Oldest-First Garbage Collection
Computer Science Technical Report 98-81

Darko Stefanovic J. Eliot B. Moss Kathryn S inley
Department of Computer Science
University of Massachusetts

Revised, April 1998

1

Note. Some of the information in this document is
superseded by later results. In particular, we now
view the oldest-first collection described in this re-
port as a special case of renewal-age oldest-first
collection. We also believe that excess promotion of
objects can be a significant factor for performance
in practice, but it is not modelled in this study. This
circumstance diminishes the utility of mathematical
analyses and simulations based solely on object life-
times. April 1998.

Abstract. An oldest-first generational garbage col-
lector leaves intact the most recently allocated object
space, and instead collects the remaining, older ob-
jects. Because these older objects have had more
time to die, an oldest-first copying collector will
generally do less copying than a traditional gen-
erational collector (which operates youngest-first),
a non-generational collector, and even Clinger and
Hansen’s non-predictive collector (which does wait a
little while for objects to die). To explore the perfor-
mance of oldest-first collection, we present a math-
ematical analysis, simulation results for a variety of
mature object lifetime distributions, and simulation
results for mature object lifetimes drawn from real
programs and for real mature object traces. These
results demonstrate that oldest-first collection does
perform significantly better than youngest-first or
non-generational collection for mature objects. Al-
though some previous work pointed in this direction,
it provided very little evidence of our conclusion.
We also find that oldest-first collection works well
for lifetime distributions that satisfy the generational
hypothesis, which suggests we should also consider
oldest-first collection in the young object space.

Introduction

non-standard generational “oldest-first” collector céit ef
ciently collect these longer-lived, mature objects, and in
general, objects that do not die quickly.

Figure 1 illustrates a collector that divides objects into
young and old, using a traditional generational collector
for the young space, and a mature space collector. The
collector promotes objects that survive the oldest genera-
tion of young space into the mature space. In this paper,
we consider three alternative organizations for the mature
space collector: (1) non-generational, (2) youngest:first
and (3) oldest-first. The non-generational collector simpl
collects the entire space every time it fills up. It serves as
a base line for comparison. The youngest-first collector is
a traditional two-generation copying collector. It cottec
the young objects every time the heap fills up. The oldest-
first collector instead collects the old objects every time
the heap fills up.

To explore these alternatives, we study a variety of ob-
ject allocation traces which exhibit different lifetimeseli
tributions. We analyze the three collectors mathemayicall
and through simulation using widely different object life-
time distributions, and show that the oldest-first collecto
is superior to the others. We take the lifetime traces for
mature objects from a number of analytical distributions
and distributions built from actual programs, and we sim-
ulate the collectors on actual mature object traces. We are
not aware of any other work that reports accurate object
lifetime information for mature objects.

The remainder of the paper is organized as follows.
We first discuss related work that prompted our effort.
Section 3 then defines the object lifetime terminology.
Section 4 provides a simply motivating example for why
oldest-first should perform well. We then present a set of
analytical object lifetime distributions we use to studg th
three collectors in Section 5. The remaining sections de-
scribe collection space and time costs, and provide mathe-
matical and simulation analyses of these costs for the three
collectors, including their behavior on actual mature obje

Garbage collection, automatic dynamic memory manageces.

ment, frees programmers from explicitly managing data

allocation and reclamation. Its software engineering ben-

efits are well known, but its influence on performance 8 Related work

a subject of debate. To date, the best-performing garbage

collectors in wide use are generational copying collectoie primary related work is a recent study by Clinger
According to common wisdom, these collectors rely aand Hansen [Clinger and Hansen, 1997].
the fact that the youngest objects die quickly, and concemed the behavior of heaps under the exponential distri-
trate their collection efforts on them. For longer-lived olibution (radioactive decay model), and proposed a non-
jects, there is little evidence that the younger ones dieemgredictive collector. Rather than collecting the youngest
quickly than the older ones. Nevertheless, we show thaata like a traditional generational collector, the non-

They consid-

if collection cost is determined by object lifetimes, then@redictive collector processes thieungesportion of the

, N
N
new objects ‘ v mature objects
e bk N e C D
,

]
v nursery and young space collector mature space collector
N

Figure 1: Structure of collection.

older generation, so it differs from our oldest-first colle@ Background and definitions

tor, which processes thadestportion. Because oldest-

first copies the oldest portion it will do less copying thahhere is no consensus on terminology for garbage collec-
non-generational, youngest-first, or Clinger and HanseH@n analysis, so we define the terms as we use them. The
non-predictive collector, foany object survival functian timebetween two events as seen by a collector is expressed
Clinger and Hansen presented their results as being casthe amount of data allocated in between the events and
fined to the exponential distribution. managed by that collector. For a mature space collector,

the time reflects the amount of data allocaiteid the ma-

ture spacei.e., promoted out of the young space. The

Because the analysis is simpler, Clinger and Hansen. o :
y P . 9 . ﬁﬁetlme of an object is the time elapsed between the ob-
only explored values off < 0.5, whereg is the fraction .

of the heamot collected at the next collection. We exj_ect’s allocation and when the object becomes unreach-

tend the analysis to the full range<0g < 1 and find that able. Given a sequence of new or mature objects, we char-

values ofg close to 1 perform well. Other ways in whichaCte_nze some statlst_lcal properties of the sequence using
. .) survival-related functions.
we go beyond Clinger and Hansen’s work are: we ana- : .
. . . . Following standard practice [Cox and Oakes, 1984,
lyze youngest-first collection; we consider other anasltic

distributions; we simulate collector behavior with matur%landt-Johnson and Johnson, 1980], we describe the dis-

