
Heap Analysis in the Presence of Collection Libraries

Mark Marron1 Darko Stefanovic1 Manuel Hermenegildo1,2 Deepak Kapur1

1 University of New Mexico
2 Technical University of Madrid

{marron,darko,kapur}@cs.unm.edu, herme@fi.upm.es

Abstract
Memory analysis techniques have become sophisticated enough to
model, with a high degree of accuracy, the manipulation of simple
memory structures (finite structures, single/double linked lists and
trees). However, modern programming languages provide exten-
sive library support including a wide range of generic collection
objects that make use of complex internal data structures. While
these data structures ensure that the collections are efficient, of-
ten these representations cannot be effectively modeled byexisting
methods (either due to excessive analysis runtime or due to the
inability to represent the required information).

This paper presents a method to represent collections usingan
abstraction of their semantics. The construction of the abstract se-
mantics for the collection objects is done in a manner that allows
individual elements in the collections to be identified. Ourcon-
struction also supports iterators over the collections andis able to
model the position of the iterators with respect to the elements in
the collection. By ordering the contents of the collection based on
the iterator position, the model can represent a notion of progress
when iteratively manipulating the contents of a collection. These
features allow strong updates to the individual elements inthe col-
lection as well as strong updates over the collections themselves.

Categories and Subject DescriptorsF.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages (program
analysis)

General Terms Languages, Performance, Verification

Keywords shape analysis, static analysis, collection library

1. Introduction
Library-based collections are a fundamental component of mod-
ern programming languages and are used extensively in almost
any non-trivial program. Substantial work has gone into develop-
ing heap analysis tools that can accurately and efficiently analyze
simple data structures, mainly lists, trees, and simple cyclic struc-
tures [13, 15, 16, 7]. Unfortunately, all of these techniques have
aspects that make their use in analyzing large programs thatuse
standard libraries impractical. This is either due to the inability to
model the complex data structures (red-black trees, doubly-linked
lists with tail pointers, etc.) used in the library code [13,7] or due to
the computational complexity of performing the analysis [15, 16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’07 June 13–14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

An alternative to directly analyzing the code that implements
the collection objects is to use the semantics of the collection ob-
jects to simulate the effect of each collection operation asan atomic
program operation. This approach is frequently used to analyze li-
braries or other modules [14, 4, 9, 11, 1].

In addition to the model complexity and performance issues
that arise when directly analyzing the collection library imple-
mentations the semantics based approach allows the modeling of
properties specific to each collection type (e.g. sets nevercontain
duplicate elements), the selective modeling of program properties
(e.g. modeling sizes of collections without having to trackthe size
of every heap region) and the ability to provide high level seman-
tics for complex operations so that a lightweight analysis can be
used effectively (e.g. the semantics of sorting a vector).

Our primary contribution in this paper is a method for repre-
senting the semantics of collection libraries and iterators over the
collections in a shape analysis framework. The representation that
we present for the collection semantics enables the shape analysis
to identify individual elements in the collection, allowing them to
be strongly updated. The iterator semantics provide a representa-
tion for the notion of progress in the processing of the elements
in the collections, which allows the shape analysis to accurately
model the processing of the collections.

The only property we require from the heap model is the abil-
ity to refine summarized regions of the heap. The refinement of
a summarized region into a set of regions where the relationsbe-
tween them are explicit is critical to identifying individual memory
objects and allowing them to bestrongly updated. The approach
presented in this paper can be adapted to the heap models presented
in the TVLA (Three-Valued Logic Analysis) based work [16, 7],
the graph model in [12], or the UMA (Unified Memory Analysis)
model [13]. In order to simplify the construction and to makethe
examples concrete we focus on the UMA model.

2. Example Programs
To gain some insight into how our extensions work and interact
with the UMA heap analysis we use the examples in Figure 1. The
examples use objects of types,t1 andt2. Thet1 type has a single
fieldval that points to objects of typet2. Thet2 type is a simple
object with no pointer fields. The first code segment is a loop that
fills a set with objects of typet1 (all of which have a pointer to
the same object in theval field). The second example takes the
resultingset and updates each element to point to thet2 object
that the variabler points to.

