Limitsand Graph Structure of Available I nstruction-L evel
Parallelism

Darko Stefanovi¢c and Margaret Martonosi

Princeton University, Princeton NJ 08544, USA

Abstract. We reexamine the limits of parallelism available in progsammsing run-

time reconstruction of program data-flow graphs. While tinaf parallelism have
been examined in the context of superscalar and VLIW mashine also wish to
study the causes of observed parallelism by examining tlietste of the recon-
structed data-flow graph. One aspect of structure anallyaiswe focus on is the
isolation of instructions involved only in address caltigdas. We examine how ad-
dress calculations present in RISC instruction streamsrgésd by optimizing com-
pilers affect the shape of the data-flow graph and often figmitly reduce available
parallelism.

1 Background and Related Work

Most studies of the limits of available instruction-leverpllelism have focused on the
timing of an optimal schedule of the instruction sequencainidealized processor model.
We propose to examine directly the data flow graph of theuetitn sequence. Thus we
will be able to gain insight into the structural propertidsttte available parallelism, so
that we may understand which elements of the instructiomesgze, or which compiler
idioms, affect available parallelism. In particular, her@show that the presence of address
calculations for memory operations greatly affects palialin; in some programs, it is
precisely the address calculations that limit the asynigatly achievable parallelism. As in
earlier studies, we assume no hardware limitations: theegagf parallelism available is the
degree exploitable. Examining very long dynamic code seceemeans that control flow
is entirely revealed and does not constrain parallelisrpehfect alias analysis in compilers
[1, 2] sequentializes code by enforcing the order of theestoad pair, together with all
potentially aliased memory operations, for any value thahot be held in registers and is
temporarily stored in memory (register spill, call saveptiterwise); by precise memory
disambiguation at run-time we remove all such constraintsell.

A number of studies over the past three decades have lookleel lahits of parallelism
[1-10], using instruction-scheduling simulators. Thedeior reports the number of cy-
cles needed to execute the program, and the number of itistres@xecuted. The ratio of
the two gives the IPC as the standard measure of instrulei@h-parallelism [11]. The
simulator effectively constructs the moving “front linef the data-flow graph [3]; thus,
constructing an entire data-flow graph is not necessarytairoh single number, the cycle
count. However, having aexplicitly constructed graph permits us to study its structure: we
can inspect the computation nodes repeatedly, and evaheaggaph usingnulti-passand
backward-flowalgorithms. We will illustrate this new possibility on oneaenple: we will
recognize instructions involved in address calculatiossingia backward-flow algorithm.



While in the past reconstructing large graphs was dismiasdthpractical [3], that is
no longer the case. Currently available memory space pebuitding graphs sufficiently
large to capture interesting application behavior—palialin analysis using a conceptual
dependence graph of a moving window of program executiondea®nstrated by Austin
and Sohi [1]. Recently, Ebciogkt al.described a system for dynamic code translation and
optimization [12], aimed at transparent porting of apglmas to a VLIW execution en-
gine. Among other results, they evaluate achieved pasatielithout resource constraints,
and with store-load bypassing. We obtain comparable gdisati numbers, except for their
results with the “combining” optimization, which in somesea show much higher par-
allelism. This optimization breaks dependence chains ofiégliate-operand instructions
with the dependence on a common register, by adjusting theediate values (a form
of constant folding at the machine level); code modificatiane outside the scope of our
study.

2 Run-timeAnalysisof Programs

Our analysis uses the core of the SimpleScalar architéctumalation toolset [13] for the
Alpha instruction set, and dynamically constructs a progsadata-flow graph. Concep-
tually, graph nodes correspond to executed instructiohfewgraph edges correspond to
computed operand values. The values are tracked througlomeimcluding multi-byte
values through partial and unaligned accesses. This allem® recognize when entire
stored values are reloaded. Nodes are not created forétistis identifiable as data trans-
port: register moves and memory loads; instead, the vaheespgropriately bypassed from
the producing node to the using node. Thus the data flow of dhepatation is recon-
structed independent of the storage layout.

We simulated a number of SPEC95 and Mediabench progrants,upito 1800 mil-
lion instructions executed. Benchmarks were compiled origitdd Alpha 21164 EV56
using native C and Fortran compilers, and highly optimizedecified by SPEC. For each
benchmark, we varied the size of the instruction window aggwe of 2, between 16 and
1M (limited by the memory capacity of the simulator host).

