
Iterative Self-Assembly with Dynamic Strength
Transformation and Temperature Control

Dandan Mo and Darko Stefanovic

Department of Computer Science, University of New Mexico,
MSC01 1130 1 University of New Mexico, Albuquerque, NM 87131-0001, U.S.A

{mdd,darko}@cs.unm.edu

Abstract. We propose an iterative approach to constructing regular shapes by
self-assembly. Unlike previous approaches, which construct a shape in one go,
our approach constructs a final shape by alternating the steps of assembling and
disassembling, increasing the size of the shape iteratively. This approach is em-
bedded into an extended hexagonal tile assembly system, with dynamic strength
transformation and temperature control. We present the construction of equilat-
eral triangles as an example and prove the uniqueness of the final shape. The tile
complexity of this approach is O(1).

Keywords: Algorithmic self-assembly, hexagonal tiles, strength transformation,
temperature control

1 Introduction

The tile assembly system (TAS) contains a self-assembly process in which small tiles
autonomously attach to a seed, assembling into a larger and more complex shape. TAS
dates back to the late 1990s. In 1998, Winfree proposed a mathematical model of DNA
self-assembly [1] with the operations of Annealing, Ligation, and Denaturation. The
same year, Winfree et al. presented a tile assembly model [2] which connected tiling the-
ory with structural DNA nanotechnology, using the double-crossover molecules (DX)
to implement the model. In 2000, Rothemund and Winfree proposed the abstract tile
assembly model (aTAM) [3], in which the tiles are squares with sticky ends on each
side. Adleman et al. extended this model with stochastic time complexity [4].

Later works concerning the aTAM or TAS have been mainly extensions aimed at
improving the complexity or exploring more final shapes that can be self-assembled.
Instead of the original square tiles, triangular, hexagonal [5, 6], and string tiles [7] can
also implement the TAS. Aggarwal et al. extended the standard TAS by allowing the
assembly of the super tiles [8]. Demaine et al. proposed a staged self-assembly model,
where the tiles can be added in sequence [9].The tile complexity problem usually stud-
ies the cost of building an N×N square in terms of the number of tile types required.
Compared with the previous result N2 [3] at temperature1 1, geometric tiles [10] use
only Θ(

√
logN) tile types. An extended model with a mechanism of temperature pro-

gramming [11, 12] uses only O(1) tile types. Besides an N×N square, other regular

1 The temperature is a threshold value that determines if a shape is stable.

2 Iterative Self-Assembly

shapes can be self-assembled using the TAS. Cook et al. showed that a Sierpinski trian-
gle can be formed by 7 different square tiles [13]. Kari et al. presented a triangular tile
self-assembly system [14] where an equilateral triangle of size N can be formed using
N2 tile types at temperature 1, and 2N−1 tile types at temperature 2. Woods et al. pro-
posed an active self-assembly model [15] to construct algorithmic shapes and patterns
in polylogarithmic time.

Here we propose an iterative approach to self-assembly, with a tile complexity of
O(1). The approach extends a tile assembly system with dynamic strength transforma-
tion and temperature control. Unlike previous TAS models, where the final stable shape
is formed in one go, our approach constructs regular shapes of increasing size in each
iteration in a geometric progression. This iterative process consists of assembling an
n-size shape from an n-size seed cluster2 and disassembling it into two pieces which
then form a new seed cluster with a larger size for the next iteration. In other words, our
approach alternates the steps of assembling and disassembling. We demonstrate how
this approach works on the example of constructing equilateral triangles; the rest of the
paper treats a specific tile assembly system for triangles.

In the following, we first give an overview of our iterative approach in Section 2.
In Section 3, a formal definition of the extended hexagonal TAS is given. In Section 4,
we present a concrete example of enlarging an equilateral triangle from size four to size
six3. In Section 5, we prove that an equilateral triangle is the only final stable shape that
can be self-assembled within this system.

2 Overview of the Approach

Our iterative approach repeats two steps: assembling and disassembling. In the assem-
bling step, we start from a seed cluster, which is one of the three sides of the triangle
when an iteration ends. The free individual tiles present in solution attach to this seed
cluster, updating the shape until an equilateral triangle is completed. The assembling
step takes place under a constant temperature τ1, which is also the threshold value to
determine if a shape is stable4. The disassembling step begins when we raise the tem-
perature to τ2, which will make the τ1-stable shape become unstable under τ2, and lead
to disassembly. The original shape then disassembles into two smaller shapes that are
τ2-stable. We then lower the temperature down to τ3 to make the two shapes form a new
seed cluster with larger size. When we change the temperature from τ3 back to τ1, the
next iteration starts.

