
Jikes Research Virtual Machine
Design and Implementation

of a 64-bit PowerPC Port

by

Sergiy Kyrylkov

Bachelor’s degree in Electronic Engineering,

Technological University of Podillya, 1999

Specialist’s degree in Electronic Engineering,

Technological University of Podillya, 2000

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2003

c
�

2003, Sergiy Kyrylkov

iii

Dedication

To my parents, grandparents, and sister

iv

Acknowledgments

I would like to express my deep appreciation to Darko Stefanović and Eliot Moss for their
expert assistance, guidance, criticisms, and comments throughout my study.

v

Jikes Research Virtual Machine

Design and Implementation
of a 64-bit PowerPC Port

by

Sergiy Kyrylkov

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2003

Jikes Research Virtual Machine

Design and Implementation
of a 64-bit PowerPC Port

by

Sergiy Kyrylkov

Bachelor’s degree in Electronic Engineering,

Technological University of Podillya, 1999

Specialist’s degree in Electronic Engineering,

Technological University of Podillya, 2000

M.S., Computer Science, University of New Mexico, 2003

Abstract

This work describes the design and implementation of a 64-bit PowerPC port of the Jikes

Research Virtual Machine (Jikes RVM). It explains general design decisions for 64-bit

implementations of Java virtual machines, specifically Jikes RVM, along with details of

the specific 64-bit PowerPC implementation.

vii

Contents

List of Figures xi

List of Tables xiii

Glossary xiv

1 Introduction 1

2 Background 3

2.1 The Java Programming Language . 3

2.2 The Java Virtual Machine . 4

2.3 Jikes Research Virtual Machine . 4

2.3.1 Object Model . 5

2.3.2 Object Headers . 6

2.3.3 Methods and Fields . 7

2.3.4 VM Conventions . 8

viii

Contents

2.3.5 Magic . 10

2.4 Garbage Collection Toolkit . 11

2.5 64-bit PowerPC architecture . 12

2.6 Motivation for a 64-bit PowerPC port of Jikes RVM 12

3 Design 15

3.1 JTOC Layout . 15

3.2 Object Layout . 16

3.3 Stack Frame Layout . 18

3.4 Method Signatures and Code . 22

3.4.1 System Calls . 23

3.4.2 Semantic Splitting . 24

4 Implementation 28

4.1 Base Compiler . 29

4.2 Address Disambiguation and System-wide Constants 31

4.3 Method Splitting . 34

4.4 Miscellaneous Changes . 34

5 Historical 38

5.1 “Magic” . 38

5.2 Memory Management . 39

ix

Contents

5.3 Baseline Compiler . 39

5.4 Miscellaneous . 40

6 Conclusions 41

7 Future Work 43

References 44

x

List of Figures

2.1 Object Layout . 6

2.2 Stack Frame Layout . 9

3.1 Jikes RVM Table of Contents (JTOC) Layout 16

3.2 Array Object Layout . 17

3.3 Scalar Object Layout . 18

3.4 New Stack Frame Layout . 20

3.5 Operand Stack Layout . 21

4.1 Load Word Algebraic (LWA) implementation in VM Assembler.java . 32

4.2 Load int implementation in VM Assembler.java 32

4.3 imul bytecode translation in VM Compiler.java (commented-out code

corresponds to the initial 32-bit only implementation) 33

4.4 ldiv bytecode translation in VM Compiler.java (commented-out code

corresponds to the initial 32-bit only implementation) 36

4.5 System-wide constant declaration in VM Constants.java 37

xi

List of Figures

4.6 Address disambiguation and new system-wide constants in practice . . . 37

xii

List of Tables

2.1 New instructions for 64-bit implementations of the PowerPC architecture 14

3.1 New system call naming convention 25

3.2 Summary of method splitting . 27

xiii

Glossary

GC Garbage Collection

GCTk Garbage Collection Toolkit

IMT Interface Method Table

JTOC Jikes RVM Table of Contents

JVM Java Virtual Machine

RVM Research Virtual Machine

TIB Type Information Block

VM Virtual Machine

xiv

Chapter 1

Introduction

64-bit computing, contrasted with 32-bit computing, can in general be characterized by

very large memory support, very large application virtual address spaces, and 64-bit in-

teger computation, using 64-bit general-purpose registers. In such 64-bit systems, an ap-

plication’s virtual address space is measured in terabytes and an increasing number of

programs can exploit this opportunity. For example, some database servers use a large ad-

dress space for scalability and maintain very large data buffers in memory, thus reducing

the amount of I/O they perform. Some computationally intensive programs can benefit

from keeping much larger arrays of data to be computed on entirely in memory. Both

of these types of applications exhibit performance gains only when the physical memory

available is large enough. On the other hand, other applications, including virtual ma-

chines with new memory management algorithms, can potentially benefit merely from

having a very large virtual address space without additional physical memory.