. N . . tribution of lifetimes using theurvivor function theden-
object distributions determined from actual traces; and we) . :
sity function and themortality (or hazard) functionif we

simulate collector behavior on actual mature object traces . I .
view the object lifetime as a random variafdle then the
survivor function issr(t) = 0{T > t}, and it expresses
There have been a number of papers about Re fraction of original allocation that is still live aften
ject lifetimes and the generational hypothesggiervalt. It is a monotone non-increasing function. The
Clinger and Hansen offer a good overview of theggnsity function isfr(t) = —s-(t), and it expresses the

[Clinger and Hansen, 1997, Section 9 (pp. 106-107)]. Wgstribution of object lifetimes. The mortality functios i
could not find any recent studies of mature object lifetimg, (t) — fr(t) d Jogsr(t), and it expresses the age-

S . sr(t) — dt
distributions that go beyond anecdotal reports, with t@ﬁecific 5Egth rate. (Subscripfsare dropped in the fol-
signal exception of Hayes’ data [Hayes, 1993]. lowing.)

One of us has worked on collection techniques dj-
rected at mature objects, the Mature Object Spa%e Why oldest-first is better: a S|mple

(MOS) collector, also called the Train Algorithm analysis

[Hudson and Moss, 1992]. The objective of that work,

though, is not so much the minimization of total garbagePnsider an arbitrary survivor functicsit), as illustrated
collection cost as avoidance of disruptive pauses. Selyfigure 2. The only certain property sft) is that it is a
mann and Grarup [Seligmann and Grarup, 1995] impf@onotone non-increasing function. Suppose that space
mented MOS and found it to work quite well. It botts available for allocating new objects, and that following
keeps pauses short and keeps heap usage very close t8 pegiod of allocation into this space we collect the live ob-
amount of live data. What makes MOS relevant here is tfi@ts. copying them elsewhere. The volume of objects col-
if we ignore the fact that it will tend to reorganize object§cted is [y’ S(t)dt, or the area under the curegt). Col-
according to their reachability, it is an oldest-first cotter |€ctions occur atregular intervals of lengthso the copy-
for mature objects. Thus the present work provides adufig cost of collection is proportional t@f,(#)dt. If instead
tional support for the MOS approach. we look at only one half of the allocated space, namely

3

1] of object lifetimesin real systemsTheweak generational
hypothesistates that young objects die fast, i.e., that mor-
tality m(t) is high for smallt. The strong generational
hypothesisstates furthermore that even among older ob-

s jects, the relatively younger ones die faster, i.e., th@d
is a monotone decreasing function. In the context of these
hypotheses, the exponential distributfofgr which the
mortality is constant, is the boundary case between dis-
tributions favorable to generational collection, withit)
decreasing, and those unfavorable to it, witft) increas-
ing [Baker, 1993].

We show that these assumptions are not intrinsically

0 o Vi v t necessary for the efficient operation of a generational col-

lector, but that the form of the distribution does affect the
Figure 2: Fundamentals of collection: survivor functionbest organization of the collector.
We were interested in analyzing distributions reflective
o) of actual mature object lifetime distributions, but could
that allocated earlier, .|.eV, with greater current age, thf';n'?d no previous studies of mature object lifetimes. There-

_the VO'Pme collected !qV/2S(t)dt’ qr the area hatChedfore we gathered object allocation traces from 25 long-

in the figure. We can implement this strategy by Coueq]l]nning programs in Smalltalk and in SML/NJ, and ex-

ing twice as frequently, and each time collecting not tI?l%cted traces of allocation into mature space. Some of
areaV /2 just allocated, but the one allocated in the Preve object lifetime distributions satisfy the generatidna

ous cycle.vThe copying cost of collection is then pmpoﬁbtheses and some do not. To cover the space of possi-
. 2 s(t)dt
tional tofV/ZT(). Now, because(t) is non-increasing, it ble shapes of the mortality function, we chose three rep-

will always be the case th@@//zs(t)dt < Sl/zs(t)dt, and resentative analytical distributions: the exponentiatreh
2f\>//23(t)dt < Sl/zs(t)dt+f\>//zs(t)dt: f(;/ s(t)dt. This bution (mortality is constant), the square-root-expoiant

difference is indicated by the shaded region on the top(o ortality decreases with age), and the square-exporentia

the left half of the figure. Collecting twice as frequently gmortallty increases with age).

region half as big, buvith postponemenitnakes the copy- Exponential survival: The survivor function iss(t) =

ing cost lower (or in the worst case does not change it), e mortality ism(t) = A, and the probability den-

regardlesof object lifetimes. sity function is f(t) = Ae . The mortality is con-

The foregoing reasoning can be generalized to configu- stant for all ages. For this distribution, we also have

rations in which a portion smaller than one-half of the vol- analytical solutions for collector performance. We

ume is considered each time, and postponementis by more used them to validate the simulation procedure.

than one collection cycle. These configurations promi§ﬁuare-root-exponential survival: The survivor func-

even lower copying costs, and we use the tetdest-first o \/@

collectionfor all of them. Hence, we can summarize by tion is s(t) = e"VF mt) = %L, and f(t) =

saying that oldest-first collection copies less and is thus e VB

better than non-generational collection. By similar argu- 2

ments itis also better than traditional two-generatioo&l ¢

lection, which repeatedly examines the most recently allo-

cated region, and can thus be termed youngest-first. We

now examine how much better it is, and refine the analySiguare-exponential (semi-normal) survival: The sur-

to include also the cost of invoking the collector. vivor function is s(t) = e(®)°, m(t) = 2p?, and
f(t) = 2p%e*)’. The mortality is an increasing
function of age.

. The mortality is a decreasing function of
age. This distribution satisfies the generational hy-
potheses and corresponds well to the lifetime distri-
butions of young objects in real systems.

