
Efficient Context-Sensitive Shape Analysis
with Graph Based Heap Models

Mark Marron1, Manuel Hermenegildo1,2, Deepak Kapur1, and Darko Stefanovic1

1University of New Mexico,{marron, kapur, darko}@cs.unm.edu
2Technical University of Madrid and IMDEA-Software,herme@fi.upm.es

Abstract. The performance of heap analysis techniques has a significant impact
on their utility in an optimizing compiler. Most shape analysis techniques perform
interprocedural dataflow analysis in a context-sensitive manner, which can result
in analyzing each procedure body many times (causing significant increases in
runtime even if the analysis results are memoized). To improve the effectiveness
of memoization (and thus speed up the analysis)project/extend operations are
used to remove portions of the heap model that cannot be affected by the called
procedure (effectively reducing the number of different contexts that a proce-
dure needs to be analyzed with). This paper introducesproject/extend operations
that are capable of accurately modeling properties that areimportant when an-
alyzing non-trivial programs (sharing, nullity information, destructive recursive
functions, and composite data structures). The techniqueswe introduce are able
to handle these features while significantly improving the effectiveness of mem-
oizing analysis results (and thus improving analysis performance). Using a range
of well known benchmarks (many of which have not been successfully analyzed
using other existing shape analysis methods) we demonstrate that our approach
results in significant improvements in both accuracy and efficiency over a base-
line analysis.

1 Introduction

Recent work on shape analysis techniques [25, 28, 1, 14, 15, 9, 8] has resulted in a num-
ber of techniques that are capable of accurately representing the properties (connec-
tivity, interference, and shape) that are needed for a rangeof optimization and paral-
lelization applications. However, the computational costof performing these analyses
has limited their applicability. A significant component ofthe analysis runtime is due to
the need to perform a context-sensitive interprocedural analysis, where each procedure
body may be analyzed multiple times (once for each differentcalling context).

The practice of using a memo-table to avoid recomputing analysis results and the
use of aproject operation to remove portions of the heap that cannot affect or be af-
fected by the called procedure are standard techniques for minimizing the number of
times each function needs to be analyzed during interprocedural dataflow analysis [2,
17, 16, 19]. The two major goals of theproject operation are improving the effective-
ness of memoizing analysis results by removing portions of the heap that could cause
spurious inequalities between calling contexts and preventing the loss of precision that

occurs when recursive procedures use a summary representation for multiple out-of-
scope references (e.g. local reference variables with the same name but that exist in
different call frames).

Theproject operation for heap models and the utility of locality axiomshave been
analyzed in a number of papers [22, 21, 7, 12, 4]. These techniques use variations on
the notion of aframe rule as presented in [11, 20] and identify a number of features
of the project operation that are of particular importance for interprocedural analysis
using heap domains. A major distinction is made between the projection operation in
cutpoint-free cases, where there are no pointers that cross from a section of the heap that
is unreachable from the procedure arguments into a section of the heap that isreachable
from the procedure arguments, and cases where such pointersmay exist.

This paper presents a method for using cutpoints to support interprocedural heap
analysis. We then use the technique to quickly analyze (10’sof seconds) programs that
are larger (by a factor of 2-4) and more varied (in terms of data structures and algo-
rithms) than any other analysis technique to date. Our first contribution is the reformu-
lation of the project/extend operations in [21] so that theycan be used in a graph based
(as opposed to an access path based) heap model which allows us to use a very com-
pact and efficient representation of heap connectivity. Oursecond contribution is the
extension of the original approach to handle two classes of programatic events that are
critical to analyzing real world programs, analyzing programs that involve non-trivial
sharing and composite data structures [1, 15] and propagating nullity test information
from callee to caller scope. Finally we use the results of theheap analysis to drive the
parallelization of a range of benchmarks (several of which have not been successfully
analyzed/parallelized using shape information) achieving an average parallel speedup
of 1.69 on a dual-core machine.

2 Example Code

To develop intuition about the mechanism and purpose ofproject/extend operations
we look at a simple function (Figure 1) that illustrates the basic functioning of the
project/extend operations and the propagation of nullity information fromthe callee to
the caller scope. Our lists are made of objects oftype LNode, eachLNode object has
two fields, anx field which refers to the next element in the list and a fieldf which
stores a boolean.

