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Abstract

We describe a general Multi-Party Computation (MPC) protocol for arithmetic circuits that is secure against
a computationally-bounded malicious adversary statically corrupting up to a 1/10 fraction of the parties. The
protocol requires each party to send an average of 0(% log? n) bits, and compute 0(% log* n) operations in a
network of size n, where m is the size of circuit. This is achieved by increasing latency from constant to O(d),
where d is the depth of the circuit. Our protocol has a setup phase that is independent of the circuit and relies
on Threshold Fully Homomorphic Encryption (TFHE). The setup requires each party to send O(k?) messages
and to compute O(k?) operations. We provide results from microbenchmarks conducted over a sorting network
showing that our protocol may be practical for deployment in large networks. For example, we consider a
network of size 2% (over 33 million) where each party has an input item of size 20 bytes. To securely sort the
items, our protocol requires each party on average to send 5 kilobytes per item sorted.

1 Introduction

In secure Multi-Party Computation (MPC), a set of n parties, each having a secret value (input), want to compute
a common function represented as a circuit over their inputs, without revealing the inputs to each other. In the last
three decades, a large body of work has been devoted to designing MPC protocols for the active adversarial setting.
Unfortunately, most of these protocols are inefficient for the case where the number of parties is large.

One approach to solve MPC is to use Fully Homomorphic Encryption (FHE) (e.g., Asharov et al. [1]). In this
approach, each party first encrypts its input under FHE and send the ciphertext to others. The parties then evaluate
the desired function on the encrypted data and finally perform a distributed decryption on the final encrypted data
to get the results. Due to the homomorphic properties of FHE, the decrypted value is the correct evaluation of the
function over the inputs. FHE-based MPC protocols are usually optimal in terms of communication cost, however
computation cost is usually expensive. Unfortunately, current FHE schemes are very slow and can only evaluate
circuits of small depth.

In this paper, we specifically address the problem of MPC for any-depth circuit and when the number of
parties is large. We believe this problem is of increasing importance with the growth of modern networks. For
example, how can peers in BitTorrent auction off resources without hiring an auctioneer? How can we design a
decentralized Twitter that enables provably anonymous broadcast of messages? How can we perform data mining
over data spread over large numbers of machines?

We also provide results from microbenchmarks for the problem of secure Multi-Party Sorting (MPS). MPS is
useful in many applications such as anonymous communication [4] and privacy-preserving statistical analysis [9].
It is often important for these applications to be run among many parties. For example, MPS is a critical component
of communications algorithms that could enable the creation of large anonymous microblogging services without
requiring trusted authorities (e.g., an anonymous Twitter).

1.1 Our Results

Consider a network of n parties, where there is a private and authenticated communication channel between every
pair of parties. The following main theorem is secure under the t-Strong Diffie-Hellman (t-SDH) and t-polynomial
Diffie Hellman (t-polyDH) hardness assumptions, where 7 < (1/3 —€)N.



Theorem 1. Let f be any deterministic function over n inputs in Z, for prime p = poly(n), and € be a circuit
with m gates and depth d that computes f. There exists an n-party synchronous protocol that securely computes f,
tolerates up tot < (1/10 — €)n malicious parties, and has the following properties:

m

e FEach party sends O(% log? n) messages of size O(log p) bits and computes O( - log* n) operations.

e The protocol has a setup phase that is secure in the CRS model and requires each party to send O(x?) bits
and compute O(x?*) operations.

e The latency of the protocol is O(d).

2 Our Approach

Our goal is to reduce both communication and computation complexities, and to this end we make a trade-
off between these complexities and latency. We are inspired by the unconditionally-secure MPC algorithm of
Dani et al. [8]. However, we make extensive use of cryptographic tools in order to reduce costs in practice. We
reduce the costs further by performing local communications in polylogarithmic-size groups of parties called quo-
rums, where the number of adversary-controlled parties in each quorum is a certain fraction. The quorums are
created in a one-time setup phase that is secure in the Common Reference String (CRS) model. The setup phase
uses the quorum building algorithm of Santoni et al. [7] and the fully homomorphic encryption scheme of Braker-
ski et al. [6] to generate a number of parameters required for our protocol. Our online phase combines the circuit
randomization technique of Beaver [3] and the efficient verifiable secret sharing scheme of Kate et al. [10] to
perform fast computations on secret-shared values.

