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Abstract. The performance of heap analysis techniques has a sigtifiopact
on their utility in an optimizing compiler. Most shape arsifytechniques perform
interprocedural dataflow analysis in a context-sensitie@mer, which can result
in analyzing each procedure body many times (causing signifincreases in
runtime even if the analysis results are memoized). To ingtbe effectiveness
of memoization (and thus speed up the analygis)ect/extend operations are
used to remove portions of the heap model that cannot betedféy the called
procedure (effectively reducing the number of differenhteats that a proce-
dure needs to be analyzed with). This paper introdpegjgct/extend operations
that are capable of accurately modeling properties thainapertant when an-
alyzing non-trivial programs (sharing, nullity informati, destructive recursive
functions, and composite data structures). The technigeeisitroduce are able
to handle these features while significantly improving tfieativeness of mem-
oizing analysis results (and thus improving analysis perémce). Using a range
of well known benchmarks (many of which have not been sutagsanalyzed
using other existing shape analysis methods) we demoagtrat our approach
results in significant improvements in both accuracy andieficy over a base-
line analysis.

1 Introduction

Recent work on shape analysis techniques [25, 28, 1, 14, 8bhfs resulted in a num-
ber of techniques that are capable of accurately repreggtite properties (connec-
tivity, interference, and shape) that are needed for a rafigptimization and paral-
lelization applications. However, the computational aafgperforming these analyses
has limited their applicability. A significant componentbé analysis runtime is due to
the need to perform a context-sensitive interproceduialais, where each procedure
body may be analyzed multiple times (once for each diffecafiing context).

The practice of using a memo-table to avoid recomputingyaisatesults and the
use of aproject operation to remove portions of the heap that cannot affebeaaf-
fected by the called procedure are standard techniquesifomiming the number of
times each function needs to be analyzed during interproe¢dataflow analysis [2,
17,16, 19]. The two major goals of thpeoject operation are improving the effective-
ness of memoizing analysis results by removing portionsieftiteap that could cause
spurious inequalities between calling contexts and pravgthe loss of precision that



occurs when recursive procedures use a summary reprasarftat multiple out-of-
scope references (e.g. local reference variables withahee sname but that exist in
different call frames).

The project operation for heap models and the utility of locality axiohase been
analyzed in a number of papers [22,21,7,12,4]. These tqubkaiuse variations on
the notion of aframe rule as presented in [11, 20] and identify a number of features
of the project operation that are of particular importance for interpcha@l analysis
using heap domains. A major distinction is made between tbggtion operation in
cutpoint-free cases, where there are no pointers that cross frontiarsetthe heap that
is unreachablefrom the procedure arguments into a section of the heapsheschable
from the procedure arguments, and cases where such paimagrexist.

This paper presents a method for using cutpoints to supptntgrocedural heap
analysis. We then use the technique to quickly analyze @fGesconds) programs that
are larger (by a factor of 2-4) and more varied (in terms o&datuctures and algo-
rithms) than any other analysis technique to date. Our finstribution is the reformu-
lation of the project/extend operations in [21] so that tbay be used in a graph based
(as opposed to an access path based) heap model which aldesise a very com-
pact and efficient representation of heap connectivity. €amond contribution is the
extension of the original approach to handle two classesagframatic events that are
critical to analyzing real world programs, analyzing progss that involve non-trivial
sharing and composite data structures [1, 15] and propagatillity test information
from callee to caller scope. Finally we use the results otibap analysis to drive the
parallelization of a range of benchmarks (several of whighehnot been successfully
analyzed/parallelized using shape information) achigpén average parallel speedup
of 1.69 on a dual-core machine.

2 Example Code

To develop intuition about the mechanism and purposprojfect/extend operations
we look at a simple function (Figure 1) that illustrates tresib functioning of the
project/extend operations and the propagation of nullity information frime callee to
the caller scope. Our lists are made of objecttypé LNode, eachLNode object has
two fields, anx field which refers to the next element in the list and a field/hich
stores a boolean.

