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Abstract

A tool, to be used for monitoring and recording the heap-allocated object behavior, is

designed, implemented, evaluated, and documented. Object-oriented programming lan-

guages, such as Java, require the support of automatic memory management (garbage

collection), because of their intensive heap allocation. Modern garbage collection tech-

niques rely on exploiting the object behaviors. These behaviors include the ages, the

types, and the sizes of objects, and the references among objects. For example, the Ap-

pel generational copying collector and the Older-First collector are built on the basis of

the distribution of object ages. To understand these object behaviors and thus be able to

improve garbage collection techniques, we need a simulation tool. The tool described

here correlates the low-level read/write data accesses with the high-level object character-

istics. When an object is allocated, modified, moved, or deallocated, the tool monitors and

records this information. By further analyzing this information, one obtains the relevant

data to understand the desired object behaviors. The tool consists of three components:

IBM’s Jikes RVM, Dynamic SimpleScalar, and an off-line Analyzer. Jikes RVM is a Java
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virtual machine which itself is written in Java; Dynamic SimpleScalar is a machine-level

emulator to simulate a PowerPC model running the AIX operating system; and the An-

alyzer is used to postprocess the results generated by the first two components. To be

running, the entire tool maintains a layering of structures: the Java program, Jikes RVM,

Dynamic SimpleScalar, and the host machine, in which the Java program resides at the

first layer. We evaluate our tool using three SPECjvm98 Java benchmarks. We also illus-

trate how the tool can be used to analyze the write statistics to the fields of an object with

certain class type. In general, this tool could have great significance in garbage collec-

tion research, by being able to provide accurate and flexible analyses at the heap-allocated

object level.
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fanović et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Older-first algorithm, as courtesy of Stefanović et al. . . . . . . . . . . . 7
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Chapter 1

Introduction

Object-oriented programming languages, such as Java, typically allocate a substantial

amount of objects on the heap. Many of these languages support automatic memory man-

agement, that is, garbage collection. Garbage collection reclaims heap objects when they

are no longer used. Most modern garbage collectors are devised on the basis of observa-

tions of object behaviors, including ages, sizes, types, and references and so forth. This

chapter reviews two garbage collection algorithms which both rely on object age behavior.

While garbage collection relieves the programmer from painful debugging of memory er-

rors, it also raises issues like poor data locality of references. One thus needs to understand

the data memory reference behaviors of objects. These issues motivate our present work.

We would like to build a tool to understand some of these object behaviors.

1.1 Overview

Current technology leads to an increasingly widening gap between processor speed and

memory speed. Wulf and McKee [WM95] further explore this. Owing to the exponential

growth of this gap, average access time to memory will increase and cost more and more
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Chapter 1. Introduction

processor cycles in the foreseeable future. At the same time, the size of application pro-

grams is getting larger when compared to the limited memory sizes. The memory system

becomes expensive in some sense. It dominates the system performance and becomes a

bottleneck in the improvement of the overall performance of programs. Memory storage

management, therefore, has been an active research subject for decades.

With advances in compiler technology, many high level programming languages al-

low programmers to dynamically allocate storage to the heap. For example, in C++ and

C, programmers can allocate data to the heap by using new (in C++) or malloc (in C).

These languages, however, require that programmers deallocate the heap storage manu-

ally when the storage is no longer used. One can use delete (in C++) or free (in C) to

deallocate the heap storage, for instance. It is clear that doing memory management this

way is painful and error-prone, even for experienced programmers. On the other hand,

object-oriented programming languages have become the mainstream in the commercial

software development. In such languages, objects are more intensively allocated to the

heap than those in traditional languages. A recent study has shown that there are ten times

as many heap allocations in C++ than in C [CGZ94]. Java, another popular object-oriented

language, requires that all objects be allocated to the heap. One can expect that there are

even more heap allocations in Java than in C++. Based on a combination of these reasons,

it is essential for these languages to provide some sort of automatic memory management

mechanism for heap allocations.

Many garbage collection algorithms have been designed to serve this purpose [JL96].

Three classical algorithms are Reference counting, Mark-Sweep, and Copying. Reference

counting counts the references to heap objects during the execution of user programs.

Once the reference count to a heap object drops to zero, the heap object will be reclaimed.

This algorithm is simple and it does not need to suspend the running programs. The major

problem with reference counting is that it cannot reclaim cyclic data structures like doubly-

linked lists. Reference counts will never be zero because of the existence of internal back

2



Chapter 1. Introduction

references in these structures. The Mark-Sweep algorithm works in a way that traverses

all of the heap objects and marks the ones reachable from the roots. Unmarked heap

objects are then swept back into a free list, to be used in the future allocations. One

of the advantages of this algorithm over reference counting is that it can handle cyclic

data structures. However, it has to stop the user program. Put another way, the user

program has to wait until the mark-sweep garbage collector completes. This influences

the response time for large user programs. The Copying algorithm divides the heap into

two semi-spaces, fromspace and tospace. The copying collector starts by traversing all

heap objects in the fromspace and copying all reachable objects into tospace. As a result,

tospace contains a replica of all reachable heap objects from the roots. Then, the roles

of fromspace and tospace are flipped. The old tospace becomes fromspace into which

new data will be allocated. Similar to mark-sweep algorithm, it has to suspend the user

program. The benefit is that it leads to smaller pause time since it only needs to traverse

half of the heap. Another benefit is the elimination of the fragmentation since it compacts

the reachable heap objects into the bottom of tospace during copying.

It should be noted that in both mark-sweep and copying collectors, all of the reachable

heap objects are marked or copied, including relatively long-lived objects. That is to say,

a certain amount of unnecessary time is spent on recycling of these long-lived objects.

To solve this issue, researchers proposed the generational garbage collection technique in

which objects are segregated into generations by their ages. This brought about another

series of garbage collection algorithms, i.e., relying on the object demographics, such as

ages, sizes, and types. The details on these techniques will be discussed in the following

section.
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Chapter 1. Introduction

1.2 Modern Garbage Collection Algorithms

In this section, we discuss two garbage collection techniques, the Appel generational copy-

ing collector and the older-first collector, both of which are designed in terms of object

ages.

1.2.1 Appel Generational Copying Algorithm

The basis of generational garbage collection is the Weak generational hypothesis, that is,

that most objects die young [Ung84, JL96, App89]. The entire heap space in a gener-

ational collector is divided into two or more generations in terms of object ages. The

youngest generation is called the nursery. The application always allocates new data into

the nursery. Once a collection is triggered, the nursery will be collected first since most

of the objects it contains are supposed to be dead (according to the Weak generational hy-

pothesis). Objects that survive are then promoted to older generations. Every generation is

collected at different frequencies. The younger generations are collected more frequently

than older generations. In short, a generational collector does not need to collect the entire

heap, but a small region of the heap, one generation. This leads to relatively short pause

times.

Appel’s generational copying collector [App89] organizes the heap into two genera-

tions. The size of the nursery changes during garbage collections. Figure 1.1 and Fig-

ure 1.2 illustrate how an Appel generational copying collector works.

Figure 1.1(a) sketches a typical organization of logical address space for a process.

During the execution of program, the heap grows down to higher addresses and the stack

grows up to lower addresses. There is a pointer pointing to the upper end of the heap,

which is called “break” in Unix. With the growth of the heap, the “break” is changed

correspondingly. Once this “break” hits the top of the stack, a segmentation fault signal

4
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is raised in Unix. This triggers the garbage collector. At this point, the heap is organized

as shown in Figure 1.1(b). The solid line m indicates the middle of the entire heap, while

the dashed line m’ shows the middle of the reserve space and the nursery space. The new

data is allocated to the free portion of the nursery. When the allocation hits the “break”,

a minor collection is triggered and the nursery is collected. The surviving objects are

promoted to the reserve space, marked as x seen in Figure 1.1(c). The reserve and nursery

space are then reorganized. After a couple of cycles of minor collections, the entire older

generation will be filled up. A major collection is triggered once the promoted objects

x span over the middle line m (Figure 1.2(d). The older generation is collected and the

collector promotes the survived objects into the region immediately right of the x, older’,

as shown in Figure 1.2(e). Finally, as indicated in Figure 1.2(f), the heap is reorganized

by moving objects in older’ to older. The next cycle of collection will start with this

organization.

1.2.2 Older-First Algorithm

Stefanović et al. [SMM99, SHB � 02] observe that very youngest objects are repeatedly

collected in a generational copying collector. In fact, every object needs certain time to

die. These youngest (most newly-allocated) objects are still alive, while they are being

collected. Based on this observation, they invented older-first algorithm which avoids

collecting the very youngest objects. In their algorithm, the heap is logically organized as

an ordered list where objects are arranged from left to right in terms of the ages. As shown

in Figure 1.3, the oldest objects are at the leftmost of the heap. The data is allocated to the

right end of the heap. Thus, the youngest object is always arranged at the rightmost of the

heap.