5 Obiject lifetimes

1Also known as the radioactive decay model [Baker, 1993,

. . . o Clinger and Hansen, 1997].
Generational collection has traditionally been justifiada 2the questions of modelling the observed lifetime distributions us-

explained using certain hypotheses about the distributiogiparticular analytical distributions are beyond the scope of this paper.

4

Survivor function

Mortality

Probability density

0.8

0.6

04 r

0.2 r

0.00014 -

0.00012 |

0.0001

8e-05

6e-05

4e-05

2e-05

0

0.00014

0.00012 [

) ! Exponential —
‘Sqgrt-exponential
Square-exponential

1000 10000 100000 le+06

Age
(a) Survivor function

10 100

Sqrt-exponential
Square-exponential

— ‘
Exponertial — |

1

10 100 1000 10000 100000 le+06
Age

(b) Mortality function

Exponential —
Sqrt-exponential
Square-exponential

0.0001 |

8e-05

6e-05

4e-05

2e-05

100000

(c) Density function

Figure 3: Analytical distributions.

On opposite sides of the exponential distribution we
have: the square-root-exponential with mortality decreas
ing for all ages, so it should be ideal for youngest-first col-
lection; and the square-exponential, with mortality tart
at 0 and increasing for all ages. Figure 3 illustrates these
survivor functions, and the dramatic differences in their
mortality functions.

In the remainder of the paper, we develop and compare
the total cost of garbage collection for each scheme (non-
generational, youngest-first, and oldest-first), for the an
alytical distributions, for real distributions, and forate
traces. We make the comparison of the collection cost
overheads of different schemes fair by allowing each
scheme an equal amount of space overhead. We first
develop mathematical formulae describing the time and
space cost of collection (Section 6). We continue by de-
scribing how each collector works in Section 7 and giving
a summary of the mathematical analysis for the exponen-
tial distribution in Section 8. We offer simulation results
for the analytical distributions and traces synthesized us
ing real distributions in Section 9.1, with results from ac-
tual traces in Section 9.2. These results, based on object
lifetimes, show that for a broad range of operating con-
ditions, which we expect to be representative both of real
workloads and of real collector implementation costs, the
oldest-first organization is superior to the youngest-first
ganization. However, the results based on heap pointer
structure show a different and ambiguous picture, as we
discuss in Section 10; we present our final conclusions in
Section 11.

6 Time and space overheads of collec-
tion

Time. The main cost of copying garbage collection is the
cost of copying live objects, whether they are copied else-
where (pure copying) or compacted within the region (slid-
ing). This cost partly depends on themberof objects
copied, but it is roughly proportional to the totablume
copied. Thamark/cons ratipdefined agi= %a
is a good measure of the copying cost and we use it to
compare copying costs. It represents the average num-
ber of times an object is copied, and thus measures the
time “wasted” by the collector. If a program allocates an
amountA, and the cost o€opyingone word isc; times
the cost ofallocatingone word, where&. is a small num-
ber, perhaps in the range 1-3, then the copying cost for the
program isccUA

In an earlier study, we measured the cost of one garbage

collection in a deployed system (SML/NJ v0.93) to bgretaer than the amount of live data. The smallest possi-
C =5183+81.2w, whereC is the cost in cycles and is ble heap, with no space overhead, would hdve v and
the amount copied in words, and the second term alwadys- 1. But for any collector organization, &sis made
dominates. The first term, which we cél§, is the cost to approach 1, the copying cgstends to infinity. In or-
of an invocation of the garbage collector. The number dér not to deal with such large valuesjofor smallL, it
invocations is inversely proportional to the amount of allds often convenient when visualizing and comparing copy-
cation between two collections, i.e., the amddriteed by ing costs to normalize with respect to a non-generational
each collection. The total garbage collection startup casilector, and we define thelative mark/cons ratip =
for a program that allocates an amounis Csé; the to- [/ Mhon-generational The value of this metric will turn out to
tal cost isccuA+ Csé; and the cost per word allocated ibe justp = p(L — 1), in other words it measures thiene-
C=CcM+ CS%. space product overhead

In addition to these costs, which we model, there areWe denote byf the fraction of the heap a collec-
some costs that are beyond the scope of this study. In biigh frees: f = \E/ The total cost of collection is thus
analysis and simulation, we assume that perfect knowl= c.u+ CS%,. Normalizing, we can use the cast=
edge of objgct regchab|l|ty is avallablg. In practice, that, CSccflLv =+ . HereX = % captures the cost of
knowledge is derived by the collector itself by means gfection startup relative to the cost of copyil@s andce
tracing. There is clearly an up-front cost of the tracir}gbpend on garbage collector implementation, aisispe-
operation, but in a copying collector that cost can be agfic to the application program. The number of collector
counted for as part of the copying cost by suitably increagyocations differs in the collector organizations we con-
ing Cc. However, tracing in a collector with multiple heagjger, thus relative collector performance depends on the
regions depends on the availability @imembered sets ¢ost of collection startup. We therefore present compari-
records of pointers that cross region boundaries, in pargn results withX as parameter for a wide range of values
ular, pointers into the region collected. The maintenangex But we must then ask—what are reasonable val-
cost of these sets is paid in part by the collector and in pgls ofX that one could encounter in practice? Consider
by the mutator. In addition, whenever a region is not cQjy earlier measurements: the cost of copying one word
lected, the collector assumes that all data in it are livd, 38 gpout 80 cycles, but the cost of allocating one word is
that all pointers emanating from that region and into thgqyt 2 cycles, so; ~ 40; the cost of startu@s is about
region collected are root pointers. Thus, the collector agyoo cycles. Then for a program with a smallish steady-
sumes that more data are live than is actually the case, gifle live amount of 50,000 word%,~ 0.0025. Our com-
the copying cost is correspondingly higher than it woulghrison results will show that for reasonable valueof
be given perfect reachability knowledge. andL the best configuration of the oldest-first collector has

lower cost than the best configuration of the youngest-first

Space. We useV to denote the volume available for theollector.
heap. It is possible in real collectors to vary this size to
adapt to the workload, and since using more space tends .
to reduce the time overhead, in our study weito com- 7 Collector details
pare different schemes equitably by giving each the same
space constraints. We note that pure copying collectihfe now describe each collector in more detail. These de-
has higher peak space demands than sliding compactﬁ‘}r’ii.ptions correspond to the way in which we simulated
Here we consider only sliding collection. the collectors’ behavior.

