
Limits and Graph Structure of Available Instruction-Level
Parallelism

Darko Stefanović and Margaret Martonosi

Princeton University, Princeton NJ 08544, USA

Abstract. We reexamine the limits of parallelism available in programs, using run-
time reconstruction of program data-flow graphs. While limits of parallelism have
been examined in the context of superscalar and VLIW machines, we also wish to
study the causes of observed parallelism by examining the structure of the recon-
structed data-flow graph. One aspect of structure analysis that we focus on is the
isolation of instructions involved only in address calculations. We examine how ad-
dress calculations present in RISC instruction streams generated by optimizing com-
pilers affect the shape of the data-flow graph and often significantly reduce available
parallelism.

1 Background and Related Work

Most studies of the limits of available instruction-level parallelism have focused on the
timing of an optimal schedule of the instruction sequence for an idealized processor model.
We propose to examine directly the data flow graph of the instruction sequence. Thus we
will be able to gain insight into the structural properties of the available parallelism, so
that we may understand which elements of the instruction sequence, or which compiler
idioms, affect available parallelism. In particular, herewe show that the presence of address
calculations for memory operations greatly affects parallelism; in some programs, it is
precisely the address calculations that limit the asymptotically achievable parallelism. As in
earlier studies, we assume no hardware limitations: the degree of parallelism available is the
degree exploitable. Examining very long dynamic code sequences means that control flow
is entirely revealed and does not constrain parallelism. Imperfect alias analysis in compilers
[1, 2] sequentializes code by enforcing the order of the store-load pair, together with all
potentially aliased memory operations, for any value that cannot be held in registers and is
temporarily stored in memory (register spill, call save, orotherwise); by precise memory
disambiguation at run-time we remove all such constraints as well.

A number of studies over the past three decades have looked atthe limits of parallelism
[1–10], using instruction-scheduling simulators. The simulator reports the number of cy-
cles needed to execute the program, and the number of instructions executed. The ratio of
the two gives the IPC as the standard measure of instruction-level parallelism [11]. The
simulator effectively constructs the moving “front line” of the data-flow graph [3]; thus,
constructing an entire data-flow graph is not necessary to obtain a single number, the cycle
count. However, having anexplicitly constructed graph permits us to study its structure: we
can inspect the computation nodes repeatedly, and evaluatethe graph usingmulti-passand
backward-flowalgorithms. We will illustrate this new possibility on one example: we will
recognize instructions involved in address calculations using a backward-flow algorithm.



While in the past reconstructing large graphs was dismissedas impractical [3], that is
no longer the case. Currently available memory space permits building graphs sufficiently
large to capture interesting application behavior—parallelism analysis using a conceptual
dependence graph of a moving window of program execution wasdemonstrated by Austin
and Sohi [1]. Recently, Ebcioğluet al.described a system for dynamic code translation and
optimization [12], aimed at transparent porting of applications to a VLIW execution en-
gine. Among other results, they evaluate achieved parallelism without resource constraints,
and with store-load bypassing. We obtain comparable parallelism numbers, except for their
results with the “combining” optimization, which in some cases show much higher par-
allelism. This optimization breaks dependence chains of immediate-operand instructions
with the dependence on a common register, by adjusting the immediate values (a form
of constant folding at the machine level); code modifications are outside the scope of our
study.

2 Run-time Analysis of Programs

Our analysis uses the core of the SimpleScalar architectural simulation toolset [13] for the
Alpha instruction set, and dynamically constructs a program’s data-flow graph. Concep-
tually, graph nodes correspond to executed instructions, while graph edges correspond to
computed operand values. The values are tracked through memory, including multi-byte
values through partial and unaligned accesses. This allowsus to recognize when entire
stored values are reloaded. Nodes are not created for instructions identifiable as data trans-
port: register moves and memory loads; instead, the values are appropriately bypassed from
the producing node to the using node. Thus the data flow of the computation is recon-
structed independent of the storage layout.

We simulated a number of SPEC95 and Mediabench programs, with up to 1800 mil-
lion instructions executed. Benchmarks were compiled on a Digital Alpha 21164 EV56
using native C and Fortran compilers, and highly optimized as specified by SPEC. For each
benchmark, we varied the size of the instruction window as powers of 2, between 16 and
1M (limited by the memory capacity of the simulator host).