The assembling and disassembling step are enabled by two new features added to
the hexagonal TAS. Strength transformation changes some of the bond strengths of
the τ1-stable shape and two strand strengths, in preparation for the disassembling step.
Temperature control implements the switch between the two steps. These two features
are supported by the Rule set and the Operation set in the extended hexagonal TAS,
which we will discuss in the next section.

2 A seed cluster of size n is a line consisting of n hexagonal tiles.
3 The size of an equilateral triangle is denoted as its edge length.
4 If a shape does not disassemble under temperature τ , it is τ-stable.

Iterative Self-Assembly 3

3 Formal Definition of the Extended Hexagonal TAS

In this section, we give a formal expression of the extended hexagonal TAS, with de-
tailed explanations of each term. We then introduce the set of tile types in this system
and illustrate the whole procedure of our iterative approach. Finally, we consider plau-
sible chemical implementations of some operations included in the strength transfor-
mation.

3.1 A Formal Expression

The extended hexagonal TAS is formally a tuple M = {Σ ,S,B,Ω ,U,R,O}, where Σ is
a temperature set, S is a strand set, B is a bond set, Ω is a tile set, U is a stable shape
set, R is a rule set, and O is an operation set.

Temperature Set. Σ = {τ|τ ∈ Z>0} is the set of the temperatures.
In our example of constructing an equilateral triangle, there are three threshold temper-
atures in this system. Σ = {τ1 = 3,τ2 = 7,τ3 = 5}.

Strand Set And Bond Set S = {x|x ∈ A}∪{x̄|x ∈ A} is the set of DNA strand types,
where A denotes a symbol set. Two complementary strands x and x̄ can form a bond
with the corresponding strength. We use bond(x, x̄ ‖ w) to represent a bond and its
sticking strength w, where w ∈ Z>0. B is the set of bonds. Thus, for all b ∈ B, we have
b =bond(x, x̄‖w) such that x, x̄ ∈ S. Here, w is the bond strength as well as the strength
of strand x and x̄.
In our example, S = {a,y,γ,Y}∪{ā, ȳ, γ̄,Ȳ}. Table 1 shows all the strands we use. For
example, a, ā form a bond with strength 1.

Tile Set. Ω is the set of tiles. Each tile t = (s1,s2,s3...,s6) is abstracted as a hexagon,
each side represents a strand. An example is shown in Figure 1. In our graphical rep-
resentation, if a side does not have any strand, we use the dotted line to represent it.
A pair of complementary strands, e.g., a and ā, are represented by a single solid line
and a double solid line respectively. The number labeled next to the strand indicates
the strand strength.The sequence of si(1≤ i≤ 6) ∈ S∪{⊥} represents each side of the
hexagon from the top right clockwise to the top left. A side without any strand is de-
noted as ⊥. Tiles are allowed to rotate, but not to flip. Therefore, if there are two tiles
t1 = (s1,s2...,s6), t2 = (s′1,s

′
2...,s

′
6) and if ∃i, j (1 ≤ i, j ≤ 6 and j = 7− i) such that

(s′i,s
′
i+1...,s

′
6) = (s1,s2...,s j) and (s′1,s

′
2...,s

′
i−1) = (s j+1,s j+2...,s6), we say that t1 and

t2 are the same tile. We assume that the strands of the tiles are fixed in their positions,
thus the angles between each two are fixed as well.

Stable Shape Set. U is the set of stable shapes. 1. ∀t ∈Ω , t ∈U ; 2. each shape T ∈U
is either T = {t}∪T ′ or T = T1∪T2, where t ∈Ω and T ′,T1,T2 are also stable shapes.
That is, a stable shape is a single tile or a set of tiles that are grouped together because of
the bonds between them. A stable shape can be formed in two ways—either a single tile

4 Iterative Self-Assembly

Table 1. Strand strength

Strand type x a, ā y, ȳ γ , γ̄ Y , Ȳ
Strand strength 1 2 5 7

1

1
2

2

y

ȳ a

ā

Fig. 1. This figure shows an example of a hexagon tile: t = (y, ā,a, ȳ,⊥,⊥). The numbers labeled
next to the lines indicates the strengths of the strands.

attaches to an existing stable shape or two stable shapes attach to each other. Both ways
are based on the premise that the sum of the interacting strengths equals or exceeds the
current temperature, which is expressed as the “assembling” rule that will be discussed
shortly.