Accurately analyzing the initialization method (LInit)yeires the analysis to propa-
gate information inferred about cutpoints in the calleguscoack into the caller scope.
If the analysis is unable to use the == nul | test in the callee scope to infer that
| . nx isnul | in the caller scope then the analysis will not be able to ittiat after
the method returns the argument list is eithat | or must have thér ue value in all
thef fields.

3 Heap Model

We model the concrete heap as a labeled, directed multh@kgf) where each vertex
v eV is an objectin the store or a variable in the environment gawth labeled directed



LNode LI nit(LNode I)
if(l == null)
return;

tin =1.nx;
Linit(tin);
|.f = true;

Fig. 1. Recursive List Initialize

edgee € E represents a pointer between objects or a reference fromableato an
object. Each edge is given a label that is an identifier frogmpttogram, an edge, b) €

E labeled withp, we use the notatioa 2 b to indicate that points to the objedb via
the field name (or identifien).

A region of memory(l is a subset of the objects in memory, with all the pointers tha
connect these objects and all the cross-region pointetstid or end at an object in
this region. Formally, le€ CV be a subset of objects, andRt= {p|Ja,beC, a’ b}

andP.={p|JdaeC,x¢C, alxvx a} be respectively the set of internal and cross-
region pointers fo€. Then a region is the tupl€, R, P.). For a regiori] = (C,R, P)
and objects, b € C, we saya andb areconnected in [ if they are in the same weakly-
connected component of the grafh R ). Objectsa andb aredigoint in O if they are

in different weakly-connected components of the graph.

3.1 Abstract Heap Model

The underlying abstract heap domain is a graph where eaah neptlesents a region
of the heap or a variable and each edge represents a set tdnsaina variable target.
The nodes and edges are augmented with additional insttatr@mpredicates. The
abstract domain evaluates the predicates usiBiyalued semantics: predicates are ei-
ther definitely true, definitely false, or unknown [25]. Owmadysis tracks the following
set of instrumentation predicates. Our choice of prediceeénfluenced by common
predicates tracked in previous papers on shape analy&i4,[33, 20].

Types. For each typein the program, there is an instrumentation predicate (aitgten

t) that is true at a concrete heap node if any concrete objectsented by the node may
have typd.

Linearity. Each abstract node hadiaearity that represents whether it represents at
most one concrete node (linearity 1) or any set of 0 or moremia nodes (writte#).
Abstract Layout. To track the connectivity and shape of the region a node adistrthe
analysis useabstract layout predicatesSingleton, List, Tree, MultiPath, or Cycle. The
Sngleton predicate states that there are no pointers between anyg ahbilects repre-
sented by an abstract node. Tlhiet predicate is similar to the inductitgst predicate
in separation logic [20]. The other predicates corresponith¢ definitions for Trees,
Dags, and Cycles in the literature, for the formal definisisee [14].



Interference. The heap model uses two properties to track the potentiatuiloerefer-
ences can reach the same memory location in the region tloatearapresents.

The first property is for references that are representedffgyeht edges in the heap
model. Given the concretization functigrand two edges;, e; that are incoming edges
to the node, the predicate that define@¥Connected in the abstract domainisy, e, are
inConnected with respect tan if it is possible thatdr; € y(e)) AJr; € y(ex) Ada,b e
y(n) s.t. (ry refers toa) A (r2 refers tob)A (a, b connected). For improved precision
we also trackmay and must aliasing €;,e, areinConnected anda = b) between the
references the edges abstraotgt aliasing is only meaningful if the edge represents
a single references, see [15] for an approach that genesatizst-aliasing to sets of
references).

The second property is for the case where the referencegpresented by the
same edge. To model this theterfere property is introduced. An edgerepresents
interfering references if there may exist referencgs; € y(e) such that the objects
thatrq,r, refer to are connected/aliased. A three-element lattiges ip < ap, np for
edges with all non-interfering references apdor potentially interfering references
andap for potentially aliasing references, is used to repredenirtterference property.