We are using thet1 andt2 types to keep the examples simple.
However, the methods presented in this paper can handle similar
programs, with the same level of accuracy, wheret1 and/ort2
are replaced by simple finite structures, lists, trees, or other library
collections. The analysis algorithm is also able to analyzeour ex-
amples whent1 and/ort2 are replaced with DAG shaped or cyclic
structures, although potentially with reduced accuracy.

Initialize a Set Update all the elements in the set

set p = new set()
t1 q
t2 s = new t2()
for(int i = 0; i < M; ++i)

q = new t1()
q.val = s
p.insert(q)

t2 r = new t2()
iterator i = p.begin()
while(i.isValid())

(i.get()).val = r
i.advance()

Figure 1. Example Code

In both examples the analysis should determine that every el-
ement in theset is unique (although the elements may reference
the same object in theval field). In the second example the anal-
ysis should capture the fact that on each iteration of the loop the
element that the iterator refers to has itsval offset updated and
after the loop all the elements in theset have been updated. Thus,
there are no longer any objects in the set with pointers in theval
field that refer to the same object as the variables.

3. Heap Model
The UMA [13] abstract domain is based on an abstract heap graph
model [3, 17, 10]. Each node represents a region of the heap and
each edge represents a set of pointers. The UMA model uses a num-
ber of instrumentation domains that, when added to the nodesand
edges in the abstract heap graph allows connectivity to be tracked
more accurately, enables the modeling of shape and enables the
refinement of nodes in the heap model.

Regions of the Heap. A region of memory ℜ is a subset of
the objects/arrays in memory, all the pointers that connectthem
and all the cross region pointers that start or end in this re-
gion. GivenCℜ ⊆ {objects/arrays in memory}, let Pℜ = {pointer
p | ∃a,b∈Cℜ, p is stored ina and points tob}. Let Pc = {pointer
p | ∃a∈Cℜ,x 6∈Cℜ, p is stored ina and points tox⊕ p is stored in
x and points toa}. Then a region is the tuple(Cℜ,Pℜ,Pc).

Connectivity. Connectivity within a region describes how ob-
jects/arrays in the region are connected. For a regionℜ =(Cℜ,Pℜ,Pc)
and objectsa,b∈Cℜ, objectsa andb are connected if they are in
the same weakly-connected component of the graph(Cℜ,Pℜ); ob-
jectsa andb are disjoint if they are in different weakly-connected
components of the graph.

3.1 Basic Properties

The UMA model uses a number of simple properties to augment
the nodes and edges. The most basic is the numeric abstraction,
which has two values, exactly one (1) and the range[1,∞] (#). The
other is a set of type names that represents all the possible types of
the objects/arrays that the node represents.

Next we have the offsets. Each edge in the model represents a
set of pointers and each pointer has an offset (label) associated with
it. The UMA model allows the offsets to be any of the field iden-
tifiers declared in the program or a special offset,?. This special
offset is used to represent pointers which are stored in an array.

The last of the basic properties is theAbstract Layout. This con-
cept is used to represent the possible memory layouts that a region
of the heap may have. The possible layouts areSingleton, List,
Tree, MultiPath, or Cycle. Of particular interest are theSingleton
layout, which indicates that there are no pointers between any of
the objects in the region, and theList layout, which indicates that
each object has at most one pointer to another object in the region.

3.2 Pointer Connectivity Properties

The UMA model relies on tracking the potential that two pointers
can reach the same location in a region of memory to drive the
tracking of theAbstract Layoutsand to enable the refinement of
the common case heap structures that it encounters.

Connected Edges. The first property is when two pointers are
represented by different edges in the heap model. Given the con-
cretization operatorγ and two edgese1,e2 that are incoming edges
to the noden (end atn), the predicate that definesinConnectedin
the abstract domain is:e1,e2 areinConnectedwith respect ton if:
∃p1 ∈ γ(e1)∧∃p2 ∈ γ(e2)∧∃a,b∈ γ(n) s.t. (p1 ends ata)∧ (p2
ends atb)∧ (a, b connected inγ(n)).