An older-first collector works by collecting a window at one cycle. A window is a

fixed-size region which contains a group of objects from older to younger. Upon the
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Figure 1.3: Organization of the heap in older-first algorithm, as courtesy of Stefanović et
al. .

completion of a collection, the window is moved into a new position immediately to the

right of survived objects. Figure 1.4 illustrates how the survived objects from collected
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Figure 1.4: Older-first algorithm, as courtesy of Stefanović et al. .
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region C (i.e. current window) are copied (in region S) and how the freed memory blocks

are moved into the nursery, through a couple of cycles of collections. U represents an

uncollected region wherein objects are assumed to be alive. Figure 1.5 shows how the

algorithm works from an angle of window sliding. In the meantime, this diagram gives

a situation where the collector gains the best performance. In collections 4 through 8,

the window moves very slowly since there is only a very small set of survived objects at

each collection. In other words, most part of window C can be freed and used for further

allocations. This implies that the copying cost of survived objects is minimized.
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Figure 1.5: Older-first algorithm with window motion, as courtesy of Stefanović et al. .

8



Chapter 1. Introduction

1.3 Heap-allocated Object Behaviors

Upon being allocated, an object tends to live for some time. By live we mean that this

object can be reachable from the roots (the run-time stack, registers, and global variables).

It is dead when it becomes unreachable and then needs to be garbage-collected. The object

thus has a lifetime, or an age. We say that a newly-allocated object is younger than those

already allocated for a while. Researchers observe that most young objects have a short

lifetime. This is the basis of generational garbage collection algorithms, as we have already

seen in Section 1.2.

The size and the type of an object are determined during allocation. A recent study by

Shuf et al. [SGBS02] observes that some types of objects are prolific, while others are non-

prolific, according to the number of the instantiated instances on those types. Then they

propose a prolific hypothesis, which states that objects of prolific types die younger than

objects of non-prolific types. Based on this hypothesis, they invent type-based garbage

collection algorithm.

Objects do not live alone and they have references (i.e. pointers) to one another. Two

objects may connect, either directly or transitively through other intermediary objects.

Some researchers [HHDH02] further explore the “connectivity” among the heap objects

and claim that the connected objects die together.

Java programs generally have poor data locality due to the influence of garbage col-

lection. This is especially serious in copying garbage collection since objects have to be

copied around in such collectors. On the other hand, locality serves as the basis for caches

and virtual memory system. Poor locality degrades the performance of entire system. Sev-

eral researchers have studied the memory system behaviors of Java programs at the object

level. Kim and Hsu [KH00] investigate the temporal locality by using the memory refer-

ence traces on several SPECjvm98 benchmarks [Sta99] executed with a Just-In-Time(JIT)

compiler. Shuf et al. [SSGS01] further correlate the cache and TLB performance with the

9



Chapter 1. Introduction

accesses to fields and methods of objects, using traces generated by instrumenting the

run-time optimizing compiler in a virtual machine.

1.4 Objective of This Work

As we discussed in Section 1.3, modern garbage collectors are designed based on the

object behaviors. To devise better garbage collectors, one needs to have a good under-

standing of these object behaviors. A simulation tool, which traces the object activities

during the execution of programs, can help us to reach this goal. In this work, we describe

such a tool. Using this tool, we expect to correlate the machine-level accessing activities

(reads/whites) with the high-level object characteristics. Figure 1.6 illustrates how our tool

is used to “picture” a typical Java object.

Header


Field 0


Field 1


...


(a)


Time


Read

Write


Garbage Collection


(b)


Object

is dead here.


Object is

allocated.


A GC that doesn't

look at this


object.

Object


is collected

here.


Figure 1.6: Data memory reference behavior of a single scalar object.

Figure 1.6(a) gives a simple object layout usually exploited in a Java run-time system.

Our tool monitors and records each data access, either a read or a write, to a particular field
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of an object. We can know whether this access was a hit or a miss in the data cache. To-

gether with the information of high-level objects (type, start address, and offsets of fields,

etc.), we can know which field of the object was accessed. As such, with the execution of

programs, we record a sequence of accesses on an object, as shown in Figure 1.6(b). It

should be mentioned that, unlike previous work [KH00], our tool allows the movement of

objects. For example, after a cycle of garbage collection, an object survives and is copied

to another heap space. Also, to generate traces, we do not need to instrument run-time

compiler as they did in [SSGS01]. More powerful usage of this tool will be discussed in

Chapter 4.

1.5 Organization of the Thesis

The remainder of this document is organized as follows: Chapter 2 gives the methodology

we exploit to develop this tool; Chapter 3 describes the experiences learned during devel-

oping the tool in detail; Chapter 4 discusses how to run the tool; and Chapter 5 concludes

with a discussion of future work.

11



Chapter 2

Methodology

This chapter gives an overview of the method we used to build this tool. The tool is

composed of IBM’s Jikes Research Virtual Machine (Jikes RVM), Dynamic SimpleScalar,

and an off-line Analyzer. In Section 2.1, we introduce an organization of the tool and

outline the mechanisms how the tool works. Section 2.2 describes the three components

of the tool in detail. The last section discusses the previous work and our contribution to

the tool.

2.1 Overview

Figure 2.1 gives the hierarchical organization of the tool. Layer 1 is the Java program.

Layer 2 is a Java Virtual Machine (JVM), IBM’s Jikes RVM. Layer 3 is Dynamic Sim-

pleScalar, which simulates a PowerPC machine. Layer 4 is the host machine on top of

which Dynamic SimpleScalar runs. Generally, higher layers run on top of lower layers.

The third component, Analyzer, also runs on top of host machine.

During the execution of Java programs, Jikes RVM’s allocator and collector trig-

12
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Java Programs
Layer 1

IBM’s Jikes RVM

Allocator Collector
Layer 2

Dynamic SimpleScalar
(PowerPC/AIX)

Layer 3

Host Machine
(UltraSparc/Solaris)Layer 4

     events events

        Analyzer

 (1)

(2)

(3)

        feature.dump

class.dump

profile.bz2

trace.bz2

Figure 2.1: Organization of the tool.

ger some events. Semantics of these events are shown in Table 2.1. Upon the occur-

rence of an event, Jikes RVM stores certain information in some featured memory loca-

tions (see Table 2.2), which are known to both Jikes RVM and Dynamic SimpleScalar.

This information is conveyed to Dynamic SimpleScalar when it makes access to those

locations. For example, NEW SCALAR event indicates that a new Java scalar object

is allocated. Once this event is triggered, it stores information regarding this object,

such as start address and type, to featured addresses, FEATURE ADDRESS NEXT and

FEATURE ADDRESS EXTRA, respectively. FEATURE ADDRESS is used to store the

event ID. FEATURE END is a mark, and when it is accessed, Dynamic SimpleScalar

knows something happened and then extracts information stored in other featured ad-

dresses. This information (eventID, start address, and type), along with other access results

(access address, read/write, hit/miss, and values), is saved to a disk file, profile.bz2.

The choice of featured addresses is in terms of the convention of virtual memory

address space in Dynamic SimpleScalar1. The base of stack segment is at the address

1See memory.c in the distribution of Dynamic SimpleScalar.
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0x7fffc000 and the stack grows towards lower memory as needed. The four featured ad-

dresses we have chosen are higher than this stack base address, which are supposed to not

be used by any user program.

Table 2.1: Event semantics generated by Jikes RVM.

Event ID Events Semantics
1 NEW SCALAR A new scalar object is allocated.
2 NEW ARRAY A new array object is allocated.
3 GC START Garbage collector starts.
4 GC END Garbage collector ends.
5 COPY SCALAR A scalar object is copied in GC.
6 COPY ARRAY An array object is copied in GC.
7 CLASS DUMP START Saving class information starts.
8 CLASS DUMP END Saving class information is done.
9 MEM UNMAP Cleaning up dead/copied objects starts.

Table 2.2: Featured addresses known to Jikes RVM and Dynamic SimpleScalar.

No. Name Featured Addresses
1 FEATURE ADDRESS 0x7fffe000
2 FEATURE ADDRESS NEXT 0x7fffe004
3 FEATURE ADDRESS EXTRA 0x7fffe008
4 FEATURE END 0x7fffe00c

Finally, an off-line Analyzer comes into play. It takes three files, profile.bz22, fea-

ture.dump (which stores information about Jikes RVM’s boot image objects and is created

during the building time of Jikes RVM), and class.dump (which stores information on

classes and is created by Jikes RVM at run-time), as inputs, and generates the data mem-

ory reference traces into a file, trace.bz2. The detailed information saved in these files will

be further discussed in Chapter 3.

2The extension bz2 means that this file is compressed using bzip2 C routine in bzlib.h.
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2.2 Components of the Tool

This section describes the three components of the tool: IBM’s Jikes RVM, Dynamic

SimpleScalar, and Analyzer. We first present the basic structure and implementation of

Jikes RVM. Then we describe the specific features of Dynamic SimpleScalar which make

it possible to simulate Java programs running on top of Jikes RVM.

2.2.1 IBM’s Jikes RVM

Jikes RVM, previously known as Jalapeño, is a virtual machine for servers, developed at

IBM’s T. J. Watson Research Center [AAB � 99, AAB � 00]. It includes the latest virtual

machine technologies for dynamic compilation, adaptive optimization, garbage collection,

thread scheduling, and synchronization. It itself is written in the Java programming lan-

guage. It takes a compile-only approach to program execution in which bytecodes are

always compiled to machine code before execution. There is no interpreter at all. Cur-

rently, Jikes RVM runs on PowerPC/AIX, PowerPC/Linux, and IA32/Linux platforms.