The Heap Graph Each node in the graph either represents a region of the hreap o
variable. The variable nodes are labeled with the varidid¢ they represent. Nodes
representing the concrete heap regions contain a recordréttks the types of the
concrete objects that the node represetyfes), the number of objects (either 1 or #)
that may be in the regiortgunt), and the abstract layout of a nodayut). Each node
also tracks the connectivity relation between pairs of micw edges. A binary relation
connRis used to track thenConnected relation. Although the connectivity relation is
a property of the nodes, for readability in the figures we @isse the information with
the edges. Thus, each node is represented as a record ofithgtfgpes | ayout
count].

As in the case of the nodes, each edge contains a recorddbks tadditional in-
formation about the edge. Thaffset component indicates the offsets (labels) of the
references that are abstracted by the edge. The numbeeoémets that the edge may
represent is tracked with theaxCut property. Thanterfere property tracks the possi-
bility that the edge represents references that interfénally, we have a fieladonnto
which is a list of all the other edges/variables that the edgg be connected to accord-
ing to theconnRrelation (we add al () for the edges in the list that represent references
which may alias and a-) if the edges represent single references that alias). To
simplify the figures if theconnto field is empty we omit it entirely from the record in
the figure. Since the variable edges always represent siafeences and the offset
label is implicitly the name of the variable the record signpbntains theonnR infor-
mation or is omitted entirely if theonnR relation is empty. To simplify the discussion
of the examples each edge also has a unique label. The peiddes in the figures are
represented as recorflsabel of fset maxCut interfere connto}.

The abstract heap domain is restricted via a normal formi&}§, The normal form
ensures that the heap graph remains finite, and that equalitparisons are efficient.
The local data flow analysis is performed using@are (Partially Digunctive) Power
Domain [13, 26] over these graphs. Interprocedural analysis ifopaed in a context-



sensitive manner and the procedure analysis results ar@inesn At each call/return
site the portion of the heap graphs passed to the call aredaimo a single graph. The
design of the join operation is such that, in general, infatiom lost in the join can be
recovered when needed later in the program. The decisioerfornm joins at call sites
(programs tend to have uniform expectations of the portfath® heap passed to and
returned from calls) and to perform the join only on the poribf the heap passed to the
called method results in very little loss of precision whelesuring the abstract model
remains compact.

Abstract Call Sack. Our concrete model for theall stack is a functionSy : (LV x N) —

O, whereLV is the set of local variable names aNdrepresents the depth in the call
sequence (main is at depth 1) a@ds the set of all live objects. Thus, the péir,4)
refers to the value of the variablein the scope of the® call frame.

To represent the concrete call stack we introdstaek variables which represent
the values of local variables on the stack (for a variatiothis approach see [22]). In
our extension eactack variable summarizes all the possible targets (in a given graph)
for a given variable name on the stack. Given a variable naared a heap grap@ we
define a variable nameg for use in the abstract domain (we will select a better naming
scheme in Section 4) where! is the abstraction of all the variables in the call stack,
Ji e N, noden € G, objectoy, s.t.on € y(N) A Sn(V,i) = 0.

By associating the set of stack locations that are absttadté the set of targets in
a given abstract heap graph, we can naturally partitiorste variables along with
the heap graphs. Since easthck variable is associated with only the values on the
stack that point into a region of the heap represented by itrendieap graph, it is
straightforward to partition and join them when partitiogithe heap graphs.

Thus, during the local analysis the heap graph represemfwitiion of the program
heap that is visible from the local variables and is augntentith some number of
stack variables andcutpoint variables which relate variable values and the heap in the
caller scope to the portions of the heap reachable fromecatiepe local variables.

For efficiency and in order to ensure analysis terminatienrthming scheme we
choose will result in situations where multiple cutpoint étack) edges are given the
same name. This may result in some amount of information(flwesicularly with re-
spect to reachability and aliasing). To minimize the los# thccurs we introduce an
instrumentation domain for the stack/cutpoint variablgesinameColl = {pdj, pua,
pa}. Wherepdj indicates a cutpoint/stack name representing (a single)eaigedges
where the edges do not represent any pairwseected referencespua indicates a
name representing multiple edges where there are no paiahiases, while pa is the
indicates the name represents edges that they may havesmahasing. Thus, the cut-
point variable edges are represented with recérasxCut i nterfere connto
nanmeCol | } (stack variables are not used in this example).