Interfering Pointer Edges. The second property is for the case
where the pointers of interest are represented by the same edge in
the abstract model. To model this, theinterfereproperty is intro-
duced. An edgeerepresents interfering pointers if there exist point-
ersp,q∈ γ(e) such that the objects thatp,q point to are connected.
A two-element lattice,np< ip, np for edges with all non-interfering
pointers andip for edges with potentially interfering pointers is
used to represent the interference property.

3.3 The Heap Graph

Each node in the graph contains a record that tracks the typesof
the objects/arrays that a node represents (types), the total number
of objects/arrays that may be in the region represented by this node
(size), and the abstract layout of a node (layout). Each node also
needs to track the connectivity relation between each pair of incom-
ing edges. In [13] a binary relationconnR⊆ E×E is used to track
the inConnectedrelation. However, for this work it is sufficient to
use a simple binary domain (connB), whereconnB is D if all the
in edges must be disjoint andC if any of the in edges may be con-
nected. In this work we assume that the variables may be connected
to any edge or variable in the node they refer to and thus are ignored
in theconnBbinary predicate. Thus, each node is represented as a
record of the form[types layout size connB].

Each edge contains a record that tracks domain information
about the edge. Theoffsetcomponent indicates the offsets (labels)
of the pointers that are abstracted by the edge. The number of
pointers that this edge may represent is tracked with themaxCut
property. Theinterfereproperty tracks the possibility that the edge
represents pointers that interfere. Thus, in the figures each edge is
represented as a record{offset maxCut interfere}.

The abstract heap domain is restricted via a normal form. The
normal form ensures that the heap graph remains finite, that all the
outgoing edges from a node have unique labels, and that thereare
no unreachable nodes. The graph is kept finite by ensuring that any
recursive structure (structures that involve recursive object types)
are represented by a finite number of nodes (see [13] for a more
complete description of how this is done). The program analysis
is then performed using sets of the heap graphs to represent the
possible program states at each point in the program.

(a) Disjoint Edges (b) Refined

Figure 2. Refinement of a region with disjoint sub-regions

4. Refinement
During the dataflow analysis, portions of the abstract heap graph
are summarized into single nodes to improve efficiency and to
eliminate unbounded recursive data structures. This summarization
can cause a substantial loss of accuracy. To minimize this accuracy
loss the UMA algorithm uses a technique that (for several com-
mon cases) undoes the summarization by transforming a summary
node into a number of nodes (and edges) such that the relationships
between variables and regions are more explicit.

There are currently three cases that the UMA algorithm refines.
For this paper the only case that is relevant is when all the incom-
ing edges for a given node are disjoint. In this case we know that
each of these edges represents a set of pointers which point into a
disjoint sub-region of the region represented by the node. Thus, the
algorithm can expand each sub-region into a separate node inthe
abstract graph (one for each disjoint edge).

Consider the case in Figure 2(a) where the the two edges with
theval offsets refer to the same node (which is a node represent-
ing cells of typet2, with aSingletonlayout, that may represent any
number of objects, and all the incoming edges aredisjoint). Since
the incoming edges refer to disjoint sections of the node we can
partition this summary node into two distinct nodes. The partition-
ing results in Figure 2(b). Note that the newly created nodeseach
only have a single incoming edge representing at most one pointer
and they haveSingletonlayouts. Thus, the node can represent at
most one object and the size is set to 1.

5. Domain Extensions For Collections
The fundamental idea for modeling the collections and iterators
is to classify the pointers that are stored in a collection into four
categories based on their relation to any iterators that areacting on
the collection. Based on this classification we create a special offset
for each category, just as was done for arrays in Section 3.1.

• Pointers that have an unknown relation to the active iterator
or when there is no active iterator for this collection. Edges
representing pointers in this category are given the label?.

• The single pointer that the iterator is currently at in the collec-
tion. The edge representing this pointer is given the label@.

• Pointers that come before (in whatever iterator order is specified
by the collection) the location that the iterator is at. Edges
representing pointers from this class are given the labelB@.

• Pointers that come after (in whatever iterator order is specified
by the collection) the location that the iterator is at. Edges
representing pointers from this class are given the labelA@.

