
CS 451 Programming Paradigms, Spring 2004 1

Homework 6 — ML module language — assigned Wednesday 10 March—
due Tuesday 30 March

All ML code in this assignment must be encapsulated in appropriate modules. Be careful to distin-
guish internal (auxiliary or abstract) component from those that should be visible to the outside,
and write the signatures accordingly. Document the purposeof signatures and structures. Docu-
ment how you chose between opaque and transparent ascription of signatures.

Reading assignment

Read Chapter 8 ofML for the Working Programmer, focusing on input-output; explore available input-
output primitives in the online SML Basis Library documentation. Read about the mutable store in ML
(type constructorsref andarray ), but do not use it in your work.

Read Chapter 7 ofML for the Working Programmer, but ignore all references toabstype , which is
obsolete.

In preparation for lectures on 24 March and 29 March, read Chapter 9 ofML for the Working Program-
mer.

6.1 Input and output (10pts)

In exercises 5.1 and 4.1, we wrote the functionsparse: string -> expr andeval: expr
-> int , whereexpr is:

datatype expr = Num of int
| Add of expr * expr
| Mul of expr * expr

Learn how to read a string from standard input, and how to write an integer to standard output. Write
a functioncalc: unit -> unit that accepts from the user a string supposed to contain an arith-
metic expression, parses it usingparse , evaluates the expression usingeval , and prints the value. If
there is a syntax error in the input, the error should be reported to the user.



CS 451 Programming Paradigms, Spring 2004 2

6.2 Real functions (90pts)

Warning: In this exercise, the wordfunctionrefers both to ML functions and to mathematical functions.
The intended meaning should be clear from the context.

In this exercise we use the following representation for a class of mathematical functions that is a subset
of R → R:

datatype expr = Num of real
| IntNum of int
| ConstE
| ConstPi
| Var of string
| Let of {var: string, value: expr, body: expr}
| Neg of expr
| Add of expr * expr
| Sub of expr * expr
| Mul of expr * expr
| Div of expr * expr
| Sin of expr
| Cos of expr
| Tan of expr
| Arctan of expr
| Exp of expr
| Ln of expr
| Power of expr * expr

type env = string -> real
exception Unbound of string
val emptyEnv: env = fn s => raise (Unbound s)
fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’

exception FunctionUndefinedAtArgument of string

Note that we have an explicitLet construct, similar to awhereclause in ordinary mathematical usage.
The environment typeenv can be used to supply values for the free variables of an expression.

Usage example: the mathematical expression
√

2π sinx
x can be represented as

Mul (Power (Mul (IntNum 2, ConstPi), Div (IntNum 1, IntNum 2) ),
Div (Sin (Var "x"), Var "x")

) : expr



CS 451 Programming Paradigms, Spring 2004 3

6.2.1 Evaluator (10pts)

Write the ML function:

evalExpr: {
func: expr,
env: env

} -> real

which evaluates the expressionfunc in the environmentenv . If there exists some variable that is free in
the expressionfunc but not defined in the environmentenv , then the ML functionevalExpr should
raise an exception.

Usage example: evaluating the mathematical functionx 7→ e−x2
at the pointx = 2.3 can be represented

as

evalExpr {func = Exp (Neg (Power (Var "x", IntNum 2))),
env = extendEnv emptyEnv "x" 2.3

}

which should evaluate to 5.04·10−3.



CS 451 Programming Paradigms, Spring 2004 4

6.2.2 Drawing (40pts)

Write the ML function:

plotExprs: {
fies: {func: expr, indep: string, env: env} list,
interval: {lower: real, upper: real},
numPoints: int

} -> string

which is a combination of an expression evaluator and a function plotter that generates PostScript output
(exactly as in Homework Exercise 3.3). The ML functionplotExprs should plot each supplied func-
tion expression over the given interval with the given number of internal points. Theindep s provided
are the variables that are to be considered as the independent variables of the givenfunc s. The value of
each such independent variable ranges over the same giveninterval ; note that the particular variable
name may be different in each of the function expressions. The env s should provide the values for any
other free variables of each of thefunc s.

The ML functionplotExprs should handle singularities gracefully and still produce an appropriate
plot. Hint: we suggest two approaches: one is building into the evaluator certain knowledge of the
behavior of elementary real functions, such as, e.g., that the function ln is defined only for positive
arguments; and the other is relying on the behavior of SML Basis Library functions from the structure
Real and inspecting their results.

The drawing area of the resulting PostScript program shouldbe consistentfor functions with arbitrary
domains and ranges; to make this precise, we insist that the bounding box in the generated PostScript
must be 0 0 500 500, and the plots should fully use the drawing area.

Usage example: to plot the mathematical functionsx 7→ e−x2
and t 7→ Asinωt with parameter values

A = π andω = 0.7 on the interval[−π,π], invoke

plotExprs {
fies =

[
{

func = Exp (Neg (Power (Var "x", IntNum 2))),
indep = "x",
env = emptyEnv

},
{

func = Mul (Var "A", Sin (Mul (Var "omega", Var "t"))),
indep = "t",
env = extendEnv (extendEnv emptyEnv "A" Math.pi) "omega" 0. 7

}
],

interval = {lower= ˜Math.pi, upper= Math.pi},
numPoints = 1000

}



CS 451 Programming Paradigms, Spring 2004 5

The result should look like:



CS 451 Programming Paradigms, Spring 2004 6

6.2.3 Symbolic differentiation (40pts)

Write the ML function:

diffExpr : string -> expr -> expr

which takes a string representing a variablex and an expressione representing a real functionf , and
returns another expressione’ such thate’ represents the real functiond f

dx , the derivative off with
respect tox.

Differentiatingexpr s is a matter of translating the well-known formulas of calculus into transformations
over the datatypeexpr . Particular attention, however, should be given to handling theLet expression
correctly.

Usage example:

diffExpr "t" (Mul (Var "A", Sin (Mul (Var "omega", Var "t"))) )

should evaluate to:

Mul (Var "A", Mul (Var "omega", Cos (Mul (Var "omega", Var "t" ))))

(or something algebraically equivalent).

Extra credit: wherever possible, simplify the result, to replace constant expressions (such asAdd (Num
3.0, Num 4.0) ) with number constants (in this example,Num 7.0 ); also simplify additions by zero
and multiplications by zero and one, and expressions raisedto the zeroth or first power.



CS 451 Programming Paradigms, Spring 2004 7

6.3 Using lists for arithmetic: extra credit

This is an extension of exercises 2.4 and 3.2.

1. Use an appropriate datatype to represent integers of arbitrary size, including negative integers, and
repeat exercises 2.4 and 3.2.

2. Use an appropriate datatype to represent floating-point numbers of arbitrary size and precision,
and repeat exercises 2.4 and 3.2. Represent a floating-pointnumber as a sign, an integer mantissa
(of arbitrary size) and an integer exponent (which may be restricted to the range representable by
the ML int type).

3. Implement a square-root function
√

x for these floating-point numbers.

4. Implement an exponentiation functionex for these floating-point numbers.

5. Using these floating-point numbers, evaluatee to 300 digits of precision. Check your result.

6. Using these floating-point numbers, evaluateπ to 300 digits of precision. Check your result.

7. Using these floating-point numbers, evaluateeπ
√

163 to 300 digits of precision. Ramanujan said
this number was nearly an integer. Check.

How to turn in

Make sure that you have thoroughly tested your code, and include all your test runs!

Turn in your code by running

˜clint/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment Ihave complied with the University of New
Mexico Board of Regents’ Policy Manual, including Section 4.8, Academic Dishonesty.