Rule Set. R = {assembling,stability− checking,disassembling} is a set of rules that
guide this system, shown in Figure 2.

assembling step

temperature is raised

temperature is lowered

Rule: assembling

Rule: stability-checking

Rule: disassembling

disassembling step

stability checking

disassembling

not stable

Fig. 2. How the rules guide the steps of assembling and disassembling

If the temperature is not changed, the assembling rule is applied. Whenever the tem-
perature is raised, the stability-checking rule and the disassembling rule are applied to

Iterative Self-Assembly 5

execute the disassembling step. We use the stability-checking rule to check the stability
of the shape. If the shape is stable, there is no change to the shape, otherwise the disas-
sembling rule is applied to break the shape. Whenever the temperature is lowered, the
assembling rule is applied.

Rule 1: Assembling. The assembling rule guides the procedure of shape formation. For
T = {t}∪T ′ under temperature τ , where T ′ is an existing stable shape, the interaction
strength sum E between t and T ′ must be E ≥ τ , otherwise T will not be stable. Sim-
ilarly, for T = T1 ∪T2 where T1,T2 are stable, the interaction strength sum E between
T1 and T2 must be E ≥ τ as well, otherwise shape T will be disassembled into the two
smaller but stable shapes T1 and T2. Under the assembling rule, the formed shape is
guaranteed to be stable.

Rule 2: Stability-Checking. The stability-checking rule is applied to check the stability
of a shape after the temperature is raised. There are two levels of checking. Suppose that
we have a shape T and the temperature is raised to τ . We first check if each tile t ∈ T is
stable in the shape, then check if every two sub-shapes T1,T2 are stably attached to each
other(T1∪T2 = T) if the first-level stability is not achieved. In the first level, for every
tile t ∈ T , we compare the sum of the interaction strength between t and T − t with τ2.
If the sum < τ , T is not stable. Otherwise, we proceed to the second-level checking.
In the second level, if there exists a cut that splits T into two sub-shapes T1,T2 and the
sum of interaction strengths between T1 and T2 is less than τ , T is not stable. Only when
both levels of checking succeed, can we say that shape T is stable.

Rule 3: Disassembling. The disassembling rule is applied when the shape is not stable.
It works together with the stability-checking rule to disassemble the shape into smaller
stable shapes. There are two levels of disassembling. The first level makes certain single
tiles fall off from the shape; the second level splits the shape into two new shapes. In
the first-level disassembling, we execute the first-level stability checking to find the tiles
whose interaction strengths are the weakest among those tiles with interaction strength
less than the current temperature, and remove these tiles from the shape. In the second-
level disassembling, we execute the second-level stability checking to find the cut that
needs the minimum strengths, and split the shape into two new shapes. The first-level
and the second-level disassembling cannot happen at the same time, the one that needs
minimum strengths takes place first. If the strengths needed are the same, the first-level
disassembling comes first. The stability-checking rule is applied to the new shapes after
either level disassembling is executed. If the shapes are not stable, the disassembling
rule is applied to the current shapes, otherwise the disassembling step ends.

Operation Set. O = O1 ∪O2 ∪ {End} is a set of operations allowed in the system.
Set O1 includes the operations related to the strength transformation. These operations
need the help of some specific restriction enzymes, ligase and auxiliary tiles. Operation
Opi→ j ∈ O1(i, j ∈ Z>0) changes the strength from i to j. Set O2 includes the opera-
tions related to the temperature control, operation τi→ τ j ∈ O2(τi,τ j ∈ Σ) changes the
temperature from τi to τ j. The last set contains only one operation. When End is exe-
cuted, the construction procedure ends. These operations are executed when the current

6 Iterative Self-Assembly

shapes are all stable, in other words, during an assembling step or a disassembling step,
the experimentalist should not execute any operation.
In our example, O= {Op5→2, ligation,Op2→5}∪{τ1→ τ2,τ2→ τ3,τ3→ τ1}∪{End}.
Op5→2 changes a bond from strength 5 to strength 2(with Enzyme I, Enzyme II), Op2→5
changes a strand from strength 2 to strength 5(with Enzyme III and the Op2→5 helper).
The operation of ligation needs the help of a ligase, changing a bond from strength 2
to strength 7. Enzyme I, Enzyme II and Enzyme III are restriction enzymes, which will
be discussed with details in Section 3.4. The Op2→5 helper is explained in Section 3.2.