4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutisoime need to name the
stack variables as well as theutpoint edges. We use a simple technique for the stack



variables: given a variable namedefined in the caller functiohcal | er we use the
name$f cal | er »v to represent this variable in the callee scope. This nanthgrae

can create false dependencies on the local scope names thderiable information
is normalized during the comparisons of entries in the mésaide.

Naming edges that cross the cutpoints is more complex sie¢eed to balance the
accuracy of the analysis with the potential of introducipgrsous differences resulting
from isomorphic (or nearly so) cutpoint edges being giveffedént names. For the
renaming of the cutpoint edges we assume that special nam#iefarguments to the
function have been introduced. The first pointer parametegferred to by the special
variable name1 and thei! pointer argument is referred to by the variaple

Figure 2(c) shows a recursive callltd ni t where the special argument name
has been added to represent the value of the first argumédr foriction. In this figure
the edgeel is a cutpoint edge since it starts in the portion of the heapistunreachable
from the argument variables and ends in a portion of the Heatps reachable from the
argument variables (this differs slightly from the defioitifor cutpoints in [21] but
allows us to handle edges uniformly).

For each cutpoint edge we generate a pair of names: one isruderlunreachable
section of the heap graph and one in the reachable sectiéch allows an abstract heap
model to represent both incoming and outgoing cutpoint sdlygt are isomorphic and
exist in the same abstract heap component without loss ofgioe.

If we are adding a cutpoint for the method dadlal | er and the edge, whichis a
cutpoint, starting ah and ending at’, and has edge lab&k. We can find the shortest
path §1 ... fk)fromany of thepi variables taY (using lexographic comparison on
the path names to break ties). Using pieargument variable and the pafhl( ... f k)
we derive the cutpoinbasename = f cal | er xpi »f 1+ .. xf kxf e We compute a
pair of static namesufireachN, reachN) whereunreachN = $basenane- andreachN
= $basenane+. In Figure 2(d) the cutpoint nan$p1+ (for brevity we simply label
the cutpoint with thepi variable) is used to represent the endpoint of the cutpdige e
in the reachable component of the heap &pd- to track a dummy node associated
with the cutpoint edge in the unreachable component of tap .he

5 Example

The example program, Figure 1, recursively initializesftifelds in a linked list to the
valuet r ue. Figure 2(a) shows the abstract heap model at the entry dirgteall to
the procedure (for simplicity we ignore any caller scopealaes).

In Figure 2(a), variablé refers to a node that represenfsode objects {ypes =
{LNode}, abbreviated td_N), that represents a region with no internal connections
(Layout = S), which contains a single objeatqunt = 1), and where all the incoming
edges represent disjoint pointers (thennt o lists on the edges are omitted). In this
figure we also have that the elements in the list have unknouth values in the
fields f =?). There is a single edge out of this node representing psistered in
thenx field of the object represented by the node. This edge remiassingle pointer
(maxCut = 1) and all the pointers are non-interferingtérfere = np). Finally, this edge
refers to a node that also represelnidode objects but may represent many of these



objects ount = #) and, since theayout value isList, we know that the objects may be
connected in a list-like shape. Since there is a single incgmdge and it represents a
single pointer, we can safely assume that this edge reféne teead of the list structure.

<P;

(d) Spllt Cross Edge 1st Call (e) Into 1st Recursive Call (f) Cross Edge 2nd Call

{1, np, pd/ @

[, LA

(9) Spllt Cross Edge 2nd Call (h) Fix Point/ Base Return (i) Merge 2nd Call Return
@

D)
{1, np, pdj} fel, nx, 1, np}
5 {nx}
N LA™

() Patched Cross Edges (k) Merge 1st Call Return (I) Return 1st Recursive Call

Fig. 2. Recursive Calls

Figure 2(b) shows the abstract heap model just after exegtite statementi n =
I . nx. Since we know thagl refers to the head element of the list from Figure 2(a) we
replaced the singleist-shaped node with a hode representing the unique head d@lemen
and a node representing the tail of the list. Since the headesit is unique we set the
count of this new node to 1. Additionally, the only possible layéarta node oftount 1
is Sngleton. Finally, if a node represents a single object then all thgaing field edges
can each represent a single pointer. Thus, we set the ogtgdige to have maxCut =



1. Also note that after the load the analysis has determimetd t n ande1l must alias
(indicated by the-el and~t i n entries in the connectivity lists).