When considering a heap in equilibrium, in which the Non-generational collector: The total space available
rate of allocation equals the rate of object demise, we (¥ and after collection, &V data is live andiV is free.
v to denote the steady-state amount of live dae ra- nitially the whole heap is emptygo = 0 andfo = 1. Each
tio L = ¥ expresses the space overhead of the collect§flection processes the entire spatelt does not mat-

configuration: how many times the available heap spacé§gin which direction objects are compacted or in which
direction they are allocated.

3The notion of a steady state is convenient for mathematical treat‘YoungeSt-first collector: The total space available is

ment of heap organizations. Moreover, real programs that doreagh a ,.
quasi-steady state can run long and go through a large number of?dl- It is divided into a young generation of sigy and

lections, so the effects of the fortuitous choice of collection instants &8 Older generation of sizé — g)V. Allocation proceeds
reduced. in the young generation until it is exhausted, which trig-

6

gers aminor collection The minor collection processe® Simulation results

the young generation, copying survivors into the old gen-

eration. Eventually the old generation fills up, and the née produced synthetic object allocation traces, with dbjec

time the young generation fills, the entire heap is collectdiéetimes as independent identically distributed random

with survivors put back into the old generation. We assur@riables. We normalized the steady-state live amount in

thatg is chosen such that the old generation exactly fifke heap, i.e., the expected value of lifetime, to 50,000,

up in the steady state. That is, if the old generation “ovéd used traces of at least 1,000,000 objects allocated, so

fills”, we increase&/ to hold the additional survivors, whilethat a steady-state is clearly entered. For the threellistri

keeping the young generatiorsizeconstant (implyingg tions reported here, we have: for exponentia 2- 107,

is smaller than first assumed). and generation of the synthetic trace lifetimedy in-
Oldest-first collector: We proceed circularly throughVersion from a uniformly-distributed random varieac-

the space, which we visualize here as proceeding from @#fding to formular’ = —3InU (see Ref. [Devroye, 1986,

to right. Just after collection— 1, there isf,_,V space PP-27ff]); for square-root-exponentid,= 4-10°, and

available for allocation (see Figure 4). We allocate froh = %(InU)Z; for square-exponentialp = 1.772454

left to right until that space fills. We then choose to colled¢0 >, andT = %\/— InU.

some part of the area of very old objects just ahead (to théVe built simulators for both youngest-first and oldest-

right) of the allocation pointer. In the steady state, thtitst collection, according to the description given in Sec-

space iS1—@)V. In any case, we collect it, slidingV tion 7. Under the assumption that the allocation trace en-

survivors to the left and creatin§V free space. We setters a steady state, the simulator reports the steady-state

the allocation pointer to the left end of that space and walue of the live amount of data, of the amounts collected,

can resume allocation. Note that we will cycle through tlmark/cons ratio, frequency of collection, etc. We validate

entire space ik = ﬁ collections. Note thal need the simulators against the mathematical model for the ex-

not be an integer, so analysis is intricate. ponential distribution, by calculating the mark/consaati
for each collector configuratioh, g used in simulation.

The average relative errorés= | /z(p”j‘”l’—“'la‘f‘é— 1)2, where
alculate

8 Mathematical anaIyS|s for the Casethe summation is over all configurations. For youngest-

of the exponential distribution (Sum- first collection,e = 0.0048 over 6630 configurations. For
mary) oldest-first collectiong = 0.0076 over 10587 configura-
tions. With agreement within 1%, we are satisfied that the

We summarize here the results of the mathematical angiyoulator is accurate.
sis of the three collectors described in the preceding sec-
tion. 9.1 Simulation results for analytical distribu-
Non-generational collector: The mark/cons ra- tions
tio IS Mnon-generational= ﬁ regardless of distribution
[Appel, 1987, Jones and Lins, 1996].
Youngest-first collector: Under exponential distribu-
tion, the number of minor collections per major colle

i «7 _ Ll-g-e'9 9 s . -
tion cycle is{ = =——grg— The mark/cons ratio iSj e 1 the non-generational collector. We show in Fig-

Myoungest-first= lz;gg- The full derivation is given in Ap- ure 5 the copying cost of youngest-first collection on the
pendix A. left, and that of oldest-first collection on the right. Each
Oldest-first collector: Even under exponential distri-plot has the configuration parametgalong the horizon-
bution the analysis is quite complicated, and the detai$ axis, and includes several curves for selected values of

of the general solution are given in Appendix B. In thihe space overhead parameter1.3, 1.5, 1.7, 2.0, 2.5,
simplest case, whel from previous section is an inte-3.0, and 4.0. Note first that the scale on the vertical axis
ger, the mark/cons ratio iHoidest-first = 1’?4, where f s different on the left and on the right: the curves for
is found as the solution of the nonlinear equatigtt:— youngest-first lie mostly above 1, and those for oldest-first
Kf)L(1—e M) =Ke K (e —1). mostly below 1: youngest-first is mostly worse than non-
Under exponential distribution, and for any configurgenerational, and oldest-first is mostly better. It is only
tion, Poidest-first<< Hnon-generationai< Myoungest-first for the square-root-exponential distribution, and only fo

