block model where degree-correction is crucial but it alone
cannot achieve satisfying performance.

Although the degrees are discrete values, the θ parameters can be continuous.
We fit the observed degrees to both discrete and continuous power-law distri-
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butions. Empirically we find both of them perform very well. The only notable
difference between them is the running time. Fitting degrees to a continuous
power-law distribution can be faster because the MLEs of its parameters can be
calculated analytically.

In the discrete case, for any vertex u in block r, the probability that it has
degree du (here du can be in-, out- or total-degree of vertex u) is the following

p(du) =

{
βr du < dmin

(1−βr)d−αru

ζ(αr, dmin)
du ≥ dmin

(14)

Here we have the Riemann zeta function ζ(α, x) =
∑∞
n=x n

−α. And dmin is the
minimal degree of the power-law tail. The hyper parameters of the power-law
degree distribution are ψr = {αr, βr}.

The MLEs for β is straightforward, that is

βr = φr/nr . (15)

Here φr is the number of vertices in block r that have degree less than dmin. The
MLEs for α is a little more complicated. A detailed description about the MLEs
for power-law distribution can be found in [6]. There is no analytical solution,
but α can be estimated numerically. Given a power-law degree sequence in any
block r, that is d = {d1, d2, ..., dn}, here di ≥ dmin are integers larger than or
equal to dmin, the log-likelihood function for the power-law parameter α is

logP (α) = −n ln ζ(α, dmin)− α
n∑
i=1

ln di . (16)

Then, we can simply search α to maximize (16).
In the continuous case, for any vertex u, we have

p(du) =

βr du < dmin

(1−βr)(αr−1)
dmin

(
du
dmin

)−αr
du ≥ dmin

(17)

The MLEs for β is same as (15). Now the MLEs for α can be solved analytically.
Given a power-law degree sequence d = {d1, d2, ..., dn}, di ≥ dmin in any block
r, the MLEs for αr is

α̂r = 1 + n

[
n∑
i=1

ln
di
dmin

]−1
(18)

3 Experiments

3.1 Generation of synthetic networks

Undirected networks with specific degree distributions in each community can
be generated by DG-DC. For each vertex u, we first generate θu following the
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distribution Fgu(·|ψgu). After generating θ parameters, we need to choose a
symmetric ω matrix, which satisfies

∑
s ωrs = κr for each block r. Here κr is

the summation of the θ values in block r, that is κr =
∑
u:gu=r

θu. Then the
number of edges connecting each pair of vertices u, v is drawn from a Poisson
distribution with mean θuθvωgugv/(κguκgv ) or θuθvωgugv/(2κguκgv ) if u = v. We
can also generate the edges by first determining the number of edges for each air
of blocks and then assigning the edge ends to vertices, which is described in [12].

Directed networks can be generated by DG-DDC or DG-ODC in the way
illustrated in Table 2. For each vertex u, we first generate θinu and θoutu , each of
them follows a specific distribution: F in

gu(·|ψin
gu) and Fout

gu (·|ψout
gu ) respectively.

For DG-DDC, given a block assignment g, we have κoutr =
∑
u:gu=r

θoutu and

κinr =
∑
u:gu=r

θinu . Now ωrs can be chosen to specify the community structure,

and it should satisfy the constraints κoutr =
∑
s ωrs and κinr =

∑
s ωsr. After

choosing ωrs, the number of directed edges from vertex u to v is Poisson dis-
tributed with mean equal to θoutu θinv ωgugv/(κ

out
gu κ

in
gv ).

As to DG-ODC, for each vertex u, we combine the parameters θinu and θoutu

into one by setting θu = θoutu + θinu . Given a block assignment g, we have κr =∑
u:gu=r

θu. Now ωrs can be chosen to specify the community structure, and it
should satisfy the constraints κr =

∑
s(ωrs+ωsr). After choosing ωrs, the edges

can be generated. The number of directed edges from vertex u to v is Poisson
distributed with mean equal to θuθvωgugv/(κguκgv ).

3.2 Synthetic test on undirected networks

We generate undirected networks using DG-DC. The degree sequence in the first
block follows a power-law tail with α = 2.5 and dmin = 1. In the second block,
the degree sequence is Poisson-distributed with mean 20. We place about 1200
vertices in each block.