3.2 Tile Types

In the system of constructing an equilateral triangle, there are four categories of tiles:
initial component tiles, free tiles, functional tiles, and variant tiles. The first three are
directly made manually; the variant tiles result from reactions with enzymes. Initial
component tiles form a seed cluster of size four; it is the first stable shape existing
in the solution before any reaction begins. Free tiles remain in the solution all the
time. Functional tiles come in two flavors, one (Op2→5 helper) is included in the op-
eration Op2→5, while the other (ending tile) will end the whole procedure with an
equilateral triangle. The functional tiles are added to the solution by the experimen-
talist at certain time points. Variant tiles only appear when one of the operations in
{Op5→2, ligation,Op2→5} is executed. The initial component tiles, free tiles and func-
tional tiles are shown in Figure 3. We will explain the transformations to the variant
tiles in Section 3.4, together with the implementations of some operations. In Figure 3,
yad p and ȳad p are two special strands on Op2→5 helper tile. Strands yad p and ȳ can form
a special bond, and likewise the strands ȳad p and y.

initial component tiles

aā ā a

Ȳ

y
2

7 Y

ȳ
2

7 � Ȳ

1 1

5 7 Y �̄
1

1

7 5

edge tile middle tile

free tiles

a

ā

a

ā

a

a

ā

ā

y

ȳ
2

2

1

1

1
1

1

11

1

helperOp2!3 ending tile

functional tiles

ȳadp yadp
yȳ

2
2

2
2

Fig. 3. Tile types is shown in this figure. The dotted lines represent “no strand”. Each strand is
represented by a single or double solid line with a name label and a strength label.

Iterative Self-Assembly 7

3.3 The Procedure of the Iterative Approach

The assembling step and the disassembling step together constitute one iteration of the
construction. There are two parameters associated with each iteration. One is the seed
cluster, which is one edge of the triangle at the beginning of each iteration; the other
is the current temperature τ . In each iteration, the assembling step starts with τ = 3
and a seed cluster, and ends with an equilateral triangle with the last piece left; the
disassembling step starts with τ = 7 and ends with two symmetric shapes that will form
the new seed cluster at τ = 5. When τ = 3, the next iteration starts. Table 2 summarizes
the actions during an iteration. The “Action” column is the operation executed at each
step, the “State” column expresses the current condition of the shape and temperature.
Notice that at step 1 we have two branches — choosing the End operation will end the
iteration with an equilateral triangle of size l, otherwise we proceed to the next step. At
step 2, bond(y, ȳ‖2) is transformed to bond(Y,Ȳ‖7). At step 3, bond(γ, γ̄‖5) is broken
into strands y and ȳ that will form bond(y, ȳ‖2) later.

Table 2. The procedure of an iteration and how to stop the iteration.

Step No. Action State
0 seed cluster of size l, τ = 3

1
an equilateral triangle with the last piece left

End iteration ends with an equilateral triangle of size l
2 ligation bond(y, ȳ‖2)→ bond(Y,Ȳ‖7)
3 Op5→2 bond(γ, γ̄‖5)→ y and ȳ→ bond(y, ȳ‖2)
4 Op2→5 y→ γ , ȳ→ γ̄

5 τ1→ τ2 two symmetric shapes, τ = 7
6 τ2→ τ3 new seed cluster of size l = 2l−2 is formed, τ = 5
7 τ3→ τ1 go to step 0

3.4 Proposed Implementation of the Operations

Figure 4 and Figure 5 show some plausible implementations of operations Op5→2,
Op2→5, and ligation. For each implementation, we provide a high-level picture on the
top to show how that operation changes the tiles. Tiles to the right of the arrow are the
variant tiles. Below each high-level picture are the details concerning the strands.