Structure of Jikes RVM

There are five key components of Jikes RVM: an object model; the run-time subsystem,

the thread and synchronization subsystem, the memory management subsystem, and the

compiler subsystem [AAB � 00].

Object Model and Memory Layout. Jikes RVM operates on two kinds of types: prim-

itive types and reference types. Correspondingly, there are two kinds of values: primitive

values and reference values. The primitive types include int, char, boolean, etc., and

the reference types include array types and class types. Objects with reference types are

allocated on the heap. These objects are array objects and class (scalar) objects. Figure 2.2
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shows the object model and memory layout exploited in Jikes RVM. The object reference

always points to three words away of the top of headers (TIB field). In an array object, it

points to the first component. Scalar objects grow down from the object reference with all

fields at a negative offset, whereas array objects grow up from the object reference with

the length field at a fixed negative offset (-4 bytes).

status

TIB

field 0

...

...

component 0

length

status

TIB

Scalar Object

Array Object

Increasing
Memory

Addresses

Object
Reference

Object
Reference

Figure 2.2: Object model employed in Jikes RVM.

On PowerPC/AIX, this object model and memory layout allows fast access to fields of

a scalar object and components of an array object. Using a single instruction with base-

plus-displacement addressing (with object reference being held in a base register), it can

access any field of a scalar object. To access an array, it first needs to use a single trap

instruction to check if the index out-bounds the array by loading the length field. Then a

shift instruction is used to shift the index to get byte index. Finally, a single instruction with

base-plus-index addressing (again, with object reference being held in a base register) can

be used to access the components of the array. This layout also allows hardware support

of null pointer checking. In Jikes RVM, a null pointer is represented by Address 0x0. If
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the object reference is null, this means loading a word at high memory address. The AIX

operating system does not allow that and generates a hardware interrupt. Recall that to

access to either a scalar object or an array object, it has to access to negative offsets (fields

of scalars or length field of arrays).

There is a two-word header for each object: one word for status and the other for TIB.

The status header is divided into three bit fields: the first bit field is used for locking; the

second one holds the default hash value of hashed objects; and the third one is used by the

memory management subsystem. The TIB header is a reference to the Type Information

Block (TIB) for the object’s class. A TIB is an array of Java object references. Its first

component describes the object’s class, including its superclass, the interfaces it imple-

ments, offsets of any object reference fields, etc. The remaining components are compiled

method bodies, for the virtual methods of the class.

All static data, including static fields, references to static method bodies, constants, and

the TIB for each class, are stored into a single array called the Jalapeño Table of Contents

(JTOC). All of the objects in Jikes RVM are reachable from this array.

The Run-Time Subsystem. This subsystem provides support for run-time services of

a virtual machine, exception handling, dynamic type checking, dynamic class loading,

interface invocation, input and output, reflection, etc. All these services are written in

Java.

The Thread And Synchronization Subsystem. Jikes RVM multiplexes Java threads on

virtual processors that are implemented as Posix kernel-level threads (pthreads), rather

than mapping Java threads to operating system threads directly. Jikes RVM’s thread

scheduling mechanism uses simple time slicing within each pthread to schedule the Java

threads. To support the synchronization, it uses three kinds of locks: processor locks,

thin locks, and thick locks. More detailed discussions on this part can be found else-

where [AAB � 00].
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The Memory Management Subsystem. The role of memory management is object allo-

cation and garbage collection. Jikes RVM is designed to support a family of interchange-

able memory managers, each of which consists of a concurrent object allocator and a stop-

the-world, parallel, type-accurate garbage collector. The four major types of managers

supported are: copying, noncopying, generational copying, and generational noncopying.

It should be noted that in our tool, we are using a modified version of Jikes RVM v2.0.3,

incorporated with UMass Garbage Collector Toolkit (GCTk) [HMDW91]. The GCTk is

also written in Java language and incorporates many state-of-the-art garbage collectors,

such as the Appel generational copying collector and the older-first collector.

The Compiler Subsystem. Jikes RVM contains three compilers: a baseline compiler,

an optimizing compiler, and an adaptive compiler. The baseline compiler mimics the stack

machine behavior of the JVM specification [LY99]. It translates bytecodes to machine

code quickly, but the resultant machine code typically performs poorly. The optimizing

compiler applies traditional static compiler optimizations as well as a number of opti-

mizations specific to object-oriented features and the dynamic Java context. It produces

high-quality machine code. The adaptive compiler first performs the initial compilation of

a method using the baseline compiler and then, identifying the methods either frequently

executed or computationally intensive, applies optimizations on those methods.

Implementation of Jikes RVM

The run-time services, such as exception handling, dynamic type checking, dynamic class

loading, and interface invocation and alike, are primarily written in Java. This strategy

is quite different from some conventional virtual machines wherein all these services are

implemented by native methods written in C, C++, or assembly. This leads to more op-

portunities for optimizations. A running Java program normally involves four layers of

functionality [AAB � 99]: the user code, the virtual machine, the operating system, and

the underlying hardware. By layering down Java/Non-Java interface below the virtual
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machine, an optimizing compiler could be finely-designed, to reduce the semantic gap

between the high level language like Java and the underlying machine.

To get Jikes RVM started, an executable boot image of a working snapshot of Jikes

RVM is built during the building time of Jikes RVM. The boot image contains some key

initial services (Java objects), such as class loader, object allocator, and compiler, to be

used to start Jikes RVM. After loading the boot image objects, Jikes RVM starts all other

remaining services. A Java program called boot-image writer creates the boot image.

Since it is written in Java, it can run on any host JVM. When running, it works like a

cross compiler and linker: it compiles bytecodes to machine code and rewrites machine

addresses to bind program components into a runnable image. Finally, the boot image is

written to a disk file, which can be loaded later by a C boot loader.

There is a small portion of code that is written in C. Jikes RVM is designed to run as a

user-level process. As such, it must use the host operating system to access the underlying

file system, network, and processor resources. Instead of using low-level system-calling

conventions to access these resources, Jikes RVM chooses to use the standard C library.

Thus this part of code is written in C. In addition, the boot loader is also written in C. The

boot loader allocates memory for the Jikes RVM boot image, reads the image from disk

into memory, and branches to the image startup code. Finally, the C code also contains

two signal handlers. One is used to capture hardware traps (generated by null pointer

dereferences on the PowerPC/AIX) and trap instructions (generated for array bounds and

divide-by-zero checks), and relays these into the virtual machine, along with the current

state of register values; the other is used to pass timer interrupts to the running system, by

which it implements thread scheduling.
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2.2.2 Dynamic SimpleScalar

The SimpleScalar tool set is an execution-driven architecture-level simulator, which can

perform functional simulations of a target machine architecture (sim-fast and sim-safe),

functional cache simulations of cache memory systems (sim-cache), and complicated

timing simulations of superscalar machines which support out-of-order issue and execu-

tion, associated with the memory system (sim-outorder) [BA97]. Existing versions of

SimpleScalar support the PISA, the Alpha, and the PowerPC and a few other architec-

tures [SNKB01]. The normal SimpleScalar, however, can only simulate statically com-

piled binaries. To simulate Java programs, in which code is dynamically generated, we

need to use Dynamic SimpleScalar, an extended tool set specifically for simulating Java

Virtual Machines, like Jikes RVM [HMM � 03].

The following summarizes the major changes and the extended features of Dynamic

SimpleScalar over normal SimpleScalar. These extensions aim to provide support for

common run-time services of Java Virtual Machines, such as dynamic code generation,

exception handling, and thread scheduling and synchronization. More detailed discussions

can be found elsewhere [HMM � 03].

- Dynamic code generation. In normal SimpleScalar, the simulated program is prede-

coded after the program is loaded into the simulated memory and before the simula-

tion starts. For every instruction, there is a corresponding function that simulates the

instruction’s opcode. SimpleScalar predecodes an instruction by looking up its han-

dling function, then replacing the instruction in the simulated memory with a pointer

pointing to that function. Unlike normal SimpleScalar, Dynamic SimpleScalar de-

codes the instructions on the fly, to support the dynamic compilations. Unavoidably,

dynamic code generation causes cache coherence issue of instruction cache since the

code is dynamically generated, moved, and modified in the simulated memory. Dy-

namic SimpleScalar thus implements some special PowerPC instructions to handle
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this issue.

- Signals. The normal SimpleScalar does not support Unix signals, whereas Dynamic

SimpleScalar has to do so. The Java Virtual Machines, particularly Jikes RVM, run

as a general user process on the host machine, more accurately, the simulated ma-

chine by Dynamic SimpleScalar. Jikes RVM needs some Unix signals to support

run-time services, such as Java exception handling and multithreading. Dynamic

SimpleScalar implements a set of signal generation, delivery, handling, and recovery

mechanisms. For example, Dynamic SimpleScalar generates a SIGTRAP signal and

delivers it to Jikes RVM, indicating that an exception of outbounds or divide-by-zero

occurs. Jikes RVM detects this signal and throws a ArrayIndexOutOfBoundsExcep-

tion or ArithmeticException. Then a proper signal handler is called. This is exactly

how the Java exceptions (try/throw/catch) in Jikes RVM are handled.