Figure 2(c) shows the state of the abstract heap at the ehtheqroject proce-
dure. The special nanygl has been added to represent the value of the first pointer
argument to the function and we have added a dotted line todtedthe reachable and
unreachable portions of the heap. Note that the edde a cutpoint edge according to
our definition.

The result of the project operation is shown in Figure 2(the &1 edge, which was
a cutpoint edge for the call, has been remapped to a dummyamstighe static cutpoint
namesbpl- and$pl+ (for brevity we omit the procedure name and edge labels from
the static names) have been introduced at the dummy nodéd thedtarget of this edge
in the reachable section. Since this cutpoint edge onlyepnts the single cutpoint
edge generated in this call framaneCol | = pdj . Also note that the analysis has
determined that the formal paramepdr must alias the cutpoint ed@p1+.

Figure 2(e) shows the resulting abstract heap that is péastethe callee scope for
analysis. Since all the local variables in the caller scafieeedid not refer to nodes in
the callee reachable section or are dead after the calhretido not have to give them
stack hames and can remove them entirely from the heap nitigate 2(f) shows the
abstract heap at the entry to the project function for thesgcecursive call. Again
we have a cutpoint edg®. Note that the reachable cutpoint lalfgh1+ introduced in
the previous call is now in the unreachable portion of thephétzus $pl+) does not
conflict with the unreachable name added in this c&hlX(- ). The result of the project
operation is shown in Figure 2(qg).

Figure 2(h) shows the eventual fixpoint approximation (abthe dotted line) of
the analysis of this function and also the base case retlue ¢aelow the dotted line).
Notice in the base case return value we were able to detethanthe tesk == nul |
implies thatt must be null and since we preserved must alias informatiautih the
cutpoint introduction we can infer thitmust alias$p1+, which implies the cutpoint
edge $pl+) must also be null. Thus, the analysis can infer that on mettug cutpoint
edge is eithenul | or is non-null and refers to some list in which all thdields have
been set td r ue (f =t in the figure).

In Figure 2(i) we show how the fixpoint approximation for theachable section
of the heap is recombined with the unreachable section ohd#iag using thextend
operation. After the recombination we get the abstract neagel shown in Figure 2(j).
In Figure 2(i) we have unioned the graphs and are ready tdpgt¢he cutpoint cross
edge information. The static narfi@1+ in the reachable portion of the heap has been
used to compute the associated unreachable rpde (. Then the algorithm identifies
the edge associated with the dummy node referred iy (e2) and remapped this
edge to end at the target$p1+ (t i n has been nullified since it is dead).

Figure 2(k) shows thextend operation at the return from the first recursive call
which is similar to the situation in the second recursivé @dle resulting abstract heap
is shown in Figure 2(l) which can be joined with the resulttef base case test and then
completes the analysis of the method. As desired, the dadlgs determined that the
recursive list initialize procedure preserves the listgghaf the argument list and that
all of thef fields in the list have been settto ue (f =t in the figures).



6 Project and Extend Algorithms

Project. We assume that before tipeojectHeap function is invoked all of the special
argument variable names have been added to the heap moidehl[GtvsprojectHeap
(Algorithm 1 below) to easily compute the section of the heaygel that is reachable
in the callee procedure and then compute the set of nodesaimgrise the unreachable
portion of the heap model.

Algorithm 1: projectHeap

input : h: the heap model to be partitioned
output: hy, hy: the reachable and unreachable partiti@ng, ncs: the static names used
and newly created
reachNodes « set of nodes reachable from args;
unreachNodes « set of nodes unreachable from args;
crossEdges <+ set of edges that start imreachNodes and end irreachNodes;
snu «— 0;
necs «— 0;
foreach edgee in crossEdges do
(sn, isnew) < procCrossEdgé( e, reachNodes);
snu.addén);
if isnew then ncs.addén);

hy < subgraph oh on the nodesinreachNodes U {dummy nodes from procCrossEdge
hr < subgraph oh on the nodeseachNodes;
return (hy, hy, sny nc9;

For each edge that crosses from the unreachable sectiothéteachable section
we add a pair of static names to represent the edge (Algo&)hBince the heap model
stores a number of domain properties in each edge, we crdatamy node and remap
the edge to end at this node. Then, tinesachN static name is set to refer to this dummy
node. In the reachable portion of the heap graph we simpltheeeachN static name
to refer to the target of the cross edge.