We first look at the parallelism reported for the graphs cstitgj of all instructions
in the examined window; the results are presented in plgtar{d (b) in Figures 1 and 2.
The solid lines, labelledll in the graph height plots (a), show the growth of averagetgrap
height (length of critical path) with increasing instruetiwindow size. The axes in graphs
(a) are both logarithmic; the slopes of the curves (belowhbwsthat the dependence is
sublinear. The solid lines, labelledl in the graph parallelism plots (b), show the ratio of
graph size (number of instruction nodes) to height. This iata measure of average avail-
able parallelism, because it reflects the potential speefl@machine with unbounded
hardware resources (limited only by data dependences)aosequential machine that ex-
ecutes exactly one instruction per cycle in program orderth® instruction window size
increases, so does the parallelism. However, we note satieatibehaviors. 1145.fpppp
the parallelism saturates quickly: with an instruction ew size of 128K, it is 314, with
1M, it is 357. Not so in110.applu parallelism grows smoothly (but sublinearly) even as
very large window sizes are reached. Hiesolutevalues of parallelism are vastly differ-
ent: wheread45.fppppachieves over 300, arfdl0.appluover 1000, we have only 45 for



129.compreséot shown). This agrees with observations [3] that someerigal programs
have very high intrinsic parallelism, proportional to pleri size and exposed by unrolling
loops (which we in effect do).

10000
all ——
excluding address -
1000
=
o
E
< 100
o
g
o
10
1
10 100 1000 10000 100000 le+06 le+07
Instructions in window
(a) Graph height
1800 T T , T T
all ——
1600 excluding address - X
. 1400 | /
5
- 1200 | i
2 ¥
T 1000 | i
N /
2 800 - ><
g 600 ¢
O 400 | A
2007 M
0 Lx 1 . .
10 100 1000 10000 100000 1le+06 l1e+07

Instructions in window

(b) Graph parallelism measure

1

= TEOE e e
< Koo Ko K Kok
E 08 -
=
© 0.6
o o]
£
S o4y i
o
& )
o 02 o
=} . .
E] graph size ratio %
o 0 graph height ratio &
10 100 1000 10000 100000 le+06 1e+07

(c) Ratios excluding address calculation

Instructions in window

Fig. 1. Benchmarkl45.fpppp

Graph size/height Graph height

Ratios (excluding address)/(all)

1000

100 ¢

10 ¢

1200

1000

800

600

400

200

1

0.8 r

0.6 -

04 r

0.2 r

0

0

all ——
excluding address -
1 10 100 1000 100001000001e+06 1e+07
Instructions in window
(a) Graph height
T T T
excluding address -
1 10 100 1000 100001000001e+06 1e+07

Instructions in window

(b) Graph parallelism measure

I:IIZID
*.
Ko

graph size ratio %
graph height ratio —&

ooooEHEEEEEED
o
KKK K K KKK K KKK

1

10

100 1000 100001000001e+06 1e+07
Instructions in window

(c) Ratios excluding address calculation

Fig.2. Benchmarki10.applu

Excluding Address Calculations. Will there be differences with respect to available
parallelism between the data-flow graph as built, and itgsagh that excludes purely ad-
dress calculations? This is an interesting question, tsecthe latter graph seems closer
to the algorithmic intent of the program, address calcotetibeing partly an artifact of
the particular compiler/RISC architecture realizationthed program. Recall that while we
are reconstructing the data-flow graph at run-time, we ake tabrecognize when a load
instruction L retrieves a value written to memory by a presgistore instruction S and pro-



duced by a previous computational instruction C. We bypash a load—an instruction
that uses the loaded value sees it instead as coming frorm@arsto theload-store tele-
scopingoptimization [12]. Note that L is no longer needed to repnéskee computation,
and in some cases S also is no longer needed (if L is the ontydb#he value). Loads
and stores are preceded by instructions to calculate ars&ldiThese instructions may in
turn include other loads.) If certain loads and stores arkonger needed to represent the
computation, then the corresponding address calculatiomaot needed either. However,
while we are building the graph we cannot know which compaomast will end up being
usedonly to calculate addresses. This we determine in a separateyaatpropagating
pass over the data-flow graph. (Address calculation retiogrsubsumes thgtack pointer
register analysi®f [10].) The dashed lines, labellexcluding addresi plots (a) and (b),
give the graph height and graph parallelism measure fordteefiow subgraph without ad-
dress calculations. Plots (c) show the relative size anghheif the subgraph with respect
to the full graph. We show both in the same plot area to makasiee to compare with
the graph parallelism measure plot. (Consider the intémsecof (c) curves and the inter-
sections of (b) curves: their abscissae coincide.) Let usldick at the relative subgraph
size, labelled “graph size ratio” in plots (c). This raticaclges very little with instruction
window size, and the small observed change is in the direcicomewhat smaller ratios
as the window size is increased. Indeed, in the backwarpagrating algorithm we must
conservatively assume that values present at the end ohgieiétion windowmay be
used as non-addresses in the continuation of the programtlaé window; as the window
grows, the inaccuracy of that assumption diminishes arld ivibhe number of instructions
inaccurately assumed to be involved in non-address cortiquitd he ratio varies greatly
across benchmarks: 0.9 fo45.fpppp 0.8 for110.appluand124.m88ksimbut just 0.2 for
129.compress

