
CS 451 Programming Paradigms, Spring 2004 1

Homework 7 — ML — assigned Wednesday 31 March — due Wednesday
7 April

7.1 Formatting (100pts)

We can use the following data type declaration to introduce alanguage of simple arithmetic expressions, with
variable names (as in Homework Exercise 4.2):

datatype expr = Num of int
| Var of string
| Let of {var: string, value: expr, body: expr}
| Add of expr * expr
| Sub of expr * expr
| Mul of expr * expr
| Div of expr * expr

type env = string -> int
exception Unbound of string
val emptyEnv: env = fn s => raise (Unbound s)
fun extendEnv oldEnv s n s’ = if s’ = s then n else oldEnv s’
exception ExprDivByZero

Write a formatter function (packaged appropriately using the ML module language)format, with typeexpr
-> string, that produces a visual rendering of the expression; given an expressione: expr, the result of
format e: string is an ML string containing the PostScript description of a page on which is shown the
formatted expressione.

Here is a specification of the formatter’s actions for each possible kind ofexpr:

• for Num, display the number in decimal notation

• for Var, display the variable in 16pt Times-Italic font

• for Let, display the keywordlet in 16pt Times-Bold font, the variable in 16pt Times-Italic font, the equals
sign (=), and the value expression, with a required space between thelet and the variable; then display the
keywordin on a new line; then display the body expression, beginning ona new line and indented by 24pt
to the right of thex-coordinate of the beginning of the keywordlet; then display the keywordend on a new
line

• for Add, Sub, Mul, andDiv, display an open parenthesis, the left subexpression, the mathematical symbol
for the operator (+,−,×,÷), the right subexpression, and a closed parenthesis

All text should be in 16pt Times-Roman font except as specified above. Line spacing should be 20pt. You may
assume that noLet appears within the value expression of anotherLet. The formatter only needs to be able to
accept those expressions which, when correctly formatted according to this specification, do not overflow lines or
pages. A small amount of white space may be added between lexical units according to taste. The bounding box
specification should be0 0 612 792, i.e., standard U.S. letter-size paper.

Execution of the resulting PostScript must not leave any objects behind on the PostScript operand stack.
The ML function format must not contain any embedded data about the sizes of individual glyphs (font
characters).

Example 1.For the following expression:

Let {var="x", value=Num 999, body=Mul (Num 12345,



CS 451 Programming Paradigms, Spring 2004 2

Let {var="variable", value=Mul (Num 12345, Sub (Var "x", Num 6789)),
body=Div (Var "variable", Var "x")})}

the formatted code should look like:

Example 2.For the following expression:

Mul (Let {var="x", value=Num 5, body=Mul (Var "x", Var "x")},
Let {var="z", value=Num 5, body=Mul (Var "z", Var "z")})

the formatted code should look like:

Hint: You will find the following PostScript operators useful in this exercise:currentpoint, selectfont, show,
glyphshow.

How to turn in

Make sure that you have thoroughly tested your code, and include all your test runs!

Turn in your code by running

˜clint/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment Ihave complied with the University of New Mexico
Board of Regents’ Policy Manual, including Section 4.8, Academic Dishonesty.