- Thread scheduling and synchronization. Multithreading is also supported by signal

handling mechanism in Dynamic SimpleScalar. Jikes RVM uses an internal timer to

handle the thread scheduling. It sets the timer by making the system calls gettimerid

and incinterval. Dynamic SimpleScalar updates this timer and when the timer ex-

pires it generates a SIGALRM signal and delivers it to Jikes RVM. Then Jikes RVM

performs thread scheduling. To support synchronization, Dynamic SimpleScalar

implements two PowerPC instructions lwarx and stwcx, which in turn are used to

build locks in Jikes RVM.

2.2.3 Analyzer

The off-line Analyzer is written in C and performs the following tasks. First, it reads

the class information of both Jikes RVM and Java programs from class.dump into a local

buffer, containing the class typeID, class name, offsets and typeID’s of fields and sizes

of class instances, etc. Then, it processes feature.dump and profile.bz2. It inserts heap
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objects into a sorted buffer in the increasing order of start address of objects. For every

access, it does a binary search over this object buffer to determine which object is accessed,

by communicating with the local buffer generated in the first step. Finally, it saves the

analytical results, i.e., the data memory access traces, to trace.bz2.

2.3 Previous Work and Our Contribution

This tool has been originally implemented by Wang3 at University of Massachusetts to

summarize a class-level statistics of accesses/misses to the fields. For a specific class type,

say java.lang.String, it summarizes the number of misses for each individual fields

over the total allocated objects for this class. In his version of the tool:

- The information of boot image objects is stored into feature.dump when building

Jikes RVM.

- The class information is stored into class.dump at run time.

- In Dynamic SimpleScalar, the events (event, type, and start address) and regular

accesses (access address and hit/miss) are stored into two separate files.

- The Analyzer analyzes those two files, together with feature.dump and class.dump.

- The MEM UNMAP event is handled in Analyzer to clean up the dead/copied objects

in its object buffer.

- Array objects are not supported.

To extend this tool for our purpose, i.e., to monitor and record heap-allocated object

behaviors, as stated in Section 1.4 of Chapter 1, we made the following modifications:

3Personal communications through zlwang@cs.umass.edu
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- To be a completely useful tool, array objects must be supported. We added code to

treat the array objects.

- The regular access information includes access address, read/write, hit/miss, and the

value at that address.

- To maintain an order of events and regular accesses, we generate both event infor-

mation and regular access information into a single file. Noticeably, this is a huge

file ( � 2GBytes) for some intermediate Java benchmarks. It cannot be correctly cre-

ated in typical 32-bit systems. We solve this problem by taking advantage of 64-bit

file implementation in Solaris.

- The Analyzer analyzes this file, together with feature.dump and class.dump.

- Most interestingly, our tool can perform various analyses on object behaviors based

on the results produced by Analyzer. Chapter 4, in its entirety, contributes to this

discussion.
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Building the Tool

This chapter describes how we implement the tool. Different than previous chapters, we

examine the three components in one more level of depth, at the code level. First, Sec-

tion 3.1 gives an overview of the directory structure of the tool, which involves with the

layout of the sources of three components and the benchmarks. This structure will be fre-

quently referred to in the rest of chapter when we discuss the instrumentation of Jikes RVM

(Section 3.2), the modification of Dynamic SimpleScalar (Section 3.3), and the building

of Analyzer (Section 3.4).

3.1 Overview

Figure 3.1 details the directory tree of the tool. The root is DynamicSimpleScalar-TOOL/,

which contains four subdirectories: JikesRVM-2.0.3/, dssppc/, benchmarks/, and ana-

lyzer/. The JikesRVM-2.0.3/ directory contains the sources of a special version of Jikes

RVM we utilized, v2.0.3, which is incorporated with the GCTk [HMDW91] (in the di-

rectory JikesRVM-2.0.3/rvm/src/vm/memoryManagers/GCTk/). This directory has a sub-

directory, Booter/, which contains a precompiled C binary, the boot loader JikesRVM.
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It should be clear that this is a successfully built version of Jikes RVM since there is

a subdirectory build/, in which the boot image file RVM.image is saved. In the second

subdirectory of the root, dssppc/, it contains the sources of Dynamic SimpleScalar. In

benchmarks/, it stores the sources of Java benchmarks from SPECjvm98 [Sta99]. Finally,

the directory analyzer/ contains the C source of the Analyzer. It should be mentioned here

that, in the directory tree, we only list the relevant source files we added or modified, while

ignoring other less relevant files.

3.2 Instrumentation of Jikes RVM

The role of Jikes RVM in our tool is twofold: to generate the events (see Table 2.1); and

to store the information into the featured memory addresses (see Table 2.2). The stored

information includes, eventID, start address, and typeID, where the start address is the

object reference of an object (see Figure 2.2) and the typeID denotes the class type of

the object. Table 3.1 shows how these information is stored for each individual events.

Note that for the event of NEW ARRAY, the size of array object is stored along with the

eventID, through the operation of eventID
�
(size ��� 5).

Table 3.1: Illustration of how the information is stored for each individual events.

ID Events Featured Addresses
0x7fffe000 0x7fffe004 0x7fffe008 0x7fffe00c

1 NEW SCALAR 1 start addr typeID 0
2 NEW ARRAY 2 + size start addr typeID 0
3 GC START 3 0 0 0
4 GC END 4 0 0 0
5 COPY SCALAR 5 src addr dest addr 0
6 COPY ARRAY 6 src addr dest addr 0
7 CLASS DUMP START 7 0 0 0
8 CLASS DUMP END 8 0 0 0
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3.2.1 Generating feature.dump at Building Time

As we discussed in Chapter 2, some core objects of Jikes RVM virtual machine are saved

into a boot image file at the building time of Jikes RVM. These objects are also allocated

to the heap, along with the data of Java programs. It is possible that these objects will be

referenced by the objects from Java programs. We thus create a file, feature.dump, to store

the information of these “live” objects, during the building of Jikes RVM. The informa-

tion will be directly written into the file, rather than stored into the featured addresses for

the obvious reason. As the following piece of code indicates, the event method is de-

clared and defined in GCTk BuildFeatureDump.java. This method will be called in

copyToBootImage of BootImageWriter2.java, when copying allocated objects

into boot image.

**************************************************
// ./JikesRVM-2.0.3/rvm/src/vm/memoryManagers/GCTk/util/
// GCTk_BuildFeatureDump.java
**************************************************
class GCTk_BuildFeatureDump implements

GCTk_Constants, VM_Uninterruptible {
final static void buildInit() {
... // open file ‘‘/tmp/feature.dump’’
... // called by VM.java in ./JikesRVM-2.0.3/rvm/src/vm/

}

final static void event(int eventId, int start, int typeId) {
... // output (eventID, start address, typeID)

}

final static void event(int eventId, int start,
int typeId, int size) {

event(eventId | (size << 5), start, typeId);
}

final static void postBuild() {
... // close file ‘‘/tmp/feature.dump’’

}
}
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**************************************************
// ./JikesRVM-2.0.3/rvm/src/tools/bootImageWriter/
// BootImageWriter2.java
**************************************************
/**
* Construct a RVM virtual machine bootimage.
*
...
*/
public class BootImageWriter2 extends BootImageWriterMessages
implements BootImageWriterConstants {
...

public static void main(String args[]) {
...
}

private static int copyToBootImage
(Object jdkObject, boolean copyTIB) {

... // other stuff

// copy object to image
if (jdkType.isArray()) {
...
if (VM.interleavedProfile) {
GCTk_BuildFeatureDump.event(GCTk_Constants.NEW_ARRAY,
bootImageAddress+arrayImageOffset,
rvmArrayType.getDictionaryId(), arraySize);

}
...

} else {
...
if (VM.interleavedProfile) {
GCTk_BuildFeatureDump.event(GCTk_Constants.NEW_SCALAR,
bootImageAddress+scalarImageOffset,
rvmScalarType.getDictionaryId());

}
}

}

... // other stuff
}
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3.2.2 Generating Events and class.dump at Run Time

Generating events and storing information into featured addresses

As shown in Table 3.1, Jikes RVM is responsible for generating those events and stor-

ing the relevant information into the featured addresses, at run-time. This task is com-

pleted by the Allocator and the Collector in Jikes RVM (as we have already seen in Fig-

ure 2.1). In code, three files are involved: GCTk InterleavedProfiler.java,

GCTk Allocator.java, and GCTk Collector.java. The first file defines and

declares an event method, which is called in the latter two files. Upon being called, this

method stores the information into featured addresses.