In Figure 4, the left column shows the steps of transforming strand ȳ into strand
γ̄ . The operation orders are important. Enzyme III must be added after the tile Op2→5
helper attaches to the shape, otherwise it might be difficult to tell if γ̄ is formed. Enzyme
III is a restriction enzyme which is assumed to recognize the specific sequences on B-
B’ part. When the helper tile attaches to the shape, by observing the shape, we are sure
that the intermediate product shown in (2) is formed, which will be transformed into γ̄

after the cutting in (3). If we add Enzyme III before the helper tile fills in its position,
the sequence 2 and 5 might be cut off from the helper tile so that the helper tile cannot

8 Iterative Self-Assembly

attach to the shape. In this case, whether the intermediate product is formed is hard to
know, so it is hard to know if strand γ̄ is formed. The right column follows the similar
steps, transforming strand y into strand γ .

2

2

2’

2

2’5’

B

B’

2

2’

B’

2

5’ 2’

2

2’

2

2’

B

B’

B

B’

2

2’

2’

Enzyme III

+
A’

A
(1)

A’

A
(2)

Enzyme III
A’

A

5

5

(3)

A’

A(4)

B

5

5

(1) +

(2)
5’

(3)

Enzyme III

5’
(4)

Op2!5 : y ! �, ȳ ! �̄ Op2!5

2
2

77

1 1 ȳadp yadp

5 5

7
7

1 1

ȳ

ȳ

ȳ

�̄

y

y

y

�

yadp

yadp

yadp

ȳadp

ȳadp

ȳadp

1 1
1 1

2
2

Fig. 4. This figure shows the plausible implementation of operation Op2→5. Letters A, B and
numbers 2, 5 indicate different sequences. A’, B’, 2’ and 5’ are the corresponding complementary
sequences. There are two sides for each strand, the side with the strand name is fixed on the tile,
the other side is free. For example, in (1) of the left column, the left ends of A’ and A are fixed,
the right end of 2’ is free.The left column shows the steps of transforming strand ȳ into strand
γ̄ . The 2’ end on ȳ sticks to the 2 end on ȳad p, forming (2). Enzyme III is a restriction enzyme
which is assumed to recognize the specific sequences on B-B’ part. It can cut (2) at the position
indicated by the two vertical dotted lines, transforming ȳ into γ̄ , which is shown in (3) and (4).
The small circle between the sequence A and 2 means no connection. The right column follows
the similar steps, transforming strand y into strand γ .

In Figure 5, the left part is the implementation of operation Op5→2, the right part
is the implementation of operation ligation. In the implementation of Op5→2, two re-
striction enzymes are used to cut the sequences at two different positions, which is
shown in (2). After the cutting, bond(γ, γ̄‖5) is broken into two strand y, ȳ and sequence
fragments (sequence 2, 5 and sequence 5’, 2). Strand y and ȳ form a new bond later,
which is shown in (3). The sequence fragments leave the tiles. In the implementation of
ligation, ligase is used to connect the sequence A and 2, transforming bond(y, ȳ‖2) into
bond(Y,Ȳ‖7).

Iterative Self-Assembly 9

2

2’

2

2’

2

2’

2
2’

2

2’

2

2’

2

2’

2

2’A’

A 5

5’

A’

A 5

5’

A’

A
+

(1)

(2)

(3)

A’

A

Op5!2 : bond(�, �̄k5) ! y + ȳ ! bond(y, ȳk2)

A’

A

A’

A

(1)

(2)

bond(y, ȳk2) ! bond(Y, Ȳ k7)

ligation

+Op5!2

1 1 1 1 1111

7 7 7 75 5 2 2

1 1 11

7 72 2

7

7

2

ligation

2

21

1

1

1

7

7

2

Enzyme I Enzyme II

�̄

�̄

ȳ ȳ

�

�

y y

yȳ

Ȳ Y

Fig. 5. This figure shows the plausible implementations of operation Op5→2 and ligation. (a) The
operation Op5→2 is implemented by cutting twice. (1) shows the bond formed by γ and γ̄ . In (2),
there are two restriction enzymes. We assume that Enzyme I recognizes the sequences within the
left square, and it can cut the bond as indicated by the dashed line. We assume that Enzyme II
recognizes the sequences within the right square, and it can cut the bond as indicated by the thick
line. After the cutting, what are left on the tiles are the strands ȳ and y, which can form a new
bond(y, ȳ‖2) later. (b) In the part of ligation, the small circle between two sequences means no
connection. In (1), the bond formed by y and ȳ has strength 2. This strength is proportional to the
length of their interacting part, which is 2-2’ here. After ligation, parts A and 2 are connected,
which means that the interacting part between the two strands is A-A’ plus 2-2’ now. Since this
is longer, the strength of the bond is stronger. We define the new bond formed by A-A’ and 2-2’
has strength 7, and use bond(Y,Ȳ‖7) to represent it.