Accurately analyzing the initialization method (LInit) requires the analysis to propa-
gate information inferred about cutpoints in the callee scope back into the caller scope.
If the analysis is unable to use thel == null test in the callee scope to infer that
l.nx is null in the caller scope then the analysis will not be able to inferthat after
the method returns the argument list is eithernull or must have thetrue value in all
thef fields.

3 Heap Model

We model the concrete heap as a labeled, directed multi-graph (V,E) where each vertex
v∈V is an object in the store or a variable in the environment, andeach labeled directed

LNode LInit(LNode l)
if(l == null)

return;

tin = l.nx;
LInit(tin);
l.f = true;

Fig. 1. Recursive List Initialize

edgee ∈ E represents a pointer between objects or a reference from a variable to an
object. Each edge is given a label that is an identifier from the program, an edge(a,b)∈

E labeled withp, we use the notationa
p
−→ b to indicate thata points to the objectb via

the field name (or identifier)p.
A region of memoryℜ is a subset of the objects in memory, with all the pointers that

connect these objects and all the cross-region pointers that start or end at an object in
this region. Formally, letC⊆V be a subset of objects, and letPi = {p | ∃a,b∈C,a

p
−→ b}

andPc = {p | ∃a∈C,x 6∈C,a
p
−→ x∨x

p
−→ a} be respectively the set of internal and cross-

region pointers forC. Then a region is the tuple(C,Pi,Pc). For a regionℜ = (C,Pi,Pc)
and objectsa,b ∈C, we saya andb areconnected in ℜ if they are in the same weakly-
connected component of the graph(C,Pi). Objectsa andb aredisjoint in ℜ if they are
in different weakly-connected components of the graph.

3.1 Abstract Heap Model

The underlying abstract heap domain is a graph where each node represents a region
of the heap or a variable and each edge represents a set of pointers or a variable target.
The nodes and edges are augmented with additional instrumentation predicates. The
abstract domain evaluates the predicates using a3-valued semantics: predicates are ei-
ther definitely true, definitely false, or unknown [25]. Our analysis tracks the following
set of instrumentation predicates. Our choice of predicates is influenced by common
predicates tracked in previous papers on shape analysis [5,24, 28, 20].
Types. For each typet in the program, there is an instrumentation predicate (alsowritten
t) that is true at a concrete heap node if any concrete object represented by the node may
have typet.
Linearity. Each abstract node has alinearity that represents whether it represents at
most one concrete node (linearity 1) or any set of 0 or more concrete nodes (written#).
Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis usesabstract layout predicatesSingleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. TheList predicate is similar to the inductiveList predicate
in separation logic [20]. The other predicates correspond to the definitions for Trees,
Dags, and Cycles in the literature, for the formal definitions see [14].

Interference. The heap model uses two properties to track the potential that two refer-
ences can reach the same memory location in the region that a node represents.

The first property is for references that are represented by different edges in the heap
model. Given the concretization functionγ and two edgese1,e2 that are incoming edges
to the noden, the predicate that definesinConnected in the abstract domain is:e1,e2 are
inConnected with respect ton if it is possible that∃r1 ∈ γ(e1)∧∃r2 ∈ γ(e2)∧∃a,b ∈
γ(n) s.t. (r1 refers toa)∧ (r2 refers tob)∧ (a, b connected). For improved precision
we also trackmay andmust aliasing (e1,e2 are inConnected anda = b) between the
references the edges abstract (must aliasing is only meaningful if the edge represents
a single references, see [15] for an approach that generalizesmust-aliasing to sets of
references).

The second property is for the case where the references are represented by the
same edge. To model this theinterfere property is introduced. An edgee represents
interfering references if there may exist referencesr1,r2 ∈ γ(e) such that the objects
thatr1,r2 refer to are connected/aliased. A three-element lattice,np < ip < ap, np for
edges with all non-interfering references andip for potentially interfering references
andap for potentially aliasing references, is used to represent the interference property.

The Heap Graph Each node in the graph either represents a region of the heap or a
variable. The variable nodes are labeled with the variable that they represent. Nodes
representing the concrete heap regions contain a record that tracks the types of the
concrete objects that the node represents (types), the number of objects (either 1 or #)
that may be in the region (count), and the abstract layout of a node (layout). Each node
also tracks the connectivity relation between pairs of incoming edges. A binary relation
connR is used to track theinConnected relation. Although the connectivity relation is
a property of the nodes, for readability in the figures we associate the information with
the edges. Thus, each node is represented as a record of the form [types layout
count].