**************************************************
// ./rvm/src/vm/memoryManagers/GCTk/experimental/util/
// GCTk_InterleavedProfiler.java
**************************************************
class GCTk_InterleavedProfiler implements
GCTk_Constants, VM_Uninterruptible {
final static int featureIdAddress = 0x7fffe000;
final static int featureInfoAddress = 0x7fffe004;
final static int featureInfoExtraAddress = 0x7fffe008;
final static int featureInfoEnd = 0x7fffe00c;

final static void event(int eventId, int start, int typeId) {
VM_Magic.pragmaNoInline();
setEventId(eventId);
VM_Magic.setMemoryWord(featureInfoAddress, start);
VM_Magic.setMemoryWord(featureInfoExtraAddress, typeId);
VM_Magic.setMemoryWord(featureInfoEnd, 0);

}

// for Array
final static void event(int eventId, int start,

int typeId, int size) {
// Note: size of array object is stored within eventId
event(eventId | (size << 5), start, typeId);

}

final static void setEventId(int eventId) {
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// store eventId into featureIdAddress
VM_Magic.setMemoryWord(featureIdAddress, eventId);

}
}

**************************************************
// ./JikesRVM-2.0.3/rvm/src/vm/memoryManagers/GCTk/allocators/
// GCTk_Allocator.java
**************************************************
abstract class GCTk_Allocator implements
GCTk_Constants, VM_Uninterruptible {

// NEW_SCALAR event
public static final Object allocateScalar
(int size, Object[] tib, int allocator) {
... // other stuff

//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
VM_Type type =
VM_Magic.objectAsType(VM_Magic.getObjectAtOffset(tib,0));
GCTk_InterleavedProfiler.event(NEW_SCALAR,
VM_Magic.objectAsAddress(rtn), type.getDictionaryId());
//-#endif
... // other stuff

}

// NEW_ARRAY event
public static final Object allocateArray(
int numElements, int size, Object[] tib, int allocator) {
... // other stuff

//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
VM_Type type =
VM_Magic.objectAsType(VM_Magic.getObjectAtOffset(tib,0));
GCTk_InterleavedProfiler.event(NEW_ARRAY,
VM_Magic.objectAsAddress(rtn), type.getDictionaryId(), size);
//-#endif
... // other stuff

}

// COPY_SCALAR event
private static final Object quickCloneScalar
(Object fromObj, int allocator) {
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... // other stuff

//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
GCTk_InterleavedProfiler.event(COPY_SCALAR,
VM_Magic.objectAsAddress(fromObj), dstRef );
//-#endif
... // other stuff

}

// COPY_ARRAY event
private static final Object quickCloneArray
(Object fromObj, int allocator) {
... // other stuff

//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
GCTk_InterleavedProfiler.event(COPY_ARRAY,
VM_Magic.objectAsAddress(fromObj), dstRef);
//-#endif
... // other stuff

}

... // other stuff
}

**************************************************
// ./JikesRVM-2.0.3/rvm/src/vm/memoryManagers/GCTk/collectors/
// GCTk_Collector.java
**************************************************
abstract class GCTk_Collector extends VM_CollectorThread
implements GCTk_Constants,
VM_Uninterruptible,VM_Callbacks.ExitMonitor {

... // other stuff

// CLASS_DUMP_START and CLASS_DUMP_END events
public void notifyExit(int value) {
... // other stuff
//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
GCTk_InterleavedProfiler.event(CLASS_DUMP_START);
GCTk_ClassDump.dump();
GCTk_InterleavedProfiler.event(CLASS_DUMP_END);
//-#endif

}
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// GC_START and GC_END events
public static void gc(int allocator, int request) {
... // other stuff
//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
GCTk_InterleavedProfiler.event(GC_START);
//-#endif
... // other stuff
//-#if RVM_WITH_GCTk_EXP_INTERLEAVED_PROFILE
GCTk_InterleavedProfiler.event(GC_END);
//-#endif

}
... // other stuff

}

Generating class.dump

Thus far, we have seen that a numeric typeID has been saved for an object when it is

allocated or copied. In the future, we need to map typeID to its real class name. So we

generate the file, class.dump, which is used to store the mappings between classes and

their numeric typeID’s, along with other information as shown in Table 3.2. Some of

these information, such as Field offset, is useful when we determine which field is

accessed during a read/write. We will see further discussions in Section 3.4.

Table 3.2: Data saved in class.dump.

Data Descriptions
type ID a numeric value of a class. For example, 1 is mapped to void.
Class Name a “real” name of a class, for example, java.lang.String.
Size of instance size (in bytes) of an instance for a scalar class.
No. of fields number of fields of a scalar class.
Field offset offset of each field for a scalar class.
Field typeID typeID of each field for a scalar class.
Component typeID typeID of the components for an array class.
SuperClass Name a “real” name of its super class.
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**************************************************
// ./rvm/src/vm/memoryManagers/GCTk/experimental/util/
// GCTk_ClassDump.java
**************************************************
class GCTk_ClassDump implements
GCTk_Constants, VM_Uninterruptible {
final static void dump() {
try {
...
VM_Type[] typeList = VM_TypeDictionary.getValues();
for (int i=1; i < typeList.length; i++) {
VM_Type vt = typeList[i];

// Class Type
if (vt.isClassType()) {
...

}

// Array Type
if (vt.isArrayType()) {
...

}
}

}
}

}

3.3 Modification of Dynamic SimpleScalar

On the side of Dynamic SimpleScalar, it is responsible for capturing the events generated

by Jikes RVM and extracting the saved information from the featured addresses during data

accesses. Other than that, it also needs to save the regular access information (as shown in

Table 3.3). It works by repeatedly storing these information into a local buffer, and then

flushing the buffer to a compressed file, profile.bz2, as the buffer becomes full. This can be

seen from source files profile.h and profile.c. The method profiling access is called

as long as there is an access. If a data access is to the address FEATURE END, then it calls
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add feature to add (eventID, start address, and typeID) into the buffer; Otherwise (a

regular access), it calls add access to add (timestamp, access address, is hit, is read,

and value) into the buffer. Note that, to save the disk space, we only consider the case that

the value is a reference to other objects. In other words, we ignore primitive types.

Table 3.3: Data saved in profile.bz2.

Data Descriptions
is feature a flag indicating if this record is a feature or a regular access.
eventID a numeric ID for an event generated by Jikes RVM.
start address the object reference pointer of an object.
typeID the type of an object, class type or array type.
timestamp the time (in instructions) when a read/write access takes place.
access address the access address.
is hit a flag indicating if this access is a hit or miss.
is read a flag indicating if this access is a read or write.
value the value is read/written at the access address.

**************************************************
./dssppc/
profile.[hc]
**************************************************
... /* other method */

void profiling_access(md_addr_t addr, /* address to access */
char is_hit, /* is a hit or miss */
enum mem_cmd cmd,/* Read or Write */
int nbytes) /* # of bytes to access */

{
if (addr >= FEATURE_ADDRESS && addr <= FEATURE_ADDRESS_EXTRA) {
return; /* skip, waiting for next access */

} else if (addr == FEATURE_END) {
/* read the values stored at featured addresses */
unsigned int event_id = read_mem_word(FEATURE_ADDRESS);
unsigned int s_addr = read_mem_word(FEATURE_ADDRESS_NEXT);
unsigned int type_id = read_mem_word(FEATURE_ADDRESS_EXTRA);

... /* other stuff */
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add_feature(event_id, s_addr, type_id, sim_num_insn);
} else { /* regular access */

unsigned int value = 0;
if (nbytes == 4)
value = read_mem_word(addr);

char is_read = (cmd == Read) ? 1 : 0;
add_access(sim_num_insn, addr, is_hit, is_read, value);

}
}

/* see syscall.c */
void add_munmap_feature(word_t start_address, size_t len) {

add_feature(MEM_UNMAP, start_address, len, sim_num_insn);
}

... /* other method */

We choose to use sim-cache, a functional cache simulator in SimpleScalar, to

simulate the data cache accesses. As such, we need to modify sim-cache.c and

cache.c. The method profiling access in profile.c gets called in the method

cache access in cache.c. The following piece of code shows the modifications of

the method cache access.

**************************************************
./dssppc/
cache.c
**************************************************
unsigned int cache_access
(struct cache_t *cp, /* cache to access */
enum mem_cmd cmd, /* access type, Read or Write */
md_addr_t addr, /* address of access */
void *vp, /* ptr to buffer for input/output */
int nbytes, /* number of bytes to access */
tick_t now, /* time of access */
byte_t **udata, /* for return of user data ptr */
md_addr_t *repl_addr) /* for address of replaced block */
{
... /* other stuff */
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cp->misses++;

#ifdef JVM_PROFILING
if(!strcmp(cp->name,"dl1"))
profiling_access(original_addr, 0, cmd, nbytes);

#endif

... /* other stuff */

cache_hit: /* slow hit handler */
cp->hits++;
#ifdef JVM_PROFILING
if(!strcmp(cp->name,"dl1"))
profiling_access(original_addr, 1, cmd, nbytes);

#endif

... /* other stuff */

cache_fast_hit: /* fast hit handler */
cp->hits++;
#ifdef JVM_PROFILING
if(!strcmp(cp->name,"dl1"))
profiling_access(original_addr, 1, cmd, nbytes);

#endif

... /* other stuff */
}

One of the most important modifications should be emphasized here. In Jikes RVM,

once a cycle of garbage collection finishes, it makes a AIX system call munmap through

a PowerPC instruction sc. The munmap system call in AIX is used to zero out some

portion of memory locations. By calling munmap, the garbage collector in Jikes RVM

gets rid of the dead, or copied objects, which was occupying that portion of memory.

We need to record this event (See MUNMAP in Table 2.1). We use a method called

add munmap feature in profile.c to do so. This method gets called in munmap

system call handler, syscall munmap, which can be found in syscall.c. See below

for details.
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**************************************************
./dssppc/
syscall.c
**************************************************
... /* other stuff */

#ifdef JVM_PROFILING
extern void add_munmap_feature();
#endif

... /* other stuff */
void syscall_munmap
(struct regs_t *regs, struct mem_t *mem) {
void *addr;
size_t len;

addr = (void *)regs->regs_R[3];
len = (size_t)regs->regs_R[4];
mem_munmap(mem,(md_addr_t)addr, len);
regs->regs_R[3] = 0;

#ifdef JVM_PROFILING
add_munmap_feature(addr, len);

#endif
}

3.4 Building the Analyzer

The Analyzer processes the files generated by Jikes RVM (feature.dump and class.dump)

and Dynamic SimpleScalar (profile.bz2), and generates the analytical results into a file,

trace.bz2, as shown in Figure 2.1 in Chapter 2.