In our protocol, each gate of the circuit is assigned a quorum Q and the parties in Q are responsible for
computing the function associated with that gate. Then, they send the result of this computation to any quorums
associated with gates that need this result as input. Let Q' be one such quorum. It is necessary to securely send the
output from Q to Q' without revealing any information to any individual party (or to any coalition of adversarial
parties). This is a technically challenging problem.

Dani et al. [8] handle this problem by masking the result in Q and unmasking the result in Q’. This method is
expensive in practice since parties in Q' need to reconstruct the masks jointly for each input. Boyle et al. [5] handle
this problem by sending all the inputs to only one quorum which does all of the computation. This results in large
computation and communication costs for parties in that quorum.

We introduce a new solution for this problem. We let each party in Q hold shares of the inputs to the gate
associated with Q. Using homomorphic property of these shares, each party can run the gate function on their
input to evaluate a share of the output. It is essential that parties in each quorum have a method to send the shares
of the result to Q'. These shares cannot be the same shares because this would leak information to the adversary
after multiple steps. Thus, in our algorithm, parties in Q jointly generate a fresh re-sharing of the output of the gate
for Q. Performing this fresh re-sharing correctly is one of the main technical challenges of our algorithm.

Microbenchmarks. Multi-Party Sorting (MPS) can be performed efficiently using sorting networks. A sorting
network is a network of comparators. Each comparator has two input wires and two output wires. When two values
enter a comparator, it outputs the lower value on the top output wire, and the higher value on the bottom output
wire. Batcher [2] proposes an efficient and simple sorting network with depth 1/21logn(1+1logn) = O(log?n). In
our simulations, we use Batcher’s sorting network over n inputs. Each input is provided by a different party.

The circuit is computed in Z, for a 160-bit prime p, with about 80-bit security. We set parameters to ensure
error probability of at most 10~ for the quorum formation algorithm. We ran the setup protocol once and then
used the setup information to sort 100 vectors of random values, i.e., the online protocol was repeated 100 times
with the same setup parameters. Consider n parties each with an arbitrary input from Z,,. Let s be the total number
of bits sent in the setup phase, and ¢ be the total number of bits sent in the online phase for sorting 100 vectors.
Let a, be the average number of bits sent by each party for each sorted element received, in a network of size n.
This is calculated from a, = (s + c) /100n2.

We repeated the experiment for network sizes ranging from n = 2% to n = 23°. Figure 1 depicts the log-log plot
for a, as n varies. In both plots, we give the average number of kilobytes sent per party for each sorted element.
In the left plot, we give an average that includes the entire setup phase. In the right plot, we give an average that
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Figure 1: Communication cost for multiparty sorting

does not include this the setup phase. For example, for sorting a vector of 223 elements of Z, in a network of size
n = 2% (over 33 million parties), each party sends an average of 5 kilobytes per each element of the sorted vector,
as the left plot shows. The one-time setup for such a network requires an average of 21 kilobytes of communication
per party. After this setup, the communication for the sorting of one vector is an average of 5 kilobytes per party.

3 Open Problems

Several open problems remain to be solved in our protocol. First, can we improve performance even further by
detecting and blacklisting parties that exhibit adversarial behavior? We believe that such an approach could lead to
significant practical improvements. Second, can we adopt our results to the asynchronous model of communica-
tion? We believe that this is possible for a suitably chosen upper bound on the fraction of faulty parties. Finally, can
we adopt our results to a model that is more in line with fully-distributed peer-to-peer networks? In such networks,
it is unlikely that each party knows the identities of every other party.
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