Relative subgraph height, labelled “graph height ratiopiats (c), shows significant
variation with window size. InL45.fppppit remains close to 1 up to a window size of
16K, but drops sharply thereafter, so that by 1M it is just 2other words, for smaller
windows, the subgraph height is about the same as the fythgheight, but for larger
windows, the subgraph height collapses. The critical patitetermined by a dependence
chain of address calculations carried in a loop. If addredsutations are eliminated, a
much larger amount of parallelism is exposed. We observeddme pattern ifi41.apsj
099.99 134.per| 126.gc¢ 130.li, andmpeg2decodeOn the other hand, it10.appluthe
ratio of graph heights is close to 1: the critical path is fur tost part determined by the
“data” calculations, i.e., instructions other than addieculations. We observed a similar
pattern in146.wave5124.m88ksimandadpcm

We may summarize the findings as follows: When address edions form long de-
pendence chains, they can dominate “data” computatiomsttegir removal is beneficial
for parallelism. When address calculations are localittezly removal does not affect graph
height, yet it reduces graph size; therefore, parallelsneduced.

3 FutureDirections

With data-flow graphs explicitly constructed we are notrietgd to critical paths through
the entire graph, but can zoom in on particular nodes. Ftariicg, we can examine the criti-



cal path of the computation that produces the address fad(leith a view to prefetching),
or the critical path that produces a conditional value (withiew to scheduling beyond the
corresponding branch). We should consider what can be ddaeguage implementation
to reform the way memory data are accessed: a compiler g@iion such as array index
“strength reduction” can introduce a chain of address tatlicuns where none is apparent
at the source level. On the other hand, to appreciatgthetical repercussions of avail-
able parallelism, we should consider code mappings tost@afirocessors, where memory
bandwidth and control flow uncertainty are taken into actoWe intend to combine the
analysis of instruction-level parallelism with analysidbd usage [14], which will lead to
a finer-granularity description of parallelism as the bdsiscode mapping decisions for
hybrid fixed-configurable processors.

References

1. T.M. Austin and G. S. Sohi. Dynamic dependency analysisdihary programs. 149th ISCA
pages 342-351, May 1992.

2. J. W. Davidson and S. Jinturkar. Improving instructiemel parallelism by loop unrolling and
dynamic memory disambiguation. MICRO-28 Dec. 1995.

3. A. Nicolau and J. A. Fisher. Measuring the parallelismilatée for very long instruction word
architectureslEEE Trans. ComputC-33(11):968—-976, Nov. 1984.

4. D. W. Wall. Limits of instruction-level parallelism. WRResearch Report 93/6, Digital Equip-
ment Corporation, Western Research Laboratory, Palo &lfg,Nov. 1993.

5. C. C. Foster and E. M. Riseman. Percolation of code to exghparallel dispatching and execu-
tion. IEEE Trans. ComputC-21(12):1411-1415, Dec. 1972.

6. N. P. Jouppi. The nonuniform distribution of instructiewel and machine parallelism and its
effect on performancdEEE Trans. Comput38(12):1645-1658, Dec. 1989.

7. M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on mplg instruction issue. IASPLOS
Ill, pages 290302, Boston, Massachusetts, 1989.

8. M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M.eBlanow. Single instruction stream
parallelism is greater than two. k8th ISCA pages 276286, May 1991.

9. M. S. Lam and R. P. Wilson. Limits of control flow on parabeh. In 19th ISCA pages 46-57,
May 1992.

10. M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge.eTimits of instructions level
parallelism in SPEC95 applications. &rd Workshop on Interaction Between Compilers and
Computer ArchitectureOct. 1998.

11. J. L. Hennessy and D. A. Patters@omputer Architecture: A Quantitative Approaddorgan
Kaufman Publishers, Inc., San Mateo, California, 1996.08dEdition.

12. K. Ebcioglu, E. R. Altman, S. Sathaye, and M. Gschwingtifizations and oracle parallelism
with dynamic translation. IMICRO-32 Nov. 1999.

13. D. Burger and T. M. Austin. The SimpleScalar tool setsigr 2.0. Computer Architecture
News pages 13-25, June 1997.

14. D. Stefanovi¢ and M. Martonosi. On availability of biérrow operations in general-purpose
applications. IrML0th FPL, Villach, Austria, 2000.