10 Iterative Self-Assembly

4 Constructing An Equilateral Triangle from Size 4 to 6

Figure 6 and Figure 7 show the complete procedure of constructing an equilateral trian-
gle of size 6 from one of size 4. The number labeled next to the hexagon side indicates
the strength of the strand that side represents. The strands with strength 1 are not labeled
for convenience in the figures. The initial state is a seed cluster of size 4 and tempera-
ture τ = τ1 = 3. While the temperature is not changed, the edge tiles and middle tiles in
solution attach to the seed cluster one by one, constructing a stable shape shown in state
1. The operation ligation transforms the bonds of strength 2 into the bonds of strength
7, updating the shape to state 2. We then execute the Op5→2 operation, which needs
the help of Enzyme I and Enzyme II. After that, the shape is updated to state 3, where
the bond of strength 5 is transformed into a bond of strength 2. At that point, operation
Op2→5 is executed. This operation has two phases: in phase (a), the helper tile fills in
the top position of the shape, forming two special bonds (the bond consisting of yad p,
y and the bond consisting of ȳad p, ȳ); in phase (b), two restriction enzymes are added
into the solution. They find the two special bonds, cut them at a specific position, which
transforms y (single solid line with 2) into γ (single solid line with 5) and ȳ (double solid
line with 2) into γ̄ (double solid line with 5), updating the shape to state 4. When we
raise the temperature from τ1 to τ2, the disassembling step begins. The middle tile falls
off from the shape first, since its total interaction strengths to the shape sum to 6, less
than the current temperature τ2 = 7. The shape is then disassembled from the middle
into two symmetric shapes as shown in state 5, since cutting the shape from the middle
only needs strength 3, which is less than τ2. When we change the temperature from τ2
to τ3, two free ends labeled as 5 can form a bond of strength 5, which constructs a new
seed cluster as shown in state 6. Finally, we change the temperature to τ1 again to start
the next iteration. In Figure 7, the second iteration starts with a seed cluster of size 6,
which is shown in state 0. Putting the ending tile into the solution ends the construction
with an equilateral triangle as shown in state 1. The stable final shape is an equilateral
triangle of side 6.

5 Equilateral Triangle is the Only Stable Final Shape

To prove that within this extended TAS the equilateral triangle is the only stable final
shape, we need to prove (1) during the assembling step, no other shape except for an
equilateral triangle is formed; (2) after the disassembling, there are only two shapes in
solution; (3) at temperature 5, the two shapes formed after the disassembling step will
bond together to form the new seed cluster for the next iteration.

(1) During the assembling step, τ = 3, no two free tiles can bond together, since the
strands on them have strength of 2 at most. There is only one stable shape in solution,
which is the seed cluster, so the only way that a new shape is formed is that one free
tile attaches to the seed cluster, updating the shape, then comes another free tile. For the
edge tile, it can only stick to the leftmost position or the rightmost position of the seed
cluster. For the middle tile, it can only stick to the seed cluster with the help of one of its
neighbors. That is, the assembling procedure is level-by-level and from-edge-to-center.
In addition to the angle design, the only stable shape formed is the equilateral triangle.

Iterative Self-Assembly 11

initial state

state 1

ligation

bond(y, ȳk2) ! bond(Y, Ȳ k7)

Op5!2

Enzyme I
bond(�, �̄k5) ! bond(y, ȳk2)

state 2

state 3

Op2!5(a)

7
2

57 75
2

7

7
2

57 75
2

7

2

2

2

2
2

2

2

2

7
7

57 75
7

7

7

7

2

7
7

7

2

7

2 2
ȳadp yadp

2

7
7

7
7
7

2 7

7
7

277

7
7

2

Op2!5(b)

y ! �, ȳ ! �̄

state 4

state 5: temperature = 7

free tile

+ +

⌧1 ! ⌧2

Enzyme III

7
7

27 72
7

7

7

7

2

7
7

7

2

7

2 2
yadpȳadp

7
7

27 72
7

7

7

7

5

7
7

7

5

7

7
7

277

7
7

5 5

7
7

7
7

2 7

7

state 6: temperature = 5

⌧2 ! ⌧3

⌧3 ! ⌧1

5 57777
7
7

2

7 7 7 7
7
7

2

go to the next iteration

Fig. 6. Constructing an equilateral triangle of side 6 from 4: the first iteration