When adding theeachN static name to the reachable section of the heap graph the
name may or may not already be present in the heap graph. ifatime is not present
then we add it to the static name map and for later use we nattéhils is the call where
the name is introduced. Otherwise a name collision has cedwnd we must mark
the edges representing the possible cutpoints approlyr{fde simplicity we mark all
the edges). If there may be aliasing we note that the cutpdiom different frames
may have aliasing targetgd) and similarly if the new cutpoint edge may be connected
with an existing cutpoint edge we mark them as being paireiseectedfua). The
functionsmakeEdgeFor UnreachCutpoint and makeEdgeFor ReachCutpoint are used to
produce edges to represent the cutpoint (based on thersaatie and the cutpoint edge
properties) in the unreachable and reachable portionedi¢ap.

Once all of the cutpoint edges have been replaced by thereghjatatic names,
the heap can be transformed into the unreachable versioeréveil the nodes in the



reachable section and all the variables/static names ttiptrefer to reachable nodes
have been removed) and the reachable version (where thes imodiee unreachable
section and the associated names have been removed).

Algorithm 2 : procCrossEdge

input : h: the heapg: the cross edgegachNodes: set of reachable nodes
output: rsn: the name usedsnew: true if rsn a new name
ne < the nodes ends at;
n; < new dummy node;
(ursn, rsn) « genStaticNamePairForEddef);
ey — makeEdgeForUnreachCutpoint(gsn);
set endpoint 0§, to nj;
adde, as an edge foursn;
e «— makeEdgeForReachCutpoint(en);
set endpoint o0& to ng;
remap the endpoint a&fto nj;
if the namesn exists and has edges pointing to a nodesathNodes then
rsnes < {€|€ is an edge for the cutpoint vasn};
adde as an edge farsn;
if & isinConnected with an edge in rsnesthen set edges imsnes ande; to pua;
if & may aliaswith an edge in rsnesthen set edges imsnes ande; to pa;
return (rsn false);
else
add the namesn to h;
adde as an edge farsn;
return (rsn true);

Extend. After the call return we need to rejoin the unreachable portif the heap that
we extracted before the procedure call entry with the resaibbtained from analyzing
the callee procedure. This is done by looking at each of titicstames that was used
to represent a cutpoint edge and reconnecting as requitezh, Bach of the newly
introduced cutpoint names can be removed from the heap mbldelpseudo-code to
do this is shown in Algorithm 3.

This algorithm merges all edges with the same reachableititpame so that there
is at most one target edge for a given cutpoint name in thénedde heap, (this sim-
plifies the algorithm and is in our experience is quite ac&)rd he algorithm then pairs
up the two cutpoint names and remaps the edge we saved intba&chiable section to
the target node in the reachable section subject to a nurhteste to propagate sharing
information (the nullity information is propagated due he fact that the dummy node
and all incoming edges are always removed but the foreaghdadhe targets afirsn
does not execute since the target set is empty).elhameColl = puatest is true if this
edge represents sets of pointers that do not have pairwaszal Thus, we mark the
newly remapped edge argd as pairwise unaliased. Similarly, tiee.nameColl = pdj



test is true if this edge represents cutpoint/stack edgesatie pairwise disjoint. Thus,
we mark the newly remapped edge anés pairwise disjoint.