First of all, the class information saved in class.dump is read into an array buffer

class table, every entry of which is a structure VM Class Layout as declared in

analyzer.h.

Secondly, it reads the information of Jikes RVM objects from feature.dump into an
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array buffer, mem layout, with every entry being a structure Memory Layout hold-

ing the object data, such as start address, instance ID, and type ID, etc. This is done by

calling a method update memory layout in analyzer.c. This method takes sepa-

rate actions in terms of different events it read from feature.dump. For a NEW SCALAR

or a NEW ARRAY, it inserts this object into mem layout. For a COPY SCALAR, or

a COPY ARRAY, it first finds out the object from current mem layout using source

address and then copies (inserts) this object into a new place in mem layout accord-

ing to destination address. Both source address and destination address are read from

feature.dump (See Table 3.1). Finally, for a MEM UNMAP event, it calls a method

clear memory layout to clear up the dead or copied objects in mem layout (Re-

flecting the fact that a garbage collection removes these objects from certain area of mem-

ory locations).

Thirdly, it reads profile.bz2 by calling the method read profile. Refer back to

Table 3.3 to see the data saved in profile.bz2. In read profile, it checks the first

field is feature. If this field is true, it grabs the feature information (eventID, start

address, and typeID) and calls update memory layout; Otherwise it extracts the ac-

cess information (timestamp, access address, is hit, is read, and value) and calls another

method register access to find out which object (and then which fields or which

components) was accessed, by doing a binary search over mem layout. The results

are buffered into access trace declared in analyzer.c, whose entry is a structure

Access Trace, as seen in analyzer.h.

Finally, the access buffer is flushed into a file, trace.bz2, while it fills up.

Further analyses can be carried out on the basis of the results in trace.bz2. For instance,

given a particular field, of a specific object with a specific class type, we can obtain the

write statistics on this field, which include: 1) total number of write that this field is written

to; 2) total number of reads after each write; and 3) the time passed between write. This

analysis will be further discussed in Chapter 4.

37



Chapter 3. Building the Tool

To summarize, Table 3.4 shows the data which is stored in trace.bz2.

Table 3.4: Data saved in trace.bz2.

Data Descriptions
access time timestamp in instructions when an access occurs.
is read Is this access a read or write?
is hit Is this access a hit or miss?
copied How many times this object copied by GC
instance id Which instance object is accessed?
type id class type of this instance object.
field id Which field of this instance is accessed
ref obj id Which object is referenced by this field?
ref obj type id What is the type of referenced object

**************************************************
./analyzer
analyzer.h
**************************************************
... /* other stuff */
typedef struct{
unsigned long long access_time;
char is_read;
char is_hit;
unsigned int instance_id;
short copied;
unsigned int type_id;
unsigned int field_id;
unsigned int ref_obj_id;
unsigned int ref_obj_type_id;

} Access_Trace;

/* Field of an Class Instance */
typedef struct {
short offset; /* offset from the ref point */
unsigned int type_id; /* the type of this field */

} Field;

typedef struct {
char *className;
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char *superClassName;
unsigned int type_id; /* 0 id of this class*/
int num_fields; /* number of 0 of this class */
Field *fields; /* fields of this class */
int size; /* size of class instance */
int total_objects; /* # of objects created for this class */

} VM_Class_Layout;

/* Object info */
typedef struct {
char is_scalar; /* is a scalar or an array object */
unsigned start_address; /* stating address of an object */
unsigned int instance_id; /* unique id of this instance */
unsigned int type_id; /* type id of the class */
char dead; /* dead or alive */
unsigned int size; /* instance size */
short copied; /* number of times copied by GC */

} Memory_Layout;

... /* other stuff */

**************************************************
./analyzer
analyzer.c
**************************************************
Access_Trace access_trace[TRACE_BUFFER_SIZE];
VM_Class_Layout class_table[MAX_NUM_CLASSES];
Memory_Layout mem_layout[MAX_NUM_OBJECTS];

... /* other stuff */

void update_memory_layout(Feature_Access feature) {
switch (feature.event) {
case NEW_SCALAR:
insert_new_object(1, feature.type_id,

feature.start_addr, 0, 0, 0, 0);
break;

case GC_START:
...

case GC_END:
...

case COPY_SCALAR:
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...
case COPY_ARRAY:
...

case MEM_UNMAP:
clear_memory_layout(feature.start_addr, feature.type_id);
break;

case 0:
break;

default: /* NEW_ARRAY */
insert_new_object(0, feature.type_id, feature.start_addr,
0, 0, ((feature.event - NEW_ARRAY) >> 5), 0);
break;

}
}

void insert_new_object(
char is_scalar, /* 1 - scalar object; 0 - array */
word_t type_id, /* class type */
word_t start_address, /* object pointer */
short status, /* dead? or live? */
unsigned int instance_id,/* which object it is */
unsigned int size, /* object size (w/ header) */
short copied) /* number of times copied */
{
unsigned int new_start_addr;
/* tem_mem_layout gets full, merge objs to mem_layout */
if (tmp_obj_num == MAX_TMP_OBJ_NUM)
merge_memory_objs();

/* start address,
...|tib|status| | | for scalar object

ˆ ˆ <-------- Objref
start addr

|tib|status|len| |... for array object
ˆ ˆ <-------- Objref

start addr
*/
new_start_addr = start_address + OBJECT_HEADER_OFFSET;

if (status == 0) { /* new allocated object */
class_table[type_id].total_objects++;
if (is_scalar) { /* new scalar object */
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assert(is_scalar == 1);
insert_tmp_object(is_scalar, type_id, new_start_addr,
status, class_table[type_id].total_objects,
class_table[type_id].size, copied);

} else {
assert(is_scalar == 0);
insert_tmp_object(is_scalar, type_id, new_start_addr,
status, class_table[type_id].total_objects,
size, copied);

}
} else if (status == -1) { /* insert copied object */
insert_tmp_object(is_scalar, type_id, new_start_addr,

status, instance_id, size, copied);
}

}

... /* other stuff */
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+ ./
+ DynamicSimpleScalar-TOOL/

+ JikesRVM-2.0.3/
+ build/

+ PowerPC32-AIX/

+ Booter/

+ GCTkAppelOLWBOptOptFastTimingDSSEXPINTERLEAVED/

- JikesRVM

- RVM.image
+ RVM.classes

- ...

+ rvm/
+ config/

+ build/
- GCTkAppelOLWBOptOptFastTimingDSSEXPINTERLEAVED/

+ src/
+ tools/

+ bootImageWriter/
- BootImageWriter2.java

+ bootImageRunner/
- RunBootImage.C

+ vm/
- VM.Constants.java
- VM.java
- VM_ObjectLayoutConstants.java
+ memoryManagers/

+ GCTk/
+ allocators/

- GCTk_Allocator.java
+ collectors/

- GCTk_Collector.java

- GCTk_ClassDump.java

+ experimental/
+ util/

+ util/
- GCTk_BuildFeatureDump.java

+ dssppc/

- profile.[hc]

- main.c

- sim-cache.c

- memory.[hc]

- cache.[hc]

- syscall.c

+ analyzer/

+ benchmarks/
+ spec/

+ jvm98/
+ pseudojbb/

- analyzer.[hc]
- Makefile

- utils.c
- readtrace.c

- GCTk_InterleavedProfiler.java

Figure 3.1: Directory tree of the tool.

42



Chapter 4

Running the Tool

This chapter focuses on a sample usage of the tool. After having talked about the method-

ologies and implementations of the tool, this is a good place to illustrate how we run the

tool, utilizing some Java benchmarks.

4.1 Benchmarks

We choose to run Java benchmarks from SPECjvm98 suite [Sta99]. Most of the bench-

marks in the suite are either real applications or derived ones from real applications that

are commercially available. The SPECjvm98 suite benchmarks are used to evaluate the

performance of both software and hardware aspects of Java platforms. We use three Java

benchmarks: 202 jess, 213 javac, and 228 jack, as described in the following:

202 jess JESS is the Java Expert Shell System based on NASA’S CLIPS expert shell

system. In simplest terms, an expert shell system continuously applies a set of

if-then statements, called rules, to a set of data, called the fact list. The bench-

mark workload solves a set of puzzles commonly used with CLIPS. To increase run
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time the benchmark problem iteratively asserts a new set of facts representing the

same puzzle but with different literals. The older sets of facts are not retracted. Thus

the inference engine must search through progressively larger rule sets as execution

proceeds.

213 javac JAVAC is a Java compiler from the JDK 1.0.2.

228 jack JACK is a Java parser generator that is based on the Purdue Compiler Con-

struction Tool Set (PCCTS). The workload consists of a file named jack.jack, which

contains instructions for the generation of jack itself. This is fed to jack so that the

parser generates itself multiple times.