This scheme for classifying the pointers in a collection is aspe-
cific case of thepartitioning functionsthat are used in [6] to parti-
tion arrays of scalars. The definition we use is only precise when
there is a single iterator that is active in a collection. In the case of
multiple iterators simultaneously indexing through a collection our

partition must conservatively assume that any relation could hold
between the positions of the iterators. The use of more flexible par-
titioning functionswould allow our analysis to partition the pointers
in a collection even when multiple iterators are being used to index
through the collection. However, the use of more generalpartition
functionssubstantially complicates the analysis and we expect that
most of the time only a single iterator will be active in a collection.
Based on this assumption we opted for the fixed partition.

Modifications to the Model. To model the collections and iter-
ators we need to extend the abstract domain from Section 3 with
some additional properties. The most basic extension is to add the
typeslist, vector, set, map anditerator and the stan-
dard assortment of built-in functions to the primitive types and
functions that the analysis understands. We introduce the labels
(@, B@, A@) to represent the partitions introduced by the iterators
in collections. Finally, we want to be able to determine which (if
any) iterator variable is currently active in a given collection. To
do this we add aniter field to the record that represents collection
nodes. Theiter field is either a variable name, indicating that the
iterator with the given name is being used to partition the pointers
in the collection or* to indicate that no iterator variable is currently
being used to partition the collection.

Modifications to the Dataflow Operators. Our modifications
have only a minimal impact on the UMA algorithm and we only
need to modify the node join algorithm. First, we define a sim-
ple function that takes a node and if it is currently partitioned on
an iterator forgets all the partition and iterator information. The
procedure toforget this information is shown in Alg. 1.

Algorithm 1 : forgetIterator

input : n a node
if n has an active iteratorthen

n.iter← * ;
foreach out edge edo

if e.offset∈ {B@,@,A@} then e.offset← ?;

When performing the join operation we check if the nodes that
are being joined are from differentcontexts(graphs) then if theiter
fields are the same we retain the iterator information, otherwise we
forget it by calling theforgetIteratoralgorithm. This is safe since in
both heap graphs the nodes being joined are partitioned by the same
iterator variable and thus the joined node must be partitioned by the
iterator variable. Since the edges in the UMA model represent may
exist pointers, the edges from the collections are correctly handled.

6. Modeling Iterator and Collection Operations
In this section we look at how the various collection methodsare
implemented. Even our simplified collection library has a non-
trivial number of methods to manipulate the various collection
objects and the associated iterators. Thus, we focus on describing
the most interesting methods. For simplicity we assume thatall of
the out edges for any given node have unique labels (no nodes have
ambiguousedges).

Forget and Clear Iterators. Our library collection semantics as-
sumes that if the collection contents are modified then any active
iterators are invalidated. To model the invalidation of an iterator we
use a method,clearIterator, which first invokes theforgetIterator
method to erase the iterator and associated edge partition.Then the
clearIterator method joins all theambiguous edges. This ensures
that the collection will have (at most) a single edge with thelabel?.

Insertion and Deletion. For the insert operation we first call the
clearIterator method. Next we add an edge from the collection to
the object that we want to add to the collection and we set the label
of this edge as?.

Thedeleteoperation for our collection library takes an iterator
and removes the element referred to by that iterator from thecol-
lection. To model this we remove the edge with@ label (which
strongly deletes the iterator target from the collection).

Iterator Initialization and Get. The most common way to initial-
ize an iterator is to get an iterator to the first element (withrespect to
the collection’s iteration order) of a collection. Thebeginmethod
in our collection library is used to do this. To simulate the effect of
this operation in the heap graph (Alg. 2) we use theclearIterator
method to forget the partitioning of any other iterators on the collec-
tion. Then we create two edges: one is used to represent the element
in the collection that the iterator refers to, the other edgeis used to
represent all the elements that come after the element referred to
by the iterator. Since the iterator must refer to the first element in
the collection (with respect to iteration order) we do not need an
edge to represent elements that come before the iterator. Then, we
see if the? edge has the interfere propertyip. If it does we set the
node that represents the contents of the collection as having inCon-
nectededges (since the newly created edges must be connected),
otherwise it is left unchanged. Finally, we delete the? edge.