Just like in [12], we use a parameter λ to interpolate linearly between a
fully random network with no community structure to some planted one as the
following

ωrs = λωplanted
rs + (1− λ)ωrandom

rs . (19)

Here ωrandom
rs = κrκs/2M , and we set ωplanted

rs to be the following

ωplanted =

(
κ1 0
0 κ2

)
. (20)

Thus, all edges are placed within communities.
We plotted the result in Fig. 2. Each point on the graph is based on 30

randomly generated networks. For each network, we choose the best result from
10 initials. For each initial, 1 million MCMC steps are executed. The green
points are obtained from DG-DC and the red points are from the original DC
without degree-generation. For each color, the square ones are from initials with
true block assignment, and the circle ones are from random initials. DG-DC
works very well even for very small λ values. DG-DC can classify most of the



Degree Correction in Stochastic Block Models 11

vertices correctly even when there is no community structure for DC because the
block memberships for most of the vertices can be well determined only based
on the degree sequence information. True block assignment initialization cannot
help DG-DC. It improves DC when λ is close to the phase transition point. We
checked the likelihood values found by DC-T (DC initialized with true block
assignment) and mboxDC-R (DC initialized randomly) at λ = 0.4, and found
DC-R achieved higher likelihood value. That means DC-T actually got stuck
into a local optima.
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Fig. 2. Tests on networks generated by DG-DC

3.3 Synthetic test on directed networks

In our following synthetic test, we generate directed networks using DG-ODC.
We place the vertices into two blocks and each block contains about 1200 vertices.
In the first block, both out- and in-degrees are Poisson distributed with mean
20. In the second block, both out- and in-degrees are power-law distributed with
α = 2.5 and dmin = 1. For ODC, ωrandom

rs is the one that makes all ρrs to be
equal, i.e., 1/2. In that case all edges are oriented randomly, and ωrs = ωsr.
On the other hand, the corresponding undirected network should also be fully
random with respect to DC, namely ωrs + ωsr = κrκs/2M . Thus, we have
ωrandom
rs = κrκs/4M . We set ωplanted

rs to be totally asymmetric. For K = 2, we
have

ωplanted =

(
(κ1 − ω12)/2 ω12

0 (κ2 − ω12)/2

)
, (21)

where ω12 ≤ min(κ1, κ2). In this test, we choose ω12 = 1
2min(κ1, κ2).

We can see in Fig. 3, DG-ODC and DG-DDC have very similar performance
all the way and both of them can achieve much better performance than the
original block models. This meets our expectation very well. As now the de-
gree sequences contain so much information about the block memberships, both
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DG-ODC and DG-DDC works perfectly. DG-ODC doesn’t outperform DG-DDC
because the orientation information cannot help more if the degree sequence in-
formation is already used. Without degree generation, ODC outperforms DDC
for large lambda values, this is because without leveraging the degree sequence
information, edge orientations can still help.
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Fig. 3. Tests on networks generated by DG-ODC

In our following test, we generate directed networks using DG-DDC. We place
the vertices into two blocks and each block contains about 1200 vertices. The
out-degrees of block 1 and in-degrees of block 2 are Poisson-distributed with
mean 20. The in-degrees of block 1 and out-degrees of block 2 are power-law
distributed with α = 1.8 and dmin = 1. The power-law degree distributions are
upper bounded to make sure the average degree is also 20 (same as the Poisson
mean). For DDC, we have

ωrandom
rs = κoutr κins /M . (22)

We set the planted ω matrix as the following one with only off-diagonal en-
tries. Thus, the planted community structure is disassortative. For any λ, the
connections between block 1 and block 2 are almost symmetric.