As in the case of the nodes, each edge contains a record that tracks additional in-
formation about the edge. Theoffset component indicates the offsets (labels) of the
references that are abstracted by the edge. The number of references that the edge may
represent is tracked with themaxCut property. Theinterfere property tracks the possi-
bility that the edge represents references that interfere.Finally, we have a fieldconnto
which is a list of all the other edges/variables that the edgemay be connected to accord-
ing to theconnR relation (we add a (!) for the edges in the list that represent references
which may alias and a (∼) if the edges represent single references thatmust alias). To
simplify the figures if theconnto field is empty we omit it entirely from the record in
the figure. Since the variable edges always represent singlereferences and the offset
label is implicitly the name of the variable the record simply contains theconnR infor-
mation or is omitted entirely if theconnR relation is empty. To simplify the discussion
of the examples each edge also has a unique label. The pointeredges in the figures are
represented as records{label offset maxCut interfere connto}.

The abstract heap domain is restricted via a normal form [14,15]. The normal form
ensures that the heap graph remains finite, and that equalitycomparisons are efficient.
The local data flow analysis is performed using aHoare (Partially Disjunctive) Power
Domain [13, 26] over these graphs. Interprocedural analysis is performed in a context-

sensitive manner and the procedure analysis results are memoized. At each call/return
site the portion of the heap graphs passed to the call are joined into a single graph. The
design of the join operation is such that, in general, information lost in the join can be
recovered when needed later in the program. The decision to perform joins at call sites
(programs tend to have uniform expectations of the portion of the heap passed to and
returned from calls) and to perform the join only on the portion of the heap passed to the
called method results in very little loss of precision whileensuring the abstract model
remains compact.

Abstract Call Stack. Our concrete model for thecall stack is a functionSm : (LV×N) 7→
O, whereLV is the set of local variable names andN represents the depth in the call
sequence (main is at depth 1) andO is the set of all live objects. Thus, the pair(v,4)
refers to the value of the variablev in the scope of the 4th call frame.

To represent the concrete call stack we introducestack variables which represent
the values of local variables on the stack (for a variation onthis approach see [22]). In
our extension eachstack variable summarizes all the possible targets (in a given graph)
for a given variable name on the stack. Given a variable namev and a heap graphG we
define a variable namev’ for use in the abstract domain (we will select a better naming
scheme in Section 4) where:v’ is the abstraction of all the variables in the call stack,
∃i ∈N, noden ∈ G, objecton s.t.on ∈ γ(n)∧Sm(v, i) = on.

By associating the set of stack locations that are abstracted with the set of targets in
a given abstract heap graph, we can naturally partition thestack variables along with
the heap graphs. Since eachstack variable is associated with only the values on the
stack that point into a region of the heap represented by the given heap graph, it is
straightforward to partition and join them when partitioning the heap graphs.

Thus, during the local analysis the heap graph represents the portion of the program
heap that is visible from the local variables and is augmented with some number of
stack variables andcutpoint variables which relate variable values and the heap in the
caller scope to the portions of the heap reachable from callee scope local variables.

For efficiency and in order to ensure analysis termination the naming scheme we
choose will result in situations where multiple cutpoint (or stack) edges are given the
same name. This may result in some amount of information loss(particularly with re-
spect to reachability and aliasing). To minimize the loss that occurs we introduce an
instrumentation domain for the stack/cutpoint variable edges,nameColl = {pdj, pua,
pa}. Wherepdj indicates a cutpoint/stack name representing (a single edge) or edges
where the edges do not represent any pairwiseconnected references,pua indicates a
name representing multiple edges where there are no pairwise aliases, while pa is the
indicates the name represents edges that they may have pairwisealiasing. Thus, the cut-
point variable edges are represented with records{maxCut interfere connto
nameColl} (stack variables are not used in this example).

4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutpoints we need to name the
stack variables as well as thecutpoint edges. We use a simple technique for the stack

variables: given a variable namev defined in the caller functionfcaller we use the
name$fcaller*v to represent this variable in the callee scope. This naming scheme
can create false dependencies on the local scope names unless the variable information
is normalized during the comparisons of entries in the memo-table.

Naming edges that cross the cutpoints is more complex since we need to balance the
accuracy of the analysis with the potential of introducing spurious differences resulting
from isomorphic (or nearly so) cutpoint edges being given different names. For the
renaming of the cutpoint edges we assume that special names for the arguments to the
function have been introduced. The first pointer parameter is referred to by the special
variable namep1 and theith pointer argument is referred to by the variablepi.