Algorithm 3: extendHeap

input : hy, hy: the reachable and unreachable partiti@ng, ncs: the static names used
and newly created
output: h: the joined heap model
h — newheap();
h.heapGrapkh— mergeGraphsg .heapGraphhy.heapGraph);
foreach static namesn in snu do
ursn «— reachNameToUnreachNanse);
n < the target obn in h,.nameMap;
foreach noden, that is a target ofirsn in hy.nameMap do
e « the single incoming edge tg;
remape; to end at the target of;;
g .interfere =g .interferell n;.interfere;
if e .nameColl= pua then sete, andn; as unaliased,;
if e-.nameColl= pdj then sete andn, as disjoint;

hy.removeNodeAllEdges(target afsn);
hy.unmapStaticNamegsn);
if snin ncsthen hy.unmapStaticNamef);

h.nameMap— mergeNameMapk(.nameMaphy.nameMap);
return h

The major components of this algorithm are the separatioth@mmergeGraphs
action from themergeNameMaps action and the elimination of the static cutpoint edge
names that were introduced for this call.

ThemergeGraphsfunction computes the union of the graph structures thaiesemt
the abstract heap objects, while tinergeNameMaps function computes the union of
the name maps (which are maps from the stack/variable/mitpames to the nodes in
the graph structure that represent them). This separdtmmsathe algorithm to nullify
the names created for this call which prevents the propawati unneeded cutpoint
edge targets to the caller scope. The functiomapStaticName is used to eliminate a
given static name from the abstract heap model name map.

Example Name Collision. The introduction of th@ameColl domain minimizes the pre-
cision loss that occurs when a cutpoint or stack variableenestiision occurs. Figure 3
shows an example of such a situation. In this figure we shotvgbar heap where the
edge=2 ande3 are both cutpoint edges and they do not represent any paialigsing
pointers (nd in theconnTo lists) although they each represent sets of pointers that ma
alias,interfere = ap.

In this example our naming scheme will resulelhande3 being represented with
the same cutpoint name. However, our method will mark thipaiat edge asameCaoll
= pua (Figure 3(b)). This means that on return theéend algorithm will set the edges



that are mapped to this cutpoint as being pairwise unaliéiSigdire 3(c)) as desired.
Thus, even though there was a name collision for the cutpaiatavoided (in this case
completely) the loss of sharing information about the heap.

{e2, nx, #, ap, (e1, e3)}

[CNL L, 7,72 LA L™
(a) Colliding Names (b) To Same Cutpoint (c) PUA on Return

{LNLL, % =2

Fig. 3. Name Collision

7 Experimental Results

The proposed approach has been implemented and the effessiy and efficiency of
the analysis have been evaluated on the source code foapnsdrom a variation of the
Jolden [3, 18] suite and several programs from SPEC JVM9B(jaytrace, modified
to be single threadedp andcompress). The analysis algorithm is written in C++ and
was compiled using MSVC 8.0. The parallelization benchrearére run using the Sun
1.6 JVM. All runs are from our 2.8 GHz PentiumD machine withB & RAM.

We ran the analysis with the project/extend operationsledgtheProject column)
and disabled (thBlo-Project column) and recorded the analysis time, the average num-
ber of times a method needed to be analyzed, and used théngshlape information to
parallelize the programs, shown in Figure 4. The resultieatd that the project/extend
operations have a significant impact on the performancee#ttalysis, reducing the
number of contexts that each function needs to be analyz@miaverage reducing the
number of contexts by a factor of 4.3) which results in a st decrease in analysis
times (by a factor of 18.4). As expected this reduction bezomore pronounced as
the size and complexity of the benchmarks increases, indbe ofraytrace the anal-
ysis time without the project/extend operation is impreadty large (772.6 seconds)
but when we use the project/extend operations the analysésis reduced to 35.11
seconds.

We used the shape information from the analysis to drive tralielization of
the benchmarks by using multiple threads in loops and a&fsjlting in the speedup
columns in Figure 4. Given the shape information producetthbywnalysis it is straight
forward to compute what parts of the heap are read and whiterloop body or method
call and thus which loops and calls can be executed in ph(alleaytrace we treated
the memoization of intersect computations as spuriousraipeies). Once the anal-
ysis identified locations that could be parallelized we itesb calls to a simple thread
pool (since our current work is focused on the analysis thidane by hand but can
be fully automated [6, 23, 10]). In 8 of 9 benchmarks that aiitable for shape driven
parallelization ¢ompress, db andmst do not have any data structure operations that are



amenable to shape driven parallelization) we achieve aigiogispeedup, averaging a
factor of 1.69 over the benchmarks.