We first present the results of the simulations of analytical
distributions varying the configuration parameter$eap
space overhead) argl(fraction considered young). For
Better readability, we use the mark/cons rggjonormal-

7

free area f,,V

area chosen for collection
gV + f,V =(1-g)V

allocation pointer

cation

collect Y

new free area fi \%

Figure 4: Oldest-first collection.

small values ot and ofg that the opposite is true. Second:or the three distributions, the answer is presented in Fig-
the relative advantage of oldest-first over non-generationre 6. In the region indicated by shading, where the cost of
collection grows with more spade The relative disad- invocationX is high, and in the region of extremely tight
vantage of youngest-first against non-generational collbeaps wheré. is close to 1, the youngest-first collector
tion also grows with more spade Third, for youngest- is better (but the absolute performance of either scheme
first collection the cost diminishes with increasimgAs g is poor). However, for reasonable valueslofand rea-
increases, the numbérf minor collections between ma-sonable values oX, as discussed previously, the oldest-
jor collections decreases, and the collector behaves miins collector is better. To see how much better, observe
like a non-generational one. Fourth, for oldest-first cdhe contour lines drawn at 20% increments of the cost
lection the cost has a downward trend with increagingratio m‘ The advantage of the oldest-first collec-
it decreases monotonically for the exponential but nor increases with diminishing and with increasing..
monotonically for the two other distributions. (The cas¢towever, for the square-root-exponential distribution on
analysis in Appendix B provides an intuition for this pathe left, the contours are widely spaced, which indicates
tern.) Fifth, and quite surprising, the variance of costshallow grade, and only modest improvement in the ad-
of youngest-first collection for the three distributions igantage of the oldest-first collector. For the exponential
not great. This variance grows with but for a modest distribution and even more so for the square-exponential
valueL = 1.5 for example, the cost on the square-roatistribution, this improvement is rapid. The break-even
exponential distribution is at least 82% of the cost on tigentour also shifts a bit with the change in distribution.
exponential distribution (achieved with~ 0.1), and the
cost on the square-exponential distribution is atmost 10600 simulation results for real traces
(with g =~ 0.16).
In this section, we consider copying costs for

We see that the mark/cons ratio of a collector is heaeal programs. We instrumented three systems to
ily dependent on the configuration parameger Let us record object lifetimes: a Smalltalk virtual machine
assume, however, that a collector is capable of adaptiRigsking et al., 1992], a custom version of the SML/NJ
to the workload by changing its configuration, within aompiler [Stefanovi¢ and Moss, 1994], and a Java virtual
fixed amount of heap space. In other words, we are machine. We use our language-independent garbage
terested in the best choice gffor a givenL. The op- collector toolkit [Hudson et al., 1991] to record object
timization is done with respect to the total cost measualtocation and to report the demise of objects at each
¢ =pu+ % If both the youngest-first and the oldesteollection. We configured the collector to collect very
first collector achieve their best configuration, then we crequently (each 40,000 words of allocation for Smalltalk,
fairly compare them, by asking which one has the lowand 125,000 words for SML) and to collect the whole
cost for the same space overhead (measurdd bynd the heap each time. This setup enables accurate (in relation
same relative cost of collector invocation (measuredpy to trace length) measurement of object lifetimes. We

8

relative mark/cons ratio rho relative mark/cons ratio rho

relative mark/cons ratio rho

25

15

0.5

3.5

25

15

0.5

35

25

Square-root-exponential

L=4.0¢

0 0.2 0.4 0.6 0.8 1
9

Youngest-first

(A) Square-root-exponential distribution

Exponential
T

0 0.2 0.4 0.6 0.8 1
9

Youngest-first

(B) Exponential distribution

Square-exponential
T T

0 0.2 0.4 0.6 0.8 1
9

Youngest-first

(C) Square-exponential distribution

relative mark/cons ratio rho relative mark/cons ratio rho

relative mark/cons ratio rho

12

0.2

Square-root-exponential
T

0.2

0.4 0.6 0.8

g
Oldest-first

Exponential
T

0.4 0.6 0.8
g
Oldest-first

Square-exponential
T

Oldest-first

Figure 5: Copying costs of different distributions.

X

X X

26.2
13.1
6.55
3.28
1.64
0.819
0.41
0.205
0.102
0.0512
0.0256
0.0128
0.0064
0.0032
0.0016
0.0008
0.0004

0.0002

26.2 26.2
131 131
6.55 6.55
3.28 3.28
164 164
0.819 0.819

0.41 0.41
0.205 0.205
0.102 0.102

0.0512 0.0512

0.0256 0.0256

0.0128 0.0128

0.0064 0.0064

0.0032 0.0032

0.0016 0.0016
0.0008 0.0008
0.0004 0.0004
0.0002

SN

\

0.0002

1.03 12 141 165 194 227 266 312 365 428 501 587 L 1.03 118 135 156 179 205 236 271 311 358 411 472 L 103 118 136 156 179 206 236 272 312 358 412

Square-root-exponential Exponential Square-exporentia

Figure 6: Comparison of youngest-first and oldest-firstezmion.

obtained traces for a number of long-running benchmaditn is preferred in the lower region of the plot, for smaller
programs and interactive sessions (17 in Smalltalk, 8 Xn However, recall thak = %’ For real traces the value
SML, 19 in Java). The longest trace allocates 310 milliaif the live amountv in the quasi-steady state is known.
words and comes from an hour-long Smalltalk session. Thus, with the suggested realistic value€gfandc;, we