Figure 2(c) shows a recursive call toLInit where the special argument namep1
has been added to represent the value of the first argument to the function. In this figure
the edgee1 is a cutpoint edge since it starts in the portion of the heap that is unreachable
from the argument variables and ends in a portion of the heap that is reachable from the
argument variables (this differs slightly from the definition for cutpoints in [21] but
allows us to handle edges uniformly).

For each cutpoint edge we generate a pair of names: one is usedin the unreachable
section of the heap graph and one in the reachable section, which allows an abstract heap
model to represent both incoming and outgoing cutpoint edges that are isomorphic and
exist in the same abstract heap component without loss of precision.

If we are adding a cutpoint for the method callfcaller and the edgee, which is a
cutpoint, starting atn and ending atn′, and has edge labelfe. We can find the shortest
path (f1 . . . fk) from any of thepi variables ton′ (using lexographic comparison on
the path names to break ties). Using thepi argument variable and the path (f1 . . . fk)
we derive the cutpointbasename = fcaller*pi*f1*. . .*fk*fe We compute a
pair of static names (unreachN, reachN) whereunreachN = $basename- andreachN
= $basename+. In Figure 2(d) the cutpoint name$p1+ (for brevity we simply label
the cutpoint with thepi variable) is used to represent the endpoint of the cutpoint edge
in the reachable component of the heap and$p1- to track a dummy node associated
with the cutpoint edge in the unreachable component of the heap.

5 Example

The example program, Figure 1, recursively initializes thef fields in a linked list to the
valuetrue. Figure 2(a) shows the abstract heap model at the entry of thefirst call to
the procedure (for simplicity we ignore any caller scope variables).

In Figure 2(a), variablel refers to a node that representsLNode objects (types =
{LNode}, abbreviated toLN), that represents a region with no internal connections
(Layout = S), which contains a single object (count = 1), and where all the incoming
edges represent disjoint pointers (theconnto lists on the edges are omitted). In this
figure we also have that the elements in the list have unknown truth values in thef
fields (f=?). There is a single edge out of this node representing pointers stored in
thenx field of the object represented by the node. This edge represents a single pointer
(maxCut = 1) and all the pointers are non-interfering (interfere = np). Finally, this edge
refers to a node that also representsLNode objects but may represent many of these

objects (count = #) and, since theLayout value isList, we know that the objects may be
connected in a list-like shape. Since there is a single incoming edge and it represents a
single pointer, we can safely assume that this edge refers tothe head of the list structure.

(a) Heap at Initial Call (b) After tin = l.nx (c) Cross Edge 1st Call

(d) Split Cross Edge 1st Call (e) Into 1st Recursive Call (f) Cross Edge 2nd Call

(g) Split Cross Edge 2nd Call (h) Fix Point / Base Return (i) Merge 2nd Call Return

(j) Patched Cross Edges (k) Merge 1st Call Return (l) Return 1st Recursive Call

Fig. 2. Recursive Calls

Figure 2(b) shows the abstract heap model just after executing the statementtin =
l.nx. Since we know thate1 refers to the head element of the list from Figure 2(a) we
replaced the singleList-shaped node with a node representing the unique head element
and a node representing the tail of the list. Since the head element is unique we set the
count of this new node to 1. Additionally, the only possible layoutfor a node ofcount 1
is Singleton. Finally, if a node represents a single object then all the outgoing field edges
can each represent a single pointer. Thus, we set the outgoing edge to have amaxCut =

1. Also note that after the load the analysis has determined thattin ande1 must alias
(indicated by the∼e1 and∼tin entries in the connectivity lists).

Figure 2(c) shows the state of the abstract heap at the entry of the project proce-
dure. The special namep1 has been added to represent the value of the first pointer
argument to the function and we have added a dotted line to indicate the reachable and
unreachable portions of the heap. Note that the edgee1 is a cutpoint edge according to
our definition.

The result of the project operation is shown in Figure 2(d). Thee1 edge, which was
a cutpoint edge for the call, has been remapped to a dummy nodeand the static cutpoint
names$p1- and$p1+ (for brevity we omit the procedure name and edge labels from
the static names) have been introduced at the dummy node and at the target of this edge
in the reachable section. Since this cutpoint edge only represents the single cutpoint
edge generated in this call framenameColl = pdj. Also note that the analysis has
determined that the formal parameterp1 must alias the cutpoint edge$p1+.