Benchmark Info No-Project Project
BenchmarkStmt (Metho Time|Avg Cont|Speedup Time|Avg Cont|Speedup
bisort 260 (13 0.869 10.6 1.00| 0.28s 1.9 1.72
em3d 333 |13 0.125 2.5 1.75| 0.08s 1.8 1.75
mst 457 |22 0.065 3.2 NA|| 0.045 3.0 NA
tsp 510 |13 1.51¢ 22.4 1.84| 0.17s 7.0 1.84
perimeter |621 |36 54.574 105.9 1.00| 2.97s 50.2 1.00
health 643 |16 3.244 12.9 1.00| 2.26s 4.2 1.76
voronoi {981 |63 20.89g 61.4 1.00| 2.67s 37.2 1.68
power 1352 |29 5.715 26.8 1.93| 0.17s 1.3 1.93
bh 1616 |51 8.644 32.8 1.75| 2.68s 7.3 1.75
compress (1102 (41 0.295 2.9 NA|| 0.184 2.2 NA
db 1214 |30 0.945 3.7 NA|| 0.685 2.8 NA
raytrace |3705 |173 772.60s  293.1 1.0035.115 15.6 1.76
Overall  |12794523 869.433 48.2 1.3647.293 11.2 1.69

Fig. 4. The Stmt and Method columns list the number of statementsreaibdods for each bench-
mark. The columns for the No-Project and Project variatifitee analysis list: the analysis time
in seconds, the average number of times each method wazeadagd parallel speedup achieved
on a 2 core 2.8 GHz PentiumD processor.

Our experimental results show that the information progdriig the analysis can be
effectively used (in conjunction with existing technigu&sdrive the parallelization of
programs. To the best of our knowledge this analysis is thg slmpe analysis that
is able to provide the information required to perform shdpeen parallelization for
five of these benchmarksr(3d, health, voronoi, bh andraytrace). Given the speed with
which the analysis is able to produce the information neddedhe parallelization
and the consistent parallel speedup that is obtained in eéhetmarks (1.69 over all
of the benchmarks and 1.77 if we exclude the benchmet), we find the results
encouraging.

Of particular interest is theaytrace benchmark. This program is 2-4 times larger
than any benchmarks used in the related work, builds andrsas several heap struc-
tures that have significant sharing between componentésdtraakes heavy use of
virtual methods and recursion. This benchmark presentifigignt challenges in terms
of the complexity and size of the program as well as in termthefrange of heap
structures that need to be represented in order to acopeatdlefficiently analyze the
program. Our analysis is able to manage all of these aspedtsable to produce a
precise model of the heap (allowing us to obtain a speedup7@f dsing heap based
parallelization techniques). Further, the analysis i€ ablproduce this result while
maintaining a tractable analysis runtime.



8 Conclusion

We presented and benchmarked project/extend operatioasfore-based heap model
thatis capable of precisely representing a range of shapagctivity and sharing prop-
erties. The project and extend operations we introducedesigned to minimize the
analysis time by reducing the number of unique calling castior each function and to
minimize the imprecision introduced by the collisions thetur between stack/cutpoint
names.

Our experimental results using the project/extend opmratare very positive. The
analysis was able to efficiently analyze benchmarks thad lanid manipulate a variety
of data structures. Our benchmark set includes a numberoélsthat were originally
designed as challenge problems for automatic parall@izééthe Jolden suite) and sev-
eral benchmarks from the SPEC JVM98 suite (including a sitigleaded version of
raytrace). Our experimental results demonstrate that the projaetiel operations are
effective in minimizing the number of contexts that need ¢calnalyzed (on average a
factor of 4.3 reduction), improving analysis accuracy (sae improved parallelization
results, in 4 out of 12 benchmarks) and substantially redyttie analysis runtime (by
a factor of nearly 20). Our heap analysis was also able tagesufficient information
to successfully parallelize the majority of benchmarks wa&neined, including several
that cannot be successfully analyzed/parallelized usihgrgoroposed shape analysis
methods.
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