We first look at the parallelism reported for the graphs consisting of all instructions
in the examined window; the results are presented in plots (a) and (b) in Figures 1 and 2.
The solid lines, labelledall in the graph height plots (a), show the growth of average graph
height (length of critical path) with increasing instruction window size. The axes in graphs
(a) are both logarithmic; the slopes of the curves (below 1) show that the dependence is
sublinear. The solid lines, labelledall in the graph parallelism plots (b), show the ratio of
graph size (number of instruction nodes) to height. This ratio is a measure of average avail-
able parallelism, because it reflects the potential speedupof a machine with unbounded
hardware resources (limited only by data dependences) overa sequential machine that ex-
ecutes exactly one instruction per cycle in program order. As the instruction window size
increases, so does the parallelism. However, we note some distinct behaviors. In145.fpppp,
the parallelism saturates quickly: with an instruction window size of 128K, it is 314, with
1M, it is 357. Not so in110.applu: parallelism grows smoothly (but sublinearly) even as
very large window sizes are reached. Theabsolutevalues of parallelism are vastly differ-
ent: whereas145.fppppachieves over 300, and110.appluover 1000, we have only 45 for



129.compress(not shown). This agrees with observations [3] that some numerical programs
have very high intrinsic parallelism, proportional to problem size and exposed by unrolling
loops (which we in effect do).

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06 1e+07

G
ra

p
h

 h
ei

g
h

t

Instructions in window

all
excluding address

(a) Graph height

0

200

400

600

800

1000

1200

1400

1600

1800

10 100 1000 10000 100000 1e+06 1e+07

G
ra

p
h

 s
iz

e/
h

ei
g

h
t

Instructions in window

all
excluding address

(b) Graph parallelism measure

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07

R
at

io
s 

(e
xc

lu
d

in
g

 a
d

d
re

ss
)/

(a
ll)

Instructions in window

graph size ratio
graph height ratio

(c) Ratios excluding address calculation

Fig. 1. Benchmark145.fpppp

1

10

100

1000

1 10 100 1000 100001000001e+06 1e+07

G
ra

p
h

 h
ei

g
h

t

Instructions in window

all
excluding address

(a) Graph height

0

200

400

600

800

1000

1200

1 10 100 1000 100001000001e+06 1e+07

G
ra

p
h

 s
iz

e/
h

ei
g

h
t

Instructions in window

all
excluding address

(b) Graph parallelism measure

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 100001000001e+06 1e+07

R
at

io
s 

(e
xc

lu
d

in
g

 a
d

d
re

ss
)/

(a
ll)

Instructions in window

graph size ratio
graph height ratio

(c) Ratios excluding address calculation

Fig. 2. Benchmark110.applu

Excluding Address Calculations. Will there be differences with respect to available
parallelism between the data-flow graph as built, and its subgraph that excludes purely ad-
dress calculations? This is an interesting question, because the latter graph seems closer
to the algorithmic intent of the program, address calculations being partly an artifact of
the particular compiler/RISC architecture realization ofthe program. Recall that while we
are reconstructing the data-flow graph at run-time, we are able to recognize when a load
instruction L retrieves a value written to memory by a previous store instruction S and pro-



duced by a previous computational instruction C. We bypass such a load—an instruction
that uses the loaded value sees it instead as coming from C, similar to theload-store tele-
scopingoptimization [12]. Note that L is no longer needed to represent the computation,
and in some cases S also is no longer needed (if L is the only load of the value). Loads
and stores are preceded by instructions to calculate an address. (These instructions may in
turn include other loads.) If certain loads and stores are nolonger needed to represent the
computation, then the corresponding address calculationsare not needed either. However,
while we are building the graph we cannot know which computations will end up being
usedonly to calculate addresses. This we determine in a separate, backward-propagating
pass over the data-flow graph. (Address calculation recognition subsumes thestack pointer
register analysisof [10].) The dashed lines, labelledexcluding addressin plots (a) and (b),
give the graph height and graph parallelism measure for the data-flow subgraph without ad-
dress calculations. Plots (c) show the relative size and height of the subgraph with respect
to the full graph. We show both in the same plot area to make it easier to compare with
the graph parallelism measure plot. (Consider the intersections of (c) curves and the inter-
sections of (b) curves: their abscissæ coincide.) Let us first look at the relative subgraph
size, labelled “graph size ratio” in plots (c). This ratio changes very little with instruction
window size, and the small observed change is in the direction of somewhat smaller ratios
as the window size is increased. Indeed, in the backward-propagating algorithm we must
conservatively assume that values present at the end of the instruction windowmay be
used as non-addresses in the continuation of the program after the window; as the window
grows, the inaccuracy of that assumption diminishes and with it the number of instructions
inaccurately assumed to be involved in non-address computation. The ratio varies greatly
across benchmarks: 0.9 for145.fpppp, 0.8 for110.appluand124.m88ksim, but just 0.2 for
129.compress.