Figure 2(e) shows the resulting abstract heap that is passedinto the callee scope for
analysis. Since all the local variables in the caller scope either did not refer to nodes in
the callee reachable section or are dead after the call return we do not have to give them
stack names and can remove them entirely from the heap model.Figure 2(f) shows the
abstract heap at the entry to the project function for the second recursive call. Again
we have a cutpoint edgee2. Note that the reachable cutpoint label,$p1+ introduced in
the previous call is now in the unreachable portion of the heap, thus ($p1+) does not
conflict with the unreachable name added in this call ($p1-). The result of the project
operation is shown in Figure 2(g).

Figure 2(h) shows the eventual fixpoint approximation (above the dotted line) of
the analysis of this function and also the base case return value (below the dotted line).
Notice in the base case return value we were able to determinethat the testl == null
implies thatl must be null and since we preserved must alias information through the
cutpoint introduction we can infer thatl must alias$p1+, which implies the cutpoint
edge ($p1+) must also be null. Thus, the analysis can infer that on return the cutpoint
edge is eithernull or is non-null and refers to some list in which all thef fields have
been set totrue (f=t in the figure).

In Figure 2(i) we show how the fixpoint approximation for the reachable section
of the heap is recombined with the unreachable section of theheap using theextend
operation. After the recombination we get the abstract heapmodel shown in Figure 2(j).
In Figure 2(i) we have unioned the graphs and are ready to patch up the cutpoint cross
edge information. The static name$p1+ in the reachable portion of the heap has been
used to compute the associated unreachable name ($p1-). Then the algorithm identifies
the edge associated with the dummy node referred to by$p1- (e2) and remapped this
edge to end at the target of$p1+ (tin has been nullified since it is dead).

Figure 2(k) shows theextend operation at the return from the first recursive call
which is similar to the situation in the second recursive call. The resulting abstract heap
is shown in Figure 2(l) which can be joined with the result of the base case test and then
completes the analysis of the method. As desired, the analysis has determined that the
recursive list initialize procedure preserves the list shape of the argument list and that
all of thef fields in the list have been set totrue (f=t in the figures).

6 Project and Extend Algorithms

Project. We assume that before theprojectHeap function is invoked all of the special
argument variable names have been added to the heap model. This allowsprojectHeap
(Algorithm 1 below) to easily compute the section of the heapmodel that is reachable
in the callee procedure and then compute the set of nodes thatcomprise the unreachable
portion of the heap model.

Algorithm 1 : projectHeap

input : h: the heap model to be partitioned
output: hr, hu: the reachable and unreachable partitions,snu, ncs: the static names used

and newly created
reachNodes← set of nodes reachable from args;
unreachNodes← set of nodes unreachable from args;
crossEdges← set of edges that start inunreachNodes and end inreachNodes;
snu← /0;
ncs← /0;
foreach edgee in crossEdges do

(sn, isnew)← procCrossEdge(h, e, reachNodes);
snu.add(sn);
if isnew then ncs.add(sn);

hu ← subgraph ofh on the nodesunreachNodes ∪ {dummy nodes from procCrossEdge};
hr ← subgraph ofh on the nodesreachNodes;
return (hr , hu, snu, ncs);

For each edge that crosses from the unreachable section intothe reachable section
we add a pair of static names to represent the edge (Algorithm2). Since the heap model
stores a number of domain properties in each edge, we create adummy node and remap
the edge to end at this node. Then, theunreachN static name is set to refer to this dummy
node. In the reachable portion of the heap graph we simply setthereachN static name
to refer to the target of the cross edge.

When adding thereachN static name to the reachable section of the heap graph the
name may or may not already be present in the heap graph. If thename is not present
then we add it to the static name map and for later use we note that this is the call where
the name is introduced. Otherwise a name collision has occurred and we must mark
the edges representing the possible cutpoints appropriately (for simplicity we mark all
the edges). If there may be aliasing we note that the cutpoints from different frames
may have aliasing targets (pa) and similarly if the new cutpoint edge may be connected
with an existing cutpoint edge we mark them as being pairwiseconnected (pua). The
functionsmakeEdgeForUnreachCutpoint andmakeEdgeForReachCutpoint are used to
produce edges to represent the cutpoint (based on the staticname and the cutpoint edge
properties) in the unreachable and reachable portions of the heap.

Once all of the cutpoint edges have been replaced by the required static names,
the heap can be transformed into the unreachable version (where all the nodes in the

reachable section and all the variables/static names that only refer to reachable nodes
have been removed) and the reachable version (where the nodes in the unreachable
section and the associated names have been removed).