In our experiments, we run the three benchmarks as the stand-alone applications, rather

than as applets, using the smallest input data set size by specifying -s1 at the command

line. We run these benchmarks to completion. The heap size is set to be equal to 200MB

through a command line argument, -X:h=200. Using this heap size, we observe that

there are two cycles of garbage collections invoked, for all three benchmarks.

4.2 Experiments

We build and run our tool set on SUN’s UltraSPARC model running the Solaris 5.9 oper-

ating system. Actually, building the tool involves several stages, to build each component

of the tool. See Appendix A for the detailed instructions on how to build and run the tool.

The Java program runs on top of Jikes RVM, which runs on top of Dynamic SimpleScalar.

Dynamic SimpleScalar finally runs on UltraSPARC/Solaris platform. We invoke the tool

in a single command line, which contains particular commands to invoke each component

in certain order.

Jikes RVM is built with the configuration of GCTkAppelOLWBOptOptFast
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TimingDSSEXPINTERLEAVED1. GCTkAppelOLWBmeans that we use the Appel gen-

erational copying collector in GCTk, with the out-of-line write barriers implementation.

OptOpt says that both boot image compiler and run-time compiler are optimizing com-

piler. Fast identifies that this is a configuration where all Jikes RVM classes are in-

cluded in the boot image, but all assertion checkings have been turned off. Timing

means that there will be no detailed statistics and DSS indicates that this is a special

configuration to build Jikes RVM such that it can run on top of Dynamic SimpleScalar.

Finally, EXPINTERLEAVED says that it needs to build the sources found in directory

./GCTk/experimental, where all our newly-added source files reside.

We use sim-cache simulator of Dynamic SimpleScalar. Table 4.1 lists the parame-

ters for a two-level cache system we used.

Table 4.1: sim-cache cache configuration parameters

Name Descriptions
L1 Data Cache 32KB, 8-way set associative LRU, 32B cache lines
L1 Instruction Cache 32KB, 8-way set associative LRU, 32B cache lines
L2 Caches Unified, 256KB, 8-way set associative Random, 64B lines
Data TLB 128 entries, 2-way set associative LRU, 4KB page size
Instruction TLB 128 entries, 2-way set associative LRU, 4KB page size

4.3 Results and Discussion

In this section, we first present some direct results over the entire run of the benchmarks

that we can obtain through the tool. These results include, for example, total number of

objects allocated, total bytes allocated, and total number and total bytes of dead/copied

1This configuration file can be found in the directory ./JikesRVM-2.0.3/rvm/config/build/,
along with other generic configurations it includes, such as GCTkTiming, GCTkOptOptFast,
GCTkAppelOLWB , and DSS.
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objects during garbage collections. we also discuss the write statistics on a particular field

of an object with certain type. This is an example illustrating how our tool can be used to

do such read/write analyses on some interesting objects at the field level. Then, we present

the memory hierarchy behaviors of the three Java benchmarks.

4.3.1 Results from the Analyzer and Further Analysis

The off-line Analyzer generates the access traces by collecting and analyzing the results

produced by Jikes RVM and Dynamic SimpleScalar. Recall that these traces include the

access information (access time, hit or miss, and read or write) and object information

(object id, type id, and field id).

Some Direct Results

We observe that there are two cycles of garbage collections invoked, for all three bench-

marks. Figure 4.1 sketches the interleaving of mutators (user programs) and garbage

collections during the execution of benchmarks. The mutator executes for some time. At

some point, the garbage collector is triggered to collect the dead objects and to copy the

surviving objects into new heap space. The mutator is suspended during garbage collec-

tion. After the collector ends, the mutator then continues.

Table 4.2 shows the timestamps (in instructions) when the garbage collections start and

end, and the total instructions executed for each benchmark. Three benchmarks bear some

similarities with the time when the first cycle of garbage collection starts, that is, around

40 � 50% of total instructions (see % of total column in the table). Table 4.3 shows the

total number of objects and total bytes allocated during the execution of benchmarks. As

can be seen in the table, the first cycle of garbage collection is triggered when about 133

MBytes are allocated and the second cycle is triggered when about another 101 MBytes
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Time, in instructions executed.

Mutator

Garbage Collection

Figure 4.1: Sketches of the interleavings of mutators and garbage collections during the
execution of benchmarks.

are allocated.

Table 4.2: Timestamps in instructions when a gc starts and ends.

Total Garbage Collection Timestamp ( � 106)
Benchmark Insts ( � 106) start % of total end start % of total end

202 jess 4,100 1,660 40.5 1,732 3,815 93.1 3,879
213 javac 4,340 2,087 48.1 2,177 3,776 87.0 3,821
228 jack 4,648 2,116 45.5 2,221 3,967 85.3 4,058

Table 4.3: Total objects and bytes allocated.

202 jess 213 javac 228 jack
Objects Bytes Objects Bytes Objects Bytes

Up to
the 1st GC 3061866 133467437 3113702 133467537 3036959 133467353

Up to
the 2nd GC 5880936 234916201 5942117 234654181 5839946 234260777

Total 6182478 246160897 6765036 264619837 6747806 267382605
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Table 4.4 and Table 4.5 show the total number and total bytes of dead and copied

objects within each cycle of garbage collection, respectively. It is evident that during

each cycle of garbage collection, most objects are dead and much less objects survive.

For instance, in 202 jess, about 98% objects are dead during the first cycle of garbage

collection. This observation somehow verifies that the hypothesis of the Appel garbage

collection algorithms, that is, that most objects are short-lived. One may notice that within

each garbage collection, the sum of the number of dead objects (In Table 4.4) and the

number of copied objects (In Table 4.5) is not equal to (actually, less than) the number

of total objects (In Table 4.3). This is because we also count the number of boot image

objects in Table 4.3. There are about 264316 boot image objects, and totally around 29

MBytes.

Table 4.4: Total dead objects and bytes within each GC.

202 jess 213 javac 228 jack
Deads Bytes Deads Bytes Deads Bytes

Within
the 1st GC 2765687 101578628 2808251 101299964 2722924 100997988

Within
the 2nd GC 2785977 99956740 2807151 99984348 2759000 98667580

Total 5551664 201535368 5615402 201284312 5481924 199665568

Table 4.5: Total copied objects and bytes within each GC.

202 jess 213 javac 228 jack
Copied Bytes Copied Bytes Copied Bytes

Within
the 1st GC 31863 2882068 41135 3160832 49719 3462624

Within
the 2nd GC 33093 1492024 21264 1202296 43987 2125844

Total 64956 4374092 62399 4363128 93706 5588468
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Write Statistics

In this section, we present some results obtained by applying further analysis on the tracing

results generated by the Analyzer, that is, read/write statistics on some field of objects.

The motivation, as illustrated in Figure 4.2, is that we want to record the information on

the read/write accesses on a particular field of an object, such as total number of writes,

total number of reads after the field is written to, and the interval between two subsequent

writes.

Time 

a write to this field

a read to this field

Write interval # of reads

Figure 4.2: Illustration of read/write analysis on a particular field of an object with certain
type.

We report the results for some scalar objects and some array objects, which have sur-

vived from the first cycle of garbage collection – by a preliminary analysis, we notice that

these objects are copied by the collector during the first cycle of collection. The class

type for scalar objects is java.lang.String and it has three fields. Field #1 has the

type of char array. Both field #2 and field #3 have int type. The class type for array

objects is [Ljava.lang.Object, which means that each component is with the type

of java.lang.Object. We choose these objects in one of the benchmarks, 228 jack.

Tables 4.6 and 4.7 show the results for some different String objects. There is

typically one write, after which two reads follow. The interval between the first write

access to the last read is about 53 instructions (57 in Table 4.7). Note that we only show

the results for accessing the field #1 since the results for the other two fields are the same.
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Table 4.6: Read/Write analysis results on a String object.

Class type: java.lang.String; Type ID: 12; Object ID: 50830; Field ID: 1
No. of Writes No. of reads Intervals (in instructions)

1 2 53

Table 4.7: Read/Write analysis results on a String object.

Class type: java.lang.String; Type ID: 12; Object ID: 128990; Field ID: 1
No. of Writes No. of reads Intervals (in instructions)

1 2 57

Table 4.8 and Table 4.9 list the results for two different array objects with the same

type. As we can see, after a write, there are normally a few reads (mostly 1 � 5). Following

the last write, there are relatively large number of reads. For example, there are 12 reads

following the last write for Object 6525 (69 reads for Object 9481). There is no observable

pattern on the interval between two subsequent writes.

Table 4.8: Read/Write analysis results on an array object.

Class type: [java.lang.Object; Type ID: 95; Object ID: 6525; Element ID: 1
No. of Writes No. of reads Intervals (in instructions)

1 1 6
2 2 121
3 2 220
4 1 94
5 1 168
6 12 4327
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Table 4.9: Read/Write analysis results on an array object.

Class type: [java.lang.Object; Type ID: 95; Object ID: 9481; Element ID: 1
No. of Writes No. of reads Intervals (in instructions)

1 1 6
2 1 6
3 1 6
4 1 6
5 5 202
6 3 307
7 1 6
8 1 6
9 3 148

10 116 18418
11 1 94
12 234 35463
13 1 6
14 2 121
15 2 220
16 1 94
17 1 168
18 69 10315

4.3.2 Memory Hierarchy Behaviors

This section reports the results from sim-cache simulations. We list the miss ratios (of

all levels of caches), total executed instructions, and loads/stores instructions, as shown in

Table 4.10. In the last column of this table, We also show the percentage of data references.