Relative subgraph height, labelled “graph height ratio” inplots (c), shows significant
variation with window size. In145.fppppit remains close to 1 up to a window size of
16K, but drops sharply thereafter, so that by 1M it is just 0.2. In other words, for smaller
windows, the subgraph height is about the same as the full graph height, but for larger
windows, the subgraph height collapses. The critical path is determined by a dependence
chain of address calculations carried in a loop. If address calculations are eliminated, a
much larger amount of parallelism is exposed. We observed the same pattern in141.apsi,
099.go, 134.perl, 126.gcc, 130.li, andmpeg2decode. On the other hand, in110.appluthe
ratio of graph heights is close to 1: the critical path is for the most part determined by the
“data” calculations, i.e., instructions other than address calculations. We observed a similar
pattern in146.wave5, 124.m88ksim, andadpcm.

We may summarize the findings as follows: When address calculations form long de-
pendence chains, they can dominate “data” computations, and their removal is beneficial
for parallelism. When address calculations are localized,their removal does not affect graph
height, yet it reduces graph size; therefore, parallelism is reduced.

3 Future Directions

With data-flow graphs explicitly constructed we are not restricted to critical paths through
the entire graph, but can zoom in on particular nodes. For instance, we can examine the criti-



cal path of the computation that produces the address for a load (with a view to prefetching),
or the critical path that produces a conditional value (witha view to scheduling beyond the
corresponding branch). We should consider what can be done in language implementation
to reform the way memory data are accessed: a compiler optimization such as array index
“strength reduction” can introduce a chain of address calculations where none is apparent
at the source level. On the other hand, to appreciate thepractical repercussions of avail-
able parallelism, we should consider code mappings to realistic processors, where memory
bandwidth and control flow uncertainty are taken into account. We intend to combine the
analysis of instruction-level parallelism with analysis of bit usage [14], which will lead to
a finer-granularity description of parallelism as the basisfor code mapping decisions for
hybrid fixed-configurable processors.

References

1. T. M. Austin and G. S. Sohi. Dynamic dependency analysis ofordinary programs. In19th ISCA,
pages 342–351, May 1992.

2. J. W. Davidson and S. Jinturkar. Improving instruction-level parallelism by loop unrolling and
dynamic memory disambiguation. InMICRO-28, Dec. 1995.

3. A. Nicolau and J. A. Fisher. Measuring the parallelism available for very long instruction word
architectures.IEEE Trans. Comput., C-33(11):968–976, Nov. 1984.

4. D. W. Wall. Limits of instruction-level parallelism. WRLResearch Report 93/6, Digital Equip-
ment Corporation, Western Research Laboratory, Palo Alto,CA, Nov. 1993.

5. C. C. Foster and E. M. Riseman. Percolation of code to enhance parallel dispatching and execu-
tion. IEEE Trans. Comput., C-21(12):1411–1415, Dec. 1972.

6. N. P. Jouppi. The nonuniform distribution of instruction-level and machine parallelism and its
effect on performance.IEEE Trans. Comput., 38(12):1645–1658, Dec. 1989.

7. M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on multiple instruction issue. InASPLOS
III , pages 290–302, Boston, Massachusetts, 1989.

8. M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single instruction stream
parallelism is greater than two. In18th ISCA, pages 276–286, May 1991.

9. M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In19th ISCA, pages 46–57,
May 1992.

10. M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge. The limits of instructions level
parallelism in SPEC95 applications. In3rd Workshop on Interaction Between Compilers and
Computer Architecture, Oct. 1998.

11. J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Morgan
Kaufman Publishers, Inc., San Mateo, California, 1996. Second Edition.

12. K. Ebcioğlu, E. R. Altman, S. Sathaye, and M. Gschwind. Optimizations and oracle parallelism
with dynamic translation. InMICRO-32, Nov. 1999.

13. D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer Architecture
News, pages 13–25, June 1997.

14. D. Stefanović and M. Martonosi. On availability of bit-narrow operations in general-purpose
applications. In10th FPL, Villach, Austria, 2000.