Since our emphasis is on collection in mature spad@ve actual values foX as indicated underneath the fig-
we used a filtering mechanism to extract subtraces of obligs. For these values &f, oldest-first is better, regard-
mature objects. In practice, mature objects will be tholgss ofL. Why then provide the plots for a range Xf
that are promoted out of a young-space collector. Aalues? Cs andc values are different among collector
though the objects promoted out of the young-space doMplementations, and ¥ could be somewhat higher or
lector vary in age, depending on the construction of thayver. Note, however, 'tha%6 would have to be at least
collector, it can safely be assumed for the purposes of @00 times higher than we have estimated for the operat-
evaluation that they are of the same age. This threshifig points to move up into the regions where youngest-first
age can be chosen somewhat arbitrarily; we made sevisr@referred.

choices for each original object trace, making sure thatwe never expected simulations of real program traces
the thresholds were beyond the first knee of the survivgrproduce smooth results like those for synthetic traces of
function—beyond the region of very young objects withnalytical distributions; after all they do not enter ayrul
very high mortality. * We then focused on those maturgteady state. Nevertheless, we thought the plots in the top
object traces that approach a quasi-steady state. Hereve of Figure 7 to be very jagged. We considered two
report on two SML programs, Tomcatv and Swim, whicossible sources of the irregularity: first, that the distri
are adaptations of two SPEC95 matrix calculation bengirtion of lifetimes may be far from smooth (with sharp
marks, and one Smalltalk heap-intensive benchmark ppeaks in mortality at critical ages); and second, that there
gram, Tree-replace, which repeatedly replaces subtreeg@fgnificant correlation between lifetimes of succedgive

a large tree by newly allocated subtrees. allocated objects. Both effects can be expected in a trace

We show in Figure 7(a,b,c) the comparison of oldessf any iterative algorithm.

first and youngest-first collection for three real program 14 gliminate the second effect, we generated a synthetic
traces of mature space objects. Plots of their survivor-fugg, .o having the same distribution of object lifetimes as
tions are in Figure 7(e). The interpretation of the contoyfe yeq| trace, but with lifetimes drawn independently. We
graphs is as in the preceding section: oldest-first colleg;ow in Figure 7(d) the outcome for such a synthetic trace

- _ _ _ ~ based on the Tomcatv benchmark. The appearance is still
“It is not correct, however, simply to reject objects with lifetime

under the threshold: the lifetimes of the remaining objects must %Iéghtly jagged, so this effect must be caused by the dis-

transformed to correspond to the allocation amounts as seen by mdiiRution itself. The contours change very little, but in
space. the relatively flat region at the top of the plot, the bound-

10

ary shifts somewhat downward. We cannot claim, howromising, and look forward to evaluatingiit vivo.
ever, that the correspondence between the real trace and
its synthetic version is close for all traces, and this qu

tion awaits further investigation. (ﬁeferences

[Appel, 1987] Appel, A. W. (1987). Garbage collection
10 Simulation results for real traces can be faster than stack allocatiomformation Pro-

with pointer structure cessing Letters25(4):275-279.

[Baker, 1993] Baker, H. G. (1993). ‘Infant Mortality’

11 Discussion and conclusions and generational garbage collecti@®GPLAN Notices
28(4):55-57.

We found that oldest-first collection almost always out-
performs youngest-first generational collection and nd&linger and Hansen, 1997] Clinger, W. D. and Hansen,
generational collection. Now for the caveats! The reportedL. T. (1997). Generational garbage collection and the
analyses are for sliding compaction; pure copying may ex-radioactive decay modeSIGPLAN Notices32(5):97—
hibit some differences. However, since oldest-first does108. Proceedings of the ACM SIGPLAN '97 Confer-
less copying, it presumably will also need less additional ence on Programming Language Design and Imple-
space for pure copying. Our comparisons are for a costmentation
model that includes copying and collector startup costs,
but the model ignores remembered set maintenance Hngx and Oakes, 1984] Cox, D. R. and Oakes, D. (1984).
write-barrier issues, and further assumes that the memory*nalysis of Survival DataChapman and Hall, London.

hierarchy affects all collectors equally. [Devroye, 1986] Devroye, L. (1986Non-Uniform Ran-

Changing the relationships between the regions coI-dom Variate GeneratiarSpringer-Verlag, New York.
lected and not collected might have large effects on re-

membered set sizes and their processing times. On [B_ndt-Johnson and Johnson, 1980] Elandt-Johnson,

other hand, if locality of reference between objects is cor- R, C. and Johnson, N. L. (1980%urvival Models and
related with original allocation time, then the effects itig Data Analysis Wiley, New York.

not be large. We observe that the oldest-first collector ef-
fectively inserts new survivors between batches of old slifayes, 1993] Hayes, B. (1993Key Objects in Garbage
vivors, so it maydecreasdocality. This subject demands Collection PhD thesis, Stanford University, Stanford,
experimental measurement, and so does cache behavior. California.

Our simulations assumed perfect knowledge of reach- . i
ability, too, and actual generational collectors will ter:wOSkmg etal, 1992] Hosking, A. L., Moss, J. E. B,

to copy a bit more because they rely on the remembereaand Stefanowc., D. (199_2)' A .comparanve pe.rfor-
. . . . mance evaluation of write barrier implementations.

sets, which are an upper bound on live pointers into the re- . . .
In Proceedings of the Conference on Object-Oriented

gion to be collected, but are not necessarily precise. A re-P g Svst L 4 Anplicat
lated concern is that straightforward oldest-first coitact rogramming Systems, Languages, and App |ga1|ons
pages 92-109, Vancouver, Cana8&SPLAN Notices

might fail to collect cycles of garbage. The Mature Object 7 10 (October 1992
Space collector [Hudson and Moss, 1992] addresses tha% + 10 (October):

concern, but necessarily reorganizes objects. [Hudson and Moss, 1992] Hudson, R. L. and Moss, J.
We also observe that real systems often have long-livedg g (1992). Incremental collection of mature ob-

data, not likely to be discarded, and special techniques ar“fects. In Bekkers, Y. and Cohen, J., editoirsterna-

needed to preveqt copying suph data repeatedly. An €Xtional Workshop on Memory Managemgmimber 637
ample are class files for heavily used language or library;, | ecture Notes in Computer Science, pages 388—403
classes in Java. On the other hand, classes dynamicallg: nalo. France. Springer-Verlag.

loaded by a net browser should perhaps be subject to col-

lection as the user changes attention to different tasks. [Hudson et al., 1991] Hudson, R. L., Moss, J. E. B., Di-
Another obvious area for future exploration is applying wan, A., and Weight, C. F. (1991). A language-

the oldest-first strategy to collection of young objects. In independent garbage collector toolkit. Technical Report

any case, we conclude that oldest-first collection is quite91-47, University of Massachusetts, Amherst.