Algorithm 2 : iteratorBegin

input : n a collection node,v an iterator variable
n.clearIterator();
if n does not have an edge with label? then return;
e?← the edge with label?;
nt ← endpoint ofe?;
e@← newEdge(@,1,np);
eA@← newEdge(A@,e?.maxCut,e?.interfere);
add edgese@ andeA@ from n to nt ;
if e?.interfere= ip then nt .connB← C;
delete edgee?;

Theget operator can be treated as a simple field load off the
special field@. Using this approach passes all the work onto the ex-
isting UMA framework which performs the appropriate operation.

Iterator Advance. After initializing an iterator we often want to
advance it through the collection (theadvance method) and use
theisValid test to check if the iterator still refers to a valid point
in the collection.

The advance method needs to re-label the existing edge with
the @ label to have theB@ label and create a new edge with the
@ label that is parallel to the edge with theA@ label (if such an
edge exists). This is shown in Alg. 3, which assumes that the given
iterator is valid and is the current active iterator for the collection.

Algorithm 3 : iteratorAdvance

input : n a node that represents a collection
if n does not have an edge with label@ then return;
eA@← the edge with labelA@;
nt ← endpoint ofeA@;
re-label the edge with label@ to have labelB@;
e@← newEdge(@,1,np);
add edgee@ from n to nt ;
if eA@.interfere= ip then nt .connB← C;

IsValid. In the isValid method we want to (when possible)
propagate the knowledge that on a given pathisValid returned
true or falseand update the model to represent this information. If
we take a branch that can only be executed when a given iterator is
invalid then we want to update our model to reflect this information
(Alg. 4). To do this we have two cases. If the given iterator isnot
the active iterator we do nothing. If the given iterator is the active
iterator we only need to delete the edges with the@ label and the
edges with theA@ label. TheeraseEdgeWithOffsetremoves the
edge with a given offset from the abstract heap graph. Our current
abstraction has no way to represent that an iterator must be valid so
in the case thatisValid returnstrue we do not do anything.

Algorithm 4 : isValidf alse

input : i an iterator
n← the target ofi;
if i is not the active iterator for nthen return;
n.eraseEdgeWithOffset(@);
n.eraseEdgeWithOffset(A@);

7. Examples
Initialize the Set The set insertion example, Figure 1, demon-
strates how the insertion operation works and provides an opportu-
nity to develop some intuition into how the UMA algorithm works.

Figure 3(a) shows the abstract domain at the end of the first loop
iteration. The variablep points to theset object and the variable
s points to the object of typet2 that all the elements in the set will
reference (since variable connectivity is ignored theconnB term
is D). The first of thet1 objects has been allocated and has had
theval field set. Since we just allocated the object that the node
represents we know it has asizeof 1 and aSingletonlayout.

We also created an edge from theset object to thet1 object.
Since this edge was just created (by a store to an unknown location
in the collection) it must represent a single pointer storedin the
collection (maxCut= 1, interfere= np andoffset= ?). Since the
variableq is dead at this point we explicitly nullify it.

Figure 3(b) shows the state of the heap model at the end of the
second iteration. Another element has been allocated and inserted
into the set. Theval offset of this object has been set to refer to the
same node thats points to. Since there are now two incoming edges
that may be connected, the target node has theconnBcomponent
set toC, indicating theval edges may beinConnected.

Since the abstract heap in Figure 3(b) is not in normal form (the
set node hasambiguousedges) it needs to be normalized (see
Section 3.3). This results in the abstract heap in Figure 3(c).

The two nodes with typet1 have been combined into a new
summary node. The edges with the labels? have been joined and
are represented by an edge labeled{?,#,np} since the edge rep-
resents more than one pointer and the pointers cannot interfere.
Finally, the edges with the labelsval have been joined and are
represented by an edge that is labeled{val,#, ip} since the edge
represents more than one pointer and the pointers may interfere
(the edges that were joined wereinConnected). Running through
the loop again produces the same result, thus we have coveredall
possible iterations of the loop and are done.