ωplanted =

(
0 κout1

κout2 0

)
. (23)

As presented in Fig. 4, one interesting thing is ODC-R works equally well
for all λ. Although ωrandom

rs for DDC is also a random ω for ODC, for small
λ, ODC can achieve very good performance due to the degree distributions we
used. As both of the out-degrees in block 1 and the in-degrees in block 2 are
power-law distributed, some vertices in block 1 will have very high out-degrees
and some vertices in block 2 will have very high in-degrees. We can imagine a
lot of edges from block 1 to block 2 are connecting these high degree vertices.
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Fig. 4. Tests on networks generated by DG-DDC

If we exchange the block memberships of these vertices, the orientations of all
those edges are reversed. This is a community structure preferred by ODC as
now most of the inter-block edges are oriented to block 1. As the number of
the high degree vertices is very small, mislabeling them does not matter much.
That’s why ODC can find a block assignment very close to the true one although
mboxODC doesn’t like the true block assignment either. When λ is large enough,
ODC-T can find the planted community structure. We checked the log-likelihood
values it found. For λ ≤ 0.8, ODC-R actually found higher log-likelihood values
than the one of the true block assignment. For λ = 1, ODC-R can only find
lower log-likelihood values. That means when λ = 0.6 and 0.8, the true block
assignment is actually a local optima for the ODC model. ODC-T got stuck
there. But when λ = 1, namely the network is fully disassortative, then the true
block assignment is a better, but ODC cannot find it within 1M MCMC steps
if random initialization is adopted.

This phenomena is also found when we were trying to apply ODC on other
symmetric connected networks, for example the political-blog network. Recall
that the likelihood function for ODC, which is (5), has two parts. The first
part generates the undirected network, which is DC. The second part generates
the edge orientations. If the orientations are symmetric, there should be two
modes in the landscape. One mode is the community structure preferred by the
original DC, another mode is the one with highly asymmetric orientations. ODC
will stuck into the second mode easily even if the network is highly assortative
or disassortative and the true block assignment is the one with higher likelihood.
ODC will also stuck into the first mode when true block assignment initials are
used although the true block assignment may not necessary to be the one with
maximum likelihood.
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3.4 Empirical networks

In this section, we test the models on three word adjacency networks in which
vertices are separated into two blocks: noun and adjective. “David” is the adja-
cency network of common adjectives and nouns in the novel David Copperfield
by Charles Dickens [18]. “News” is the adjacency network of common (degree
is larger than or equal to 10) adjectives and nouns obtained from News corpus.
“Brown” is the giant component in the adjacency network of adjective and nouns
in the Brown’s corpus. All of them are asymmetric networks as adjectives are
very likely to be followed by nouns, however nouns are not common to be fol-
lowed by adjectives. Let’s assume adjectives are in block 1 and nouns are in block
2, then we have p12 > p21. For each network, we consider both multigraph (M)
where multi-edges are included and simple graph (S) where multi-edges are ig-
nored. Table. 3 revealed the basic information of these networks. The connection
probability matrices are listed in Table. 4.

Table 3. Word adjacency networks

Network #words #adjective #noun #edges (S) #edges (M)

David 112 57 55 569 1494
News 376 91 285 1389 2411
Brown 23258 6235 17023 66734 88930

Table 4. Connection probability matrices

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

0.039 0.118 0.080 0.358 0.010 0.015 0.012 0.028 9.1e-05 3.4e-04 1.1e-04 4.4e-04
0.018 0.006 0.025 0.011 0.002 0.010 0.003 0.019 2.0e-05 8.8e-05 2.4e-05 1.2e-04

3.5 Comparison of degree-corrected models

Table. 5 compares the clustering performance for different block models, includ-
ing SBM, DC, ODC and DDC. When applying DC to these directed networks,
we simply ignore the edge orientations (the resulted network may contain multi-
edges even though the original directed one doesn’t). Both the percentage of
correctly labeled vertices and the NMI value are listed for each model on each
network. The results for “David” and “News” are based on 100 initials; for
“Brown”, 50 initials are used. All the initials are chosen randomly. For each
model and each network, we take the best result among those initials. For each
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initial we run the KL-heuristic [12] followed by 1 million MCMC steps. We also
tested a naive heuristic (NH) algorithm which simply labels a vertex as adjec-
tive if its out-degree is larger than in-degree or noun if its out-degree is less
than in-degree. For vertices with equal in- and out-degree, NH assigns its la-
bel randomly. We present the average performance of NH in Table. 5 based on
100 runs for “David” and “News” and 50 runs for “Brown”. NH represents the
performance we can achieve if we only use the edge orientations for community
detection.