Algorithm 2 : procCrossEdge

input : h: the heap,e: the cross edge,reachNodes: set of reachable nodes
output: rsn: the name used,isnew: true if rsn a new name
ne ← the nodee ends at;
ni ← new dummy node;
(ursn, rsn)← genStaticNamePairForEdge(h, e);
eu ←makeEdgeForUnreachCutpoint(e,ursn);
set endpoint ofeu to ni;
addeu as an edge forursn;
er ←makeEdgeForReachCutpoint(e,rsn);
set endpoint ofer to ne;
remap the endpoint ofe to ni;
if the namersn exists and has edges pointing to a node inreachNodes then

rsnes← {e′|e′ is an edge for the cutpoint varrsn};
adder as an edge forrsn;
if er is inConnected with an edge in rsnesthen set edges inrsnes ander to pua;
if er may alias with an edge in rsnesthen set edges inrsnes ander to pa;
return (rsn, false);

else
add the namersn to h;
adder as an edge forrsn;
return (rsn, true);

Extend. After the call return we need to rejoin the unreachable portion of the heap that
we extracted before the procedure call entry with the resultwe obtained from analyzing
the callee procedure. This is done by looking at each of the static names that was used
to represent a cutpoint edge and reconnecting as required. Then, each of the newly
introduced cutpoint names can be removed from the heap model. The pseudo-code to
do this is shown in Algorithm 3.

This algorithm merges all edges with the same reachable cutpoint name so that there
is at most one target edge for a given cutpoint name in the reachable heaphr (this sim-
plifies the algorithm and is in our experience is quite accurate). The algorithm then pairs
up the two cutpoint names and remaps the edge we saved in the unreachable section to
the target node in the reachable section subject to a number of tests to propagate sharing
information (the nullity information is propagated due to the fact that the dummy node
and all incoming edges are always removed but the foreach loop on the targets ofursn
does not execute since the target set is empty). Theer.nameColl = pua test is true if this
edge represents sets of pointers that do not have pairwise aliases. Thus, we mark the
newly remapped edge ander as pairwise unaliased. Similarly, theer.nameColl = pdj

test is true if this edge represents cutpoint/stack edges that are pairwise disjoint. Thus,
we mark the newly remapped edge ander as pairwise disjoint.

Algorithm 3 : extendHeap

input : hr, hu: the reachable and unreachable partitions,snu, ncs: the static names used
and newly created

output: h: the joined heap model
h← newheap();
h.heapGraph←mergeGraphs(hr .heapGraph,hu.heapGraph);
foreach static namesn in snu do

ursn← reachNameToUnreachName(sn);
nr ← the target ofsn in hr.nameMap;
foreach nodenu that is a target ofursn in hu.nameMap do

er ← the single incoming edge tonu;
remaper to end at the target ofnr ;
er.interfere =er.interfere⊔ nr .interfere;
if er.nameColl= pua then seter andnr as unaliased;
if er.nameColl= pdj then seter andnr as disjoint;

hu.removeNodeAllEdges(target ofursn);
hu.unmapStaticName(ursn);
if sn in ncsthen hr .unmapStaticName(sn);

h.nameMap←mergeNameMaps(hr .nameMap,hu.nameMap);
return h

The major components of this algorithm are the separation ofthe mergeGraphs
action from themergeNameMaps action and the elimination of the static cutpoint edge
names that were introduced for this call.

ThemergeGraphs function computes the union of the graph structures that represent
the abstract heap objects, while themergeNameMaps function computes the union of
the name maps (which are maps from the stack/variable/cutpoint names to the nodes in
the graph structure that represent them). This separation allows the algorithm to nullify
the names created for this call which prevents the propagation of unneeded cutpoint
edge targets to the caller scope. The functionunmapStaticName is used to eliminate a
given static name from the abstract heap model name map.

Example Name Collision. The introduction of thenameColl domain minimizes the pre-
cision loss that occurs when a cutpoint or stack variable name collision occurs. Figure 3
shows an example of such a situation. In this figure we show part of a heap where the
edgese2 ande3 are both cutpoint edges and they do not represent any pairwise aliasing
pointers (no! in theconnTo lists) although they each represent sets of pointers that may
alias,interfere = ap.