Update the Set The second example from Figure 1 traverses all
elements in theset (from the first example) and updates theval
field of each object to refer to the same object asr. Figure 4(a)
shows the state of the abstract heap after allocating a second object
of typet2 and initializing the iterator. We have set the iteratori to
point to theset object, created a new edge to represent the single
entry the iterator refers to (the edge with label@) and a new edge to
represent the entries that come later in the iteration order(the edge

(a) Added First Entry (b) Added Second Entry (c) Normalize

Figure 3. Add Elements to a Set Container

with the labelA@). When initializing the iterator the unknown edge
? is npwhich means that the newly created edges (@ andA@) can
not beinConnected. Thus, the refinement method can split the node
that represents thet1 objects into two nodes (one representing
the heap reachable from the@ edge and one representing the
heap reachable from theA@ edge). Additionally, the@ edge has
maxCutof size 1 and points to aSingletonnode, thus the refinement
algorithm can safely assume that the target hassize1 as well.

This allows the node to be strongly updated when the assign-
ment is done. The result is shown in Figure 4(b). When the iterator
is advanced we set the current@ edge to have the labelB@ and
split a new out edge from the currentA@edge. The result of this is
shown in Figure 4(c), which is the state of the abstract heap at the
end of the first abstract loop iteration.

The state of the heap model at the end of the second iteration is
shown in Figure 4(d). The assignment was able to strongly update
the target of theval field of the object referred to by the iterator,
note that theconnBflag in the node pointed to byr is set toC to
denote that the edges areinConnected. The iterator advance has
indexed the current iterator position, splitting out a new@ edge
and resulting in two edges with the labelB@. Thus, we need to
combine their targets into a summary node and join the edges.This
results in the abstract heap shown in Figure 4(e).

In Figure 4(e) we have some unknown number of pointers be-
fore the current iterator which all point to unique objects of type
t1 (the edge isnp) and each of these objects has a reference stored
in their val field, which (may) point to the same object as the
variabler. Then we have the single element currently referred to
by the iterator and some number of pointers that come after the
iterator, which refer to the objects that have not been updated. The
state shown in Figure 4(e) is also the repeated state of the abstract
loop execution so we are done processing the loop body.

If we apply the exit test condition,isValid, which erases the
edges with labels@ andA@, to the state shown in Figure 4(e), we
get the result shown in Figure 4(f). Note that there are no longer
any references from the objects in theset to the region of the heap
pointed to bys: each element in the set was strongly updated and
by modeling the progress of the iterator we determined that the
contents of the collection have been strongly updated.

8. Performance
To evaluate the utility of the semantic model for the collections
we examine a variation of the Jolden [2] benchmarks. The Jolden
suite contains a number of pointer intensive kernels that are par-
allelizable using shape based approaches [5, 8]. The implementa-
tion in [2] does not utilize the Java collection libraries. Thus, we
selected five of the benchmarks, and updated them to use the col-
lection librarylists andvectors instead of singly-linked lists
and arrays (we also addressed the major issues in health [18]).

JoldenWC UMA Base UMA Lib
Benchmark Time Shape Speedup Time Shape Speedup
bh 2.58s N NA 2.83s P 1.02
em3d 0.06s N NA 0.11s Y 1.88
health 1.24s P NA 1.56s Y 1.15
power 0.09s Y 1.68 0.38s Y 1.68
tsp 0.08s P 1.51 0.10s Y 1.51
Overall 4.05s 1/2/2 1.23 4.98s 5/1/0 1.44

Figure 5. Analysis and Parallelization Benchmarks

We ran the original UMA algorithm with the library code in-
lined so that it was analyzed directly. We then ran the algorithm
using the collection semantics. To compare the accuracy of the re-
sults we report if the algorithm was able to determine the shape
information for the data structures created by the programsand the
performance improvement that was obtained by parallelizing based
on this information. We use three categories for the accuracy of the
shape analysis.Yes(Y) is used when the analysis is able to provide
the correct shape information for all of the relevant heap structures.
Partial (P) indicates that the analysis was able to determine the cor-
rect shape for some of the heap data structures but that some impor-
tant properties were missed (which may not matter for paralleliza-
tion). No (N) is used when the analysis failed to correctly identify
the shape of a substantial portion of the heap data structures.