Table 5. Clustering results with random initialization

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 84.8/0.423 57.1/0.051 62.2/0.006 57.2/0.018 70.0/0.001 70.1/7e-04
DC 91.1/0.566 91.1/0.568 56.4/0.084 56.6/0.083 55.6/0.020 55.5/0.015
ODC 87.5/0.462 87.5/0.470 56.4/0.084 56.4/0.029 75.3/0.311 80.3/0.318
DDC 70.5/0.128 51.8/8e-04 56.4/0.084 55.1/0.091 55.8/0.016 53.8/0.012
NH 84.4/0.395 86.6/0.449 72.8/0.215 73.8/0.233 78.0/0.309 78.1/0.314

a little better. ODC mislabeled 2731 while DC mislabeled 2621. But overall,
ODC works much better than DDC on “News” and “Brown” networks.

For “David”, DC works best and ODC also works pretty well. Both of them
performs better than NH. After examining “David” more carefully, we found in
this small network, three adjectives only have in-degree. They are “full”, “glad”
and “alone”. ODC will mislabel them while DC labeled them correctly by just
ignoring the edge orientations. In such a situation, we really cannot criticize
ODC. As to SBM, it works well on “David(S)” but fails on “David(M)”, this is
because the degrees in the multigraph are more skewed than those in the simple
one. It is a little surprising that DDC performs worst, and even worse than SBM.
We learn a lesson here that a full degree-correction may make things worse even
when the degrees in each community are quite inhomogeneous.

For “News”, all the block models fail, even ODC doesn’t work. We found
there is a highly assortative community structure in the “News” network where
about 90% edges are within commuities. All the block models will finally return a
community structure very close to that one. As we mentioned earlier, ODC needs
to make trade-off between the community structure preferred by DC and the one
that is disassortative mixing and have highly asymmetric inter-block connections.
Here, ODC sacrifices the second one. However, after checking the results returned
by ODC for all initials, we found most of the times ODC works. Table. 6 presents
the average clustering performances over 100 initials. The decimals outside the
parentheses are the average percentages of correctly labelled vertices and the
average NMI values between the best clustering the algorithm found in each
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Table 6. Average clustering performances with random initialization

David(S) News(S) Brown(S)

SBM 84.8(0)/0.423(0) 62.3(0.3)/0.005(0.001) 70.0(0)/0.001(0)
DC 91.1(0)/0.566(0) 56.4(0.08)/0.084(4e-04) 59.8(5.3)/0.052(0.037)
ODC 87.5(0)/0.462(0) 74.7(2.1)/0.237(0.020) 75.3(0)/0.311(0)
DDC 63.9(10.7)/0.096(0.108) 56.4(0.07)/0.084(4e-04) 53.5(2.0)/0.008(0.007)
NH 84.4(1.0)/0.395(0.023) 72.8(0.7)/0.215(0.012) 78.0(0.09)/0.309(0.003)

David(M) News(M) Brown(M)

SBM 57.1(0)/0.051(0) 57.5(2.3)/0.017(0.006) 70.1(0)/7e-04(0)
DC 76.4(18.3)/0.344(0.264) 52.5(1.9)/0.025(0.030) 57.6(4.6)/0.032(0.028)
ODC 87.5(0)/0.470(0) 74.3(6.0)/0.232(0.058) 79.7(0.2)/0.317(6e-04)
DDC 59.4(7.6)/0.044(0.055) 52.4(1.9)/0.028(0.031) 52.5(1.6)/0.005(0.006)
NH 86.6(0)/0.449(0) 73.8(0.6)/0.233(0.009) 78.1(0.1)/0.314(0.002)

initial and the true clustering. The decimals in parentheses are the standard
deviations. The average performance of ODC is pretty good. ODC returns that
highly assortative community structure very occasionally during those initials,
although that community structure has the highest likelihood value. On the
other hand, if we really know something about the community structure we are
looking for, finding out that one based on the results of those initials can be
simple.