’

11

0.0512
0.0256
0.0128
0.0064
0.0032
0.0016

0.0004
0.0002

X X
262 I ' 262 " 1 v
131 131
6.55 6.55
3.28 3.28
1.64 1.64 \/\.\1
0819 0819 \&"
0.41 0.41 w Ny,
w —
Y
0.205 A 0.205 =
~ W
0.102 N 0.102 A
0.0512 W 0.0512 ~
0.0256 W 0.0256
0.0128 m 0.0128
0.0064 —— T~ 0.0064
0.0032 0.0032
0.0016 0.0016
0.0008 0.0008
0.0004 /-‘ 0.0004
0.0002 =N 0.0002 A

138 1.49 175 197 222 243 282 303 353 396 455

(a) SML SPEC101-Tomcatv
(VA 13396,X ~ 0.01)

—

0.102 17,

0.205

NN

0.0008 |

138 155 175 197 222 25 282 317 357 402 453

L

(d) Synthetic trace with distribution as in

SML SPEC101-Tomcatv

133 163 1.97 227 259 314 353 439 478 6.05 7.2 818

(b) SML SPEC102-Swim
(V= 25094 X ~ 0.005)

0.205

0.102
0.0512
0.0256
0.0128
0.0064
0.0032
0.0016
0.0008
0.0004
0.0002

h

(c) Smalltalk Tree-replace
(v~ 187966,X ~ 0.0007)

1

0.9 -

0.8

0.7 |-

0.6 |-

05

Survivor function

04

03 r

0.2

0.1

0 L L

!

=TT T T
“-.SML SPEC101-Tomcatv ——
”'$ML SPEC102-Swim ------ 4

Smalltalk Tree-replace

! AN

1 10 100

1000

10000 100000 1le+06 le+07

A
(e) Survivor function of the mature object lifetime
distribution

Figure 7: Comparison of youngest-first and oldest-firstezibn (real traces).

12

-

[Jones and Lins, 1996] Jones, R. and Lins, R. (1996).
Garbage Collection: Algorithms for Automatic Dy-
namic Memory Managemeniohn Wiley, Chichester.

[Seligmann and Grarup, 1995] Seligmann, J. and Grarup,
S. (1995). Incremental mature garbage collection using
the train algorith. In Nierstras, O., edité?roceedings
of 1995 European Conference on Object-Oriented Pro-
gramming Lecture Notes in Computer Science, Uni-
versity of Aarhus. Springer-Verlag.

[Stefanovit and Moss, 1994] Stefanovi¢, D. and Moss, J.
E. B. (1994). Characterisation of object behaviour in
Standard ML of New Jersey. 10994 ACM Confer-
ence on Lisp and Functional Programmin@rlando,
Florida.

13

Appendix

A Copying cost in the youngest-first collector

Let the younger generation (0) occugy and older generation (1) occupy— g)V.

The exact time betvveen two minor collectiongs= gV. The expected live amount in the younger generation at
collection isggV = f t)ydt= 3 (1— e‘AgV). Live data from generation O are promoted into generation 1.

Upon some numble 1 of mlnor collections, the older generation fills up. On tlegtminor collection it becomes
necessary to collect the older generation as well in a majtheation. LeteV be the expected live amount in both
generations at the time of major collection. The expectedlale space in generation 1 between collections s =
(1—9)V —¢&1V. The expected number of minor collections between two megdiections is¢ — 1 = ‘é—; For the
purposes of analysis, we take the values of the free paresgamdL such that is an integer. (It can be shown that
this assumption is more than just a convenience for analyAiscollection time, the younger generation contains an
area of size,V that was last established live at tirdgy ago, and, — 1 areas of sizegV that were last established live
attimes({ — 1)1o,...,Tp ago. Generation 0 also contains new live data, as at anyaf@re0 collection. Owing to the
memoryless property of the object lifetime distributiome &xpected amount of live data in generation 1 is then:

-1 -1
1V = &1V ({T10) + Z gV 9(iTo) + €0V = €1V (LT0) + ZSOVSO iTo) = £7Ve M0 4 gV Z) g Nl

or,

ZH —)\lgV €
1—e NV ~ 1-eg iV’

€1 =2¢&p

In one generation 1 cycle, the amount allocatefbi¢, and the amount copied (§ — 1)eoV + €1V, so the mark/cons
ratio is

_ @-DeV +aV &V (Z 1+ e eAgV) B (1-e?9Y) (Z_1+H+Agv> (1—e9)C-1+1

v v AlgV (Lo

On the other hand,

(o1 % (-9 & _ (-9F 1 _LA-9-
& & g 3(l-e?V) 1-e?V 1-eld
Thus,
_Ld-g-e'
(= 1—elg

With a given factoL, for particular (integer) values d@f this equation can be solved numerically §prand for such
pairsL, g, the preceding analysis will be valid. Simplifying further

B Copying cost in the oldest-first collector

The analysis of the oldest-first collector is somewhat ined| we present it for the case of the exponential distraoti
which allows us to simplify the presentation by appeal torti@moryless property of the distribution: each time an
object is copied in collection, it is in effect, reborn. (Famy other distribution, it is possible to formulate similar
equations involving infinite sums of integrals of the suovifunction.) Our analysis is exact, but the result is not in
closed form, as it is a solution of a nonlinear equation.