We roughly compare our results with those data collected by Shuf et al. [SSGS01] in

their experiments where they used Jikes RVM, SPECjvm98 Java benchmarks, and similar

cache system parameters with ours2. We observe that there are relatively low miss ratios

2The cache parameters they used: 1) L1 data cache: 32KB, 4-way set associative LRU, 32B
lines; 2) L2 data cache: 4MB, direct-mapped, 32B lines; and 3) data TLB: 128 entries, 2-way
associative LRU, 4K pages.
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Table 4.10: Results from sim-cache simulations.

Miss Ratios Instructions ( � 106)
Benchmark I–L1 D–L1 L2 I–TLB D–TLB Total Load/Store %

202 jess .0061 .0209 .2556 .0003 .0034 4,100 1,828 44.60
213 javac .0060 .0207 .2446 .0003 .0031 4,340 1,944 44.80
228 jack .0052 .0187 .2506 .0003 .0031 4,649 2,093 45.03

for both instruction L1 ( � 0.6% for all three benchmarks) and instruction TLB caches ( �

0.3% for all three benchmarks). These are consistent with their results. It is interesting to

see that the miss ratio for data TLB is about 0.3%, but as high as 2% in their observations.

Note that they use the same TLB configurations as ours. For data L1 cache, we also get

lower miss ratio, � 2% than � 4% in their case. Surprisingly enough, we observe very

high miss ratios in L2 cache, about 25%. This result is not good, compared to � 1.5%

in their data. As they noted, even � 1.5% is also a very high miss ratio considering the

very large L2 cache size (4MB) they used. The good indication, however, is that such high

miss ratios in L2 cache do not effect too much on the performance of L1 caches. This may

imply that there is no need of the L2 cache at all, for Java programs. In this work, we do

not seek to investigate further on the cache behaviors of these benchmarks. It is beyond

the scope of this work.
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Conclusions and Future Work

We have described the methodologies and implementations we used to develop the tool,

which is used for monitoring and recording the heap-allocated object behaviors.

Our main contributions are:

� We present a fully understandable description on the design, implementation, and

evaluation of the tool. We show how the three components, Jikes RVM, Dynamic

SimpleScalar, and Analyzer, can be organized to run and test the Java programs. To

our knowledge, this tool, as the first attempt, combines the machine-level simulator

with state-of-the-art Java virtual machine to analyze data accesses at the object level.

� We present a successful run of Java benchmarks. We illustrate how to build, run,

and use the tool.

� We present a sample analysis on the write statistics to some particular fields of ob-

jects with some class type, which include the number of writes, the interval between

writes, and the read pattern among the intra-writes. Such analyses allow us to un-

derstand the low-level activities on some “hot” types.
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This work leads to some interesting topics we can do in the future:

� To deal with the accesses to the object headers, particularly TLB field. This field

contains a reference to the TIB (Type Information Block of this object’s class. In

TLB, an array of object references, it contains the references to the method bodies

for the virtual methods of this object’s class. We could know the access information

to the methods of the class, other than fields.

� To deal with the accesses to each component of the array. Actually, in the current

version of the code (Analyzer), we have option (by 0 on the switch ARRAY when

compiling the code) to treat every access to the components. But this operation

“slows down” the Analyzer.
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Technical Instructions

A.1 Directory Tree

Refer to Figure 3.1 in Section 3.1 of Chapter 3.

A.2 Quick Guide to Build and Run the Tool

Unless otherwise noted, $HOME TOOL is an environment variable that represents the

directory where the tool resides in. Further details on the contents of this part can be

found in my thesis notes1.

1It notes the experiences I went through when I was building Jikes RVM and Dynamic Sim-
pleScalar on the machines at the Object Architecture Lab. It also contains the information on the
SPEC2000, SPECjvm98, and pseudojbb.
See http://www.cs.unm.edu/˜qfduan/cs/thesisnotes.txt
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A.2.1 Build the Tool

Build Jikes RVM v2.0.3

This is a cross-build. The boot image RVM.image is built on x86/Linux (epsilon machine

at the Object Architecture Lab). The boot loader Jikes.RVM is precompiled on a Pow-

erPC/AIX machine, and distributed together with the sources of Jikes RVM. This file can

be found in $RVM ROOT/Booter.

1. Set up the environment variables.

setenv RVM ROOT $HOME TOOL/DynamicSimpleScalar-TOOL/JikesRVM-2.0.3

setenv PATH $RVM ROOT/rvm/bin:$PATH

setenv RVM HOST CONFIG $RVM ROOT/rvm/config/i686-pc-linux-gnu.ibmjdk

setenv RVM TARGET CONFIG $RVM ROOT/rvm/config/powerpc-ibm-aix4.3.3.0.static

setenv CONFIGURATIONNAME GCTkAppelOLWBOptOptFastTimingDSSEXPINTER-

LEAVED

setenv RVM BUILD $RVM ROOT/build/PowerPC32-AIX/$CONFIGURATIONNAME

2. Edit the configuration scripts.

Two configuration scripts are needed in the subsequent installing process.

i686-pc-linux-gnu.ibmjdk

powerpc-ibm-aix4.3.3.0.static.

3. Run jconfigure.

Run jconfigure script (which resides in $RVM ROOT/rvm/bin) and populate the build

directory $RVM BUILD, using a particular configuration.

$ jconfigure $CONFIGURATIONNAME

The configuration, GCTkAppelOLWBOptOptFastTimingDSSEXPINTERLEAVED

can be found in $RVM ROOT/rvm/config/build.
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4. Build.

Run jbuild script (which resides in $RVM ROOT/rvm/bin) and build Jikes RVM.

$ cd $RVM BUILD

$ jbuild

After the jbuild completes successfully, you will get Please run me on Aix,

indicating that Jikes RVM has been successfully built and ready to run.

NOTE: feature.dump is stored into tmp/ and you need to move it to your directory

which saves the results, say /nfs/sampi/dss-jikes/javac/.

Build Dynamic SimpleScalar

In Makefile, there are two switches should be turned on:

-DJVM PROFILING

-D FILE OFFSET BITS=64

This version of Dynamic SimpleScalar can be built on the UltraSPARC/Solaris platform

(sampi machine at the Object Architecture Lab).

$ make config-ppc

$ rm -f machine.def

$ ln -s target-ppc/powerpc-nonnative.def ./machine.def

$ make sim-cache

Build Analyzer

Analyzer is also installed on UltraSPARC/Solaris machine (sampi machine at the Object

Architecture Lab).

There is a Makefile, so just type:

$ make
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A.2.2 Run the Tool

The entire tool runs on UltraSPARC/Solaris platform. There are two steps: 1) Run the

benchmarks and save the results; and 2) Run the Analyzer.

Step 1: Run the benchmarks and save the results

All Java benchmarks can be found in directory $HOME TOOL/DynamicSimpleScalar-

TOOL/benchmarks, which is stored in an environment variable $BENCHMARKS.

For example, to run a SPECjvm98 benchmark 213 javac:

$ cd $BENCHMARKS/spec/jvm98

$ ./runme.sh

The runme.sh is a script file contains the following commands to run the whole thing:

1. $HOME TOOL/DynamicSimpleScalar-TOOL/dssppc/sim-cache

2. $PPC SS CACHE

3. -output /nfs/sampi/dss-jikes/javac/

4. -redir:sim /nfs/sampi/dss-jikes/jack/sim.javac.out

5. $RVM ROOT/Booter/JikesRVM -X:i=$RVM BUILD/RVM.image

6. -X:vmClasses=$RVM BUILD/RVM.classes -X:h=200

7. -classpath . SpecApplication -s1 213 javac

It should be noted that all of the commands should be put in a single command line.

We add numbers there clearly for the ease of explanations.

Line 1 is for the Dynamic SimpleScalar command sim-cache.

Line 2, $PPC SS CACHE, stands for the cache organization we used for sim-cache:
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-cache:dl1 dl1:128:32:8:l

-cache:il1 il1:128:32:8:l

-cache:dl2 ul2:512:64:8:r

-cache:il2 dl2

-tlb:dtlb dtlb:64:4096:2:l

-tlb:itlb itlb:64:4096:2:l

Line 3 specifies the directory that we use to store the output file, profile.bz2.

Line 4 is used to redirect the sim-cache output file.

Line 5 states that we use the boot loader JikesRVM to load image file RVM.image and

virtual machine classes in RVM.classes (in Line 6).

Line 6 uses -X:h=200 to indicate that 200 MBytes heap size will be used.

Line 7 specifies the arguments to run the benchmark.

NOTE: You need to move class.dump to the directory where you save the results.

Step 2: Run the Analyzer

Suppose the results from step 1 (feature.dump, class.dump, and profile.bz2) have been

collected in a single directory, /nfs/sampi/dss-jikes/javac/, for example. We can invoke

Analyzer in this directory:

$ $HOME TOOL/DynamicSimpleScalar-TOOL/analyzer/analyzer

The Analyzer can be invoked as follows:

$ analyzer profile.bz2 feature.dump class.dump

Finally, it generates a file, trace.bz2, and other files as necessary, into the same directory

where you invoked it.
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