For “Brown”, every block model fails except ODC. It seems SBM works, as
it labels 70% vertices correctly. However SBM achieves this by simply putting
almost all vertices in one block. That’s why the NMI values are very low. ODC
has very close performance to NH on both the simple and multigraph.

All the block model tests discussed so far are based on random initializa-
tions. However, NH is actually a perfect block assignment initializer for the
block models on these word adjacency networks. The following tests are based
on NH initializations, namely the NH results are used for block membership
initializations.

Table 7. Clustering results with NH initialization

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 84.8/0.423 57.1/0.051 62.2/0.006 56.1/0.021 70.0/0.001 70.1/7e-04
DC 91.1/0.566 91.1/0.568 56.4/0.084 55.3/0.015 70.6/0.160 70.2/0.155
ODC 87.5/0.462 87.5/0.470 75.3/0.247 77.9/0.270 75.3/0.311 80.3/0.318
DDC 57.1/0.015 64.3/0.060 56.4/0.084 52.9/0.005 54.0/0.005 64.0/0.070
NH 84.4/0.395 86.6/0.449 72.8/0.215 73.8/0.233 78.0/0.309 78.1/0.314
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Table 8. Average clustering performances with NH initialization

David(S) News(S) Brown(S)

SBM 84.8(0)/0.423(0) 62.2(0)/0.006(0) 70.0(0)/0.001(0)
DC 91.1(0)/0.566(0) 56.4(0.08)/0.084(4e-04) 71.1(0.2)/0.171(0.003)
ODC 87.5(0)/0.462(0) 75.3(0)/0.247(0) 75.3(0)/0.311(0)
DDC 84.2(6.1)/0.395(0.108) 56.4(0.06)/0.084(3e-04) 62.1(3.5)/0.060(0.023)
NH 84.4(1.0)/0.395(0.023) 72.8(0.7)/0.215(0.012) 78.0(0.09)/0.309(0.003)

David(M) News(M) Brown(M)

SBM 57.1(0)/0.051(0) 58.7(2.0)/0.014(0.005) 70.1(0)/7e-04(0)
DC 91.1(0)/0.568(0) 52.5(1.9)/0.025(0.030) 70.2(0.3)/0.156(0.004)
ODC 87.5(0)/0.470(0) 75.3(1.2)/0.240(0.014) 79.7(0.08)/0.317(3e-04)
DDC 75.6(2.6)/0.204(0.037) 52.4(1.9)/0.028(0.031) 64.3(0.2)/0.073(0.002)
NH 86.6(0)/0.449(0) 73.8(0.6)/0.233(0.009) 78.1(0.1)/0.314(0.002)

In Table. 7, we found with NH initialization ODC works pretty well on
”News”. It returns the desired comunity structure in all 100 initials. DC also
works much better on ”Brown”, and 70% vertices are correctly labelled. With
random initialization, it’s only around 55%. With NH initialization, the perfor-
mances are more stable now. Table. 8 lists the average clustering performances
and we can see the standard deviations are much lower than the ones in Table. 6.
For “David”, now DC works perfectly on ”David(M)”, but previously, it’s av-
erage performance on ”David(M)” is quite fair and not stable either. DDC also
improves itself on both ”David(S)” and ”David(M)”. ODC now works better on
“News” with higher average percentages and NMI values and much lower devia-
tions. DC also works much better on average while having much lower deviations
on “David”.

3.6 Results on degree generated models

In “Brown”, the real data show that both the out- and in-degree distributions
have heavy tails close to power-law. In Fig. 5 we plotted the complementary
CDF of the out- and in-degrees for Brown(S) and Brown(M). We estimate the
power-law θ parameters of the real data using both discrete (labeled with [D])
and continuous (labeled with [C]) methods, which are introduced in section 2.3.
Setting dmin = 1, the MLEs of the θ parameters are listed in Table 9.