The UMA algorithm is written in C++ and compiled with gcc
3.3.5. The benchmarks were run on an Intel (Dual Core) PentiumD
2.8 GHz machine with 1 GB of RAM. The parallelization bench-
marks were run with the default inputs from [2] on the same ma-
chine with the Sun Java 1.5 JVM.

The results in Figure 5 indicate that the use of semantics to
model the collection objects results in much more accurate results
than attempting to directly analyze the actual implementation of the
collections. On our test system the maximum speedup is 2 and we
did not employ any transformations other than parallelizing recur-
sive tree calls and foreach parallelization. Given these constraints
the average speedup of 1.44 indicates that, in general, the analysis
is able to accurately model the connectivity of the program heap.

The increased analysis time when using the collection semantics
is due to the refinement of sections of the heap graph that the base
analysis is unable to expand, i.e. is due to a more accurate repre-
sentation of the heap and not the implementation of the semantics.

9. Conclusion
This paper presented a technique for extending an existing heap
analysis to handle various types of generic collection objects. In-
stead of attempting to extend the range of data structures that the
target analysis understands our analysis treats the collections and
iterators over the collections as opaque objects. By ignoring the
internal representation of the collections we avoided the issues of
model complexity and computational intractability.

(a) Initialized Iterator (b) Update the Entry (c) Advance Iterator

(d) End of Second Iteration (e) Normalize and Fix Point (f) Interpret Exit Test

Figure 4. Update Data in the Set

To handle the manipulation of these collections we introduced
a partition scheme using the iterators in a collection. The partition
is based on the idea that an iterator splits the elements in the col-
lection into three classes (before the current position, the single
element at the current position and elements after the current posi-
tion). We then extended the UMA heap analysis with the semantics
required to model the collections and iterators. The extended model
is capable of identifying individual elements in the collections, per-
forming strong updates on the individual elements and, by using
the partition induced by the iterators, is able to model the iterative
processing of the collection. This allows the heap analysisto accu-
rately track destructive update operations that involve collections
and their contents, which is critical to obtaining accurateanalysis
results when dealing with imperative programs.

The experimental results show that the analysis can achieve
substantially more accurate results by using a semantics based ap-
proach instead of analyzing the library code directly. Further, the
analysis is efficient enough to be of practical use in optimization
and error detection applications.

Acknowledgments
The first author would like to thank Rupak Majumdar for the con-
versations that lead to the approach taken in this paper, Mario for
his editorial assistance and the PASTE reviewers for their use-
ful comments. This work is supported by the National Science
Foundation (grants 0085792, 0238027, and 0540600) and under
subcontract R7A824-79200004 from the Los Alamos Computer
Science Institute and Rice University. M. Hermenegildo is also
supported by the P. of Asturias Chair, and projects MEC-MERIT,
CAM-PROMESAS, and EU-MOBIUS.

References
[1] F. Bueno, M. G. de la Banda, M. Hermenegildo, K. Marriott,

G. Puebla, and P. J. Stuckey. A model for inter-module analysis
and optimizing compilation.LNCS, 2001.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. InPACT, 2001.

[3] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. InPLDI, 1990.

[4] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of
Modular Logic Programs. InPOPL, 1993.

[5] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in C
programs with recursive data structures. InCC, 1998.

[6] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric
analysis of array operations. InPOPL, 2005.

[7] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. InPOPL, 2005.

[8] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive
data structures.IEEE TPDS, 1(1), 1990.

[9] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces.
In FSE, 2005.

[10] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of
Lisp-like structures. InPOPL, 1979.

[11] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable
analyses for data structure consistency.IEEE TSE, 2006.

[12] T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction for shape
analysis with fast and precise transformers. InCAV, 2006.

[13] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo. A static
heap analysis for shape and connectivity. InLCPC, 2006.

[14] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for
programs built with precompiled libraries. InCC, 2001.

[15] S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. InPOPL, 1996.

[16] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. InPOPL, 1999.

[17] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for C programs. InPLDI, 1995.

[18] C. Zilles. Benchmark health considered harmful. InComputer Arch.
News, 2001.