R gv . (1-g)Vv
region logically moved region collected before
move opy
_
fv A% h agVv -

Figure 8: Operation of the oldest-first collector.

The analysis will be made easier if we view the collector aBigure 8, and first ask what is in the region of size
(1—9g)V that is collected. The young region is of sig¥, and it therefore shifts by an amoufit— g)V on each
collection. On each collection, an amouit of collected data is placed to the left of the shifted datantan amount
fV of new data is allocated in the leftmost, free, region. This pf areasVV andeV are moved rightwards byl — g)V

on each successive collection. It takéq) = [9g1 collections for this pair to move entirely pag?, into the region
collected. In other words, iN is an integer, then iiN collections this pair becomes preC|ser the region catigct
However, if N is not an integer, the analysis is more complicated. We fog that ifg € (. ,n+l] n € N, then
N(g) =n.

With respect to the contents of the region collected, thexdaur possibilities to consider, illustrated in Figurd @t
y=1—N(1-9). Case 3 obtains when= 1— g, in other words wheiN is an integer. Otherwise, case 1 obtains when
f >y, case 2 wherf <y, and case 4 whefi =y. In cases 1, 3, and 4, &V region is wholly within the collected
region, and thus older data from an entire sequence of rarigdiecation time will remain together. However, in case
2, two parts of two differengV regions lie in the collected region; thus it matters whickadare in these parts, and
which outside. In other words, it matters in which order tbpied data are placed into the “to-space” on collection: in
a sliding implementation, it is the original order of thealat

We proceed with the analysis for the exponential distrdutf object lifetimes, which allows a simpler treatment
of case 2, thanks to the memoryless property of the distoibut

Case 1.The collected region contains parts of two “new” areas, thenger of sizé f —y)V, and the older of size
yV; and an area with survivors of a previous collection thaipesed\ fV ago. The live amount in the collected region
is

/ Y e Mdt+ / e e Mdt+eve NV
(N=1) fV+W NV

:%e AN f+1-N(1-g))V (emv)+:-:Ve ANV
This live amount can be equated wi¥, thus:

sV:% AN f+1-N(1-g))V (eva >+:-:V ANV

15

region collected
v : 1-9Vv

IR X I XK R 1 R R HK
Soren SO0

Case 1 SN TR Y) g=054 f=0.31 £=0.15
O‘O‘O‘t“m“ * R T KT **

9=0.63 f=0.26 £=0.11

Case 2 9=0.65 f=0.25 €=0.11

Case 3 g=2/3 f=0.24 £=0.096

Figure 9: Operation of the oldest-first collector: contegitsollected region (exponential distributidn= 2).

UsingL = VA, we have:
el (1_ efoL) — g (Nf+1-N(1-g))L (efL . 1) '
Finally,e = 1—g— f, and the equation, to be solved numerically fogivenL andg, is:

Case 2.The collected region contains one “new” area of si¥e and parts of two areas with survivors of previous
collections; one, of sizeéN(1—g) —g)V, from a collectionN fV ago, and the other, of si& — (N(1—g) —g)V,
from a collection(N + 1) fV ago. The live amount in the collected region is

(N+1)fV
/ eMdt+ (N(1—g)V—gV)e ™V 1 (eV —N(1—-g)V + gv)e "NV
N fV

1
= X (e—)\N fv _ e_)\(NJrl) fV) + (N(l — g)v _ gv)e—)\N fv + (SV o N(l o g)V + gv)e—)\(N+1) fV‘
Again, this live amount can be equated wéi:
1
eV = X (e—)\N fv _ e_)\(NJrl) fV) + (N(l - g)v _ gv)e—)\N fv + (SV . N(l o g)V + gv)e—)\(N+1) fV‘

UsingL = VA, we have:
eL=e N1+ N1-—gL—gL)+e ™MD 146l —N(1—g)L+gL),
or:
eL (1— e*(N“)fL) =(1+N(1-gL—ghe N(1-e ™).

16

Withe=1—g— f:
(1—g—f)L (1—e*(N+1)”-> =(1+N(1—-gL—ghe Nt(1-e ™).

Again, this equation must be solved numerically for any giveandg.
Case 3.The fV region contains data with ages betwé@éfV and(N + 1) fV, and theeV region contains data that
were last collectedN + 1) fV ago. The equation is then:
(N+1)fV

eV — e Mgt 4 eve AN+ IV _ % (e—)\NfV _ e MN+1) fv> teve MN+DIV.
NfV

which, withL =VA,K=N+1= 171@, simplifies to:
(1-Kf)L(1—e ™M) =ke™ ™ (e~ 1).

This models a collector witK areas of equal size, which functions as a queue Wititations, similar to &rain of
Ref. [Hudson and Moss, 1992].

Case 4.This is the case where the solutions for cases 1 and 2 cojratidech pointgy that f =y. The equation
governing these points is:

(N— (N +1)gi)L (1_ e—N(l—N(l—gﬁ))L> — o~ (N+1)(1-N(1-gy))L (e(l—N(l—g*N»L _ 1) '

Oncef is found, we compute =1—g— f, u= %, p = p(L — 1). Efficient computation first determines the values
of N of interest, corresponding to the inten(#l;—l, F”l] , and for eactN andL finds the poingy;, within this interval.
To the left ofgy, case 1 applies, and to the rightgjf, case 2 applies.

As g — 1_ andL — o, the performance approaches that of an ideal object quese .

17