We compare the performances of the power-law degree-generated block mod-
els with those original degree-corrected models. In Table 10 11, the first row lists
the results of the original degree-corrected models without degree-generation,
and the second row shows the results of the block models with power-law degree
generation. We use KL-heuristic plus MCMC to infer the parameters and the
community structures. All the results are obtained from 50 initials, each of them
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Fig. 5. Degree distributions in Brown network

Table 9. Degree parameter MLEs in Brown

block αin[D] αin[C] αout[D] αout[C] βin βout

Brown(S)
adj 1.829 2.329 1.952 2.629 0.161 0.527
noun 1.987 2.721 1.793 2.248 0.716 0.021

Brown(M)
adj 1.741 2.136 1.828 2.326 0.161 0.527
noun 1.931 2.576 1.740 2.134 0.716 0.021
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is initialized randomly. For each model and each network, we take the best result
among those initials. In each initial we run the KL-heuristic followed by 1 million
MCMC steps. Both the percentage of correctly labelled vertices and the NMI
value are listed for each model on each network. We can see in Table 10, degree
generation do improves the performance of DDC and DC. As to ODC, it already
works pretty well by itself and degree generation doesn’t help. However we also
found power-law degree generation can actually speed up the searching perfor-
mance. KL-heuristic has high complexity, which is O(N2 logN). Although each
MCMC step only takes O(K2), for large networks, MCMC converges slowly. If
we give up KL-heuristic (this may be unavoidable for handling large networks),
in other words, each initial only runs 1 million MCMC steps, we get the results
in Table 11. We can see in Table 11, DDC, DC and even ODC becomes worse
when there is no degree generation. With degree generation, the performances
of all these models are very stable compared to the results with KL-heuristic in
Table 10.

Table 10. Clustering results on Brown with KL-heuristic

DC ODC DDC DG-DC DG-ODC DG-DDC

Brown(S) 55.6/0.020 75.3/0.311 55.8/0.016 74.4/0.283 75.3/0.310 73.3/0.224
Brown(M) 55.5/0.015 80.3/0.318 53.8/0.012 75.6/0.290 76.0/0.320 72.2/0.210

Table 11. Clustering results on Brown without KL-heuristic

DC ODC DDC DG-DC DG-ODC DG-DDC

Brown(S) 54.3/0.010 72.0/0.188 53.7/0.008 75.1/0.275 76.5/0.297 71.4/0.224
Brown(M) 52.6/0.007 73.4/0.203 53.8/0.011 75.4/0.276 77.3/0.308 70.9/0.194

4 Conclusions

Degree-correction in stochastic block models provides a powerful approach to
dealing with networks with inhomogeneous degree distributions. Partial degree-
correction is a new idea proposed in this paper which tolerates highly skewed
degrees within community while still be able to utilize degree information for
community detection purpose. We demonstrated two ways to achieve this. One is
the oriented degree-corrected block model which prefers highly asymmetric inter-
block connections. Another is the degree-generated block model which fits the
degree sequence in each community to a family of distributions before examining
the edge connecting patterns. Thus, block assignments in which degree sequences
are poorly fitted is thought to be unlikely.
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We have shown that in certain networks these new block models can apply
appropriate partial degree-correction, achieving higher accuracy. The oriented
degree-corrected block model usually works well on asymmetric networks. How-
ever, when the misinformation in the edge connecting patterns is overwhelmingly
strong, the orientation information might not be enough to compensate. There
are also situations when the block connecting pattern looks fairly symmetric,
OCD is still able to leverage highly asymmetric connections occurred between
only a few vertices. Further study of different degree corrections is required to
better understand their effectiveness for different networks.

The degree generated block models showed the most promise with their ex-
cellent performance across the board, especially with noisy data. Nonetheless,
their effectiveness depends heavily on knowing the true form of the degree distri-
bution in each community. Without the ground truth of block assignments, one
would have to guess an appropriate form first, making it a much more difficult
problem.

With multiple degree corrected models, and multiple ways to do degree gen-
eration for each of them, we now have a tough choice to make whenever we meet
new networks. Better understanding of each model could help but real-world
networks may exhibit structures too complicated to comprehend. A much better
alternative is a model selection criterion which can predict relative performance
of each model automatically based on the observed data.
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borová. Asymptotic analysis of the stochastic block model for modular
networks and its algorithmic applications. Physical Review E, 84(6), De-
cember 2011.

[8] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
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