In this example our naming scheme will result ine2 ande3 being represented with
the same cutpoint name. However, our method will mark this cutpoint edge asnameColl
= pua (Figure 3(b)). This means that on return theextend algorithm will set the edges

that are mapped to this cutpoint as being pairwise unaliased(Figure 3(c)) as desired.
Thus, even though there was a name collision for the cutpoints we avoided (in this case
completely) the loss of sharing information about the heap.

(a) Colliding Names (b) To Same Cutpoint (c) PUA on Return

Fig. 3. Name Collision

7 Experimental Results

The proposed approach has been implemented and the effectiveness and efficiency of
the analysis have been evaluated on the source code for programs from a variation of the
Jolden [3, 18] suite and several programs from SPEC JVM98 [27] (raytrace, modified
to be single threaded,db andcompress). The analysis algorithm is written in C++ and
was compiled using MSVC 8.0. The parallelization benchmarks were run using the Sun
1.6 JVM. All runs are from our 2.8 GHz PentiumD machine with 1 GB of RAM.

We ran the analysis with the project/extend operations enabled (theProject column)
and disabled (theNo-Project column) and recorded the analysis time, the average num-
ber of times a method needed to be analyzed, and used the resulting shape information to
parallelize the programs, shown in Figure 4. The results indicate that the project/extend
operations have a significant impact on the performance of the analysis, reducing the
number of contexts that each function needs to be analyzed in(on average reducing the
number of contexts by a factor of 4.3) which results in a substantial decrease in analysis
times (by a factor of 18.4). As expected this reduction becomes more pronounced as
the size and complexity of the benchmarks increases, in the case ofraytrace the anal-
ysis time without the project/extend operation is impractically large (772.6 seconds)
but when we use the project/extend operations the analysis time is reduced to 35.11
seconds.

We used the shape information from the analysis to drive the parallelization of
the benchmarks by using multiple threads in loops and calls,resulting in the speedup
columns in Figure 4. Given the shape information produced bythe analysis it is straight
forward to compute what parts of the heap are read and writtenby a loop body or method
call and thus which loops and calls can be executed in parallel (in raytrace we treated
the memoization of intersect computations as spurious dependencies). Once the anal-
ysis identified locations that could be parallelized we inserted calls to a simple thread
pool (since our current work is focused on the analysis this is done by hand but can
be fully automated [6, 23, 10]). In 8 of 9 benchmarks that are suitable for shape driven
parallelization (compress, db andmst do not have any data structure operations that are

amenable to shape driven parallelization) we achieve a promising speedup, averaging a
factor of 1.69 over the benchmarks.

Benchmark Info No-Project Project
BenchmarkStmt Method Time Avg Cont.Speedup Time Avg Cont.Speedup
bisort 260 13 0.86s 10.6 1.00 0.28s 1.9 1.72
em3d 333 13 0.12s 2.5 1.75 0.08s 1.8 1.75
mst 457 22 0.06s 3.2 NA 0.04s 3.0 NA
tsp 510 13 1.51s 22.4 1.84 0.17s 7.0 1.84
perimeter 621 36 54.57s 105.9 1.00 2.97s 50.2 1.00
health 643 16 3.24s 12.9 1.00 2.26s 4.2 1.76
voronoi 981 63 20.89s 61.4 1.00 2.67s 37.2 1.68
power 1352 29 5.71s 26.8 1.93 0.17s 1.3 1.93
bh 1616 51 8.64s 32.8 1.75 2.68s 7.3 1.75
compress 1102 41 0.29s 2.9 NA 0.18s 2.2 NA
db 1214 30 0.94s 3.7 NA 0.68s 2.8 NA
raytrace 3705 173 772.60s 293.1 1.00 35.11s 15.6 1.76
Overall 12794523 869.43s 48.2 1.36 47.29s 11.2 1.69

Fig. 4.The Stmt and Method columns list the number of statements andmethods for each bench-
mark. The columns for the No-Project and Project variationsof the analysis list: the analysis time
in seconds, the average number of times each method was analyzed and parallel speedup achieved
on a 2 core 2.8 GHz PentiumD processor.

Our experimental results show that the information provided by the analysis can be
effectively used (in conjunction with existing techniques) to drive the parallelization of
programs. To the best of our knowledge this analysis is the only shape analysis that
is able to provide the information required to perform shapedriven parallelization for
five of these benchmarks (em3d, health, voronoi, bh andraytrace). Given the speed with
which the analysis is able to produce the information neededfor the parallelization
and the consistent parallel speedup that is obtained in the benchmarks (1.69 over all
of the benchmarks and 1.77 if we exclude the benchmarkmst), we find the results
encouraging.