12 Iterative Self-Assembly

state 0

5 57777
7
7

2

7 7 7 7
7
7

2

End

2 2

5 57777
7
7

2

7 7 7 7
7
7

2
2

2

2

2
2

2

2

2
2

2

2

2
2 2

state 1

Fig. 7. Constructing an equilateral triangle of side 6 from 4: the second iteration

(2) When τ = 7, the middle tiles in the one-piece-left triangle start to fall off first
since they have the smallest sum of interaction strengths. After that, two bonds b1 =
bond(a, ā‖1), b2 = bond(y,y‖2) are broken, which splits the current shape into two
stable shapes.

(3) When the temperature τ = 5, the free strands that can stick together are γ and
γ̄ . Because the two shapes each have one of them, bond(γ, γ̄‖5) will be formed, which
groups the two shapes together to form a new seed cluster.

6 Conclusion and Future Work

The iterative approach we propose in this paper uses only O(1) tile types to construct an
equilateral triangle of size n, where n = 2i +2 (i is an integer and i≥ 1). This approach
approximately doubles the size of the cluster after each iteration, which means we can
start from a small-size seed cluster instead of needing a large one proportional to the
final size.

A future direction is to generalize this approach to construct other kinds of shapes,
e.g., a square. The iterative characteristic is supported by the dynamic strength trans-
formation and temperature control. Since we only need to switch between three tem-
peratures, it is not hard to control the temperature in lab in this case. We also propose an
implementation of the strength transformation by using conceptual enzymes, a ligase
and specific restriction enzymes, as a blueprint for realizing the system in the laboratory
which we hope to do.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under grants 1027877 and 1028238.

Iterative Self-Assembly 13

References

1. Winfree, E.: Algorithmic Self-Assembly of DNA. 1998 (1998)
2. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-

dimensional DNA crystals. Nature 394(6693) (August 1998) 539–44
3. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares

(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of computing. STOC ’00, New York, NY, USA, ACM (2000) 459–468

4. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-
assembled squares. Proceedings of the Thirty-Third Annual ACM Symposium on Theory of
computing - STOC ’01 (2001) 740–748

5. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA
Triangles and Self-Assembled Hexagonal Tilings. Journal of the American Chemical Society
126(43) (2004) 13924–13925

6. Kari, L., Seki, S., Xu, Z.: Triangular and hexagonal tile self-assembly systems. In Dinneen,
M., Khoussainov, B., Nies, A., eds.: Computation, Physics and Beyond. Volume 7160 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012) 357–375

7. Winfree, E., Eng, T., Rozenberg, G.: String tile models for DNA computing by self-assembly.
In Condon, A., Rozenberg, G., eds.: DNA Computing. Volume 2054 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2001) 63–88

8. Aggarwal, G., Cheng, Q., Goldwasser, M., Kao, M., de Espanes, P., Schweller, R.: Com-
plexities for generalized models of self-assembly. SIAM Journal on Computing 34(6) (2005)
1493–1515

9. Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R., Souvaine,
D.: Staged self-assembly: nanomanufacture of arbitrary shapes with o(1) glues. Natural
Computing 7(3) (2008) 347–370

10. Fu, B., Patitz, M., Schweller, R., Sheline, R.: Self-assembly with geometric tiles. In Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R., eds.: Automata, Languages, and Programming.
Volume 7391 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012)
714–725

11. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature
programming. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
algorithm - SODA ’06 (2006) 571–580

12. Summers, S.: Reducing tile complexity for the self-assembly of scaled shapes through tem-
perature programming. Algorithmica 63(1-2) (2012) 117–136

13. Cook, M., Rothemund, P., Winfree, E.: Self-assembled circuit patterns. In Chen, J., Reif,
J., eds.: DNA Computing. Volume 2943 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2004) 91–107

14. Kari, L., Seki, S., Xu, Z.: Triangular tile self-assembly systems. In Sakakibara, Y., Mi,
Y., eds.: DNA Computing and Molecular Programming. Volume 6518 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2011) 89–99

15. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly
of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th con-
ference on Innovations in Theoretical Computer Science. ITCS ’13, New York, NY, USA,
ACM (2013) 353–354