Of particular interest is theraytrace benchmark. This program is 2-4 times larger
than any benchmarks used in the related work, builds and traverses several heap struc-
tures that have significant sharing between components. It also makes heavy use of
virtual methods and recursion. This benchmark presents significant challenges in terms
of the complexity and size of the program as well as in terms ofthe range of heap
structures that need to be represented in order to accurately and efficiently analyze the
program. Our analysis is able to manage all of these aspects and is able to produce a
precise model of the heap (allowing us to obtain a speedup of 1.76 using heap based
parallelization techniques). Further, the analysis is able to produce this result while
maintaining a tractable analysis runtime.

8 Conclusion

We presented and benchmarked project/extend operations for a store-based heap model
that is capable of precisely representing a range of shape, connectivity and sharing prop-
erties. The project and extend operations we introduced aredesigned to minimize the
analysis time by reducing the number of unique calling contexts for each function and to
minimize the imprecision introduced by the collisions thatoccur between stack/cutpoint
names.

Our experimental results using the project/extend operations are very positive. The
analysis was able to efficiently analyze benchmarks that build and manipulate a variety
of data structures. Our benchmark set includes a number of kernels that were originally
designed as challenge problems for automatic parallelization (the Jolden suite) and sev-
eral benchmarks from the SPEC JVM98 suite (including a single threaded version of
raytrace). Our experimental results demonstrate that the project/extend operations are
effective in minimizing the number of contexts that need to be analyzed (on average a
factor of 4.3 reduction), improving analysis accuracy (seen as improved parallelization
results, in 4 out of 12 benchmarks) and substantially reducing the analysis runtime (by
a factor of nearly 20). Our heap analysis was also able to provide sufficient information
to successfully parallelize the majority of benchmarks we examined, including several
that cannot be successfully analyzed/parallelized using other proposed shape analysis
methods.

Acknowledgments

This work is supported under subcontract R7A824-79200004 from the Los Alamos
Computer Science Institute and Rice University and by the National Science Founda-
tion (grant 0540600). Manuel Hermenegildo is also supported by the Prince of Asturias
Chair at UNM, and projects MEC-MERIT, CAM-PROMESAS, and EU-MOBIUS.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InCAV, 2007.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
J. Log. Program., 10:91–124, 1991.

3. B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data
structures in Java. InPACT, 2001.

4. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures. In
SAS, 2003.

5. R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A shape analysis for
heap-directed pointers in C. InPOPL, 1996.

6. R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelismin C programs with recursive
data structures. InCC, 1998.

7. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. InSAS, 2006.

8. S. Gulwani and A. Tiwari. An abstract domain for analyzingheap-manipulating low-level
software. InCAV, 2007.

9. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis.
In PLDI, 2007.

10. L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures.IEEE
TPDS, 1(1), 1990.

11. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In
POPL, 2001.

12. B. Jeannet, A. Loginov, T. W. Reps, and S. Sagiv. A relational approach to interprocedural
shape analysis. InSAS, 2004.

13. R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.
In SAS, 2004.

14. M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo.A static heap analysis for shape
and connectivity. InLCPC, 2006.

15. M. Marron, R. Majumdar, D. Stefanovic, and D. Kapur. Dominance: Modeling heap struc-
tures with sharing. Tech. report, CS Dept., Univ. of New Mexico, Aug 2007.

16. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
POPL, 2004.

17. K. Muthukumar and M. V. Hermenegildo. Compile-time derivation of variable dependency
using abstract interpretation.J. Log. Program., 1992.

18. Modified Jolden Benchmarks, August 2007.http://www.cs.unm.edu/∼marron.
19. F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1999.
20. J. Reynolds. Separation logic: a logic for shared mutable data structures. InLICS, 2002.
21. N. Rinetzky, J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm. A semantics for procedure local

heaps and its abstractions. InPOPL, 2005.
22. N. Rinetzky and S. Sagiv. Interprocedural shape analysis for recursive programs. InCC,

2001.
23. R. Rugina and M. C. Rinard. Automatic parallelization ofdivide and conquer algorithms. In

PPOPP, 1999.
24. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. InPOPL, 1996.
25. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In

POPL, 1999.
26. M. B. Smyth. Power domains and predicate transformers: Atopological view. InICALP,

1983.
27. Standard Performance Evaluation Corporation. JVM98 Version 1.04, August 1998.http:

//www.spec.org/osg/jvm98/jvm98/doc/index.html.
28. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.