As a result, 64-bit computing introduces a new set of research opportunities related

both to evaluating previously existing 32-bit solutions in the 64-bit world and to inventing

brand-new approaches specifically exploiting the benefits of 64-bit architectures. In the

field of memory management, for instance, we can talk about the feasibility of reference-

1

Chapter 1. Introduction

counting algorithms for large address spaces, as an example of evaluating an existing so-

lution in the 64-bit world, or we can focus on new, more flexible, heap layouts that provide

for more efficient write barriers.

Taking into account these possibilities, we observed that there was no 64-bit, free,

open-source virtual machine available that could serve as a useful test-bed for prototyping

new 64-bit virtual machine technologies. This fact and the reasons stated above prompted

us to design and implement a 64-bit PowerPC port of Jikes RVM, documented in this

paper.

Chapter 2 offers overviews of some relevant aspects of Java, Java Virtual Machines,

Jikes Research Virtual Machine, Garbage Collection Toolkit (GCTk), and of the 64-bit

PowerPC architecture. Chapter 3 discusses design decisions relevant to any 64-bit imple-

mentation of Jikes Research Virtual Machine. Chapter 4 covers the details of our 64-bit

PowerPC port of the virtual machine. Chapter 5 talks about differences between Jikes

Research Virtual Machine versions 2.0.3 and 2.3.0.1, the latest version of the Research

Virtual Machine to date. Chapter 6 concludes.

2

Chapter 2

Background

2.1 The Java Programming Language

The Java programming language [5] is a general-purpose object-oriented, robust,

architecture-neutral, portable, secure, multithreaded language, with implicit memory

management. The object-oriented features of Java are mostly the same as in C++, with

addition of interfaces and extensions for more dynamic method resolution. At the same

time, unlike C++, Java does not support operator overloading, multiple inheritance, or

automatic type coercion. Robustness is mostly achieved by extensive dynamic (runtime)

checking and a built-in exception handling mechanism. The Java compiler generates

bytecode instructions that are independent of any specific architecture, and thus provide

architecture neutrality. Additional portability is achieved by specifying the sizes of the

primitive data types and the behavior of arithmetic operators on these types. For example,

int always means a signed two’s complement 32-bit integer, and float always means a 32-

bit IEEE 754 floating point number. Java also has a set of synchronization primitives that

are based on the widely used monitor and condition variable paradigm. Automatic garbage

collection (GC) simplifies the task of Java programming and dramatically decreases the

3

Chapter 2. Background

number of bugs, but makes the system somewhat more complicated.

2.2 The Java Virtual Machine

The Java Virtual Machine (JVM) is a specification [8] for software responsible for

running Java programs compiled into a special instruction set—Java bytecode. JVM is

an abstract computing machine and is responsible for Java hardware and operating system

independence, the small size of its compiled code, and its ability to prevent malicious

programs from executing. The Java Virtual Machine does not assume any particular

implementation technology, hardware, or operating system.

2.3 Jikes Research Virtual Machine

Jikes Research Virtual Machine (RVM) is a virtual machine developed at IBM T.J. Watson

Research Center and capable of running a wide variety of Java programs1. The virtual

machine (VM) is implemented in the Java programming language [5]. It uses two

bytecode-to-native compilers: baseline and optimizing, but no interpreter. Jikes RVM also

includes a family of modern garbage collectors and an adaptive compilation infrastructure.

Jikes RVM is an open-source project and runs on Linux/IA-32 [2], Linux/PowerPC,

and AIX/PowerPC2. Although almost all of the VM is written in Java, its low-level

functionality is implemented without breaking the Java language specification. This is

achieved using “magic”, a mechanism to implement low-level functionality that is not

possible in pure Java.

Jikes RVM can be divided into the following major subsystems: core runtime (class

1This section refers to Jikes Research Virtual Machine v2.0.3, released on March 11, 2002.
2Jalapeño, the precursor to Jikes RVM, ran only on PowerPC/AIX.

4

Chapter 2. Background

loader, library support, profiler, scheduler, verifier, etc.); compilers (baseline, optimizing);

memory managers, which include a variety of copying and reference-counting garbage

collection algorithms; and an adaptive optimization system. Below we provide some

details of runtime implementation.

2.3.1 Object Model

The Java programming language [5] and the Java virtual machine [8] operate on two kinds

of types: primitive types and reference types. Correspondingly, there are two types of

values: primitive values and reference values. The Java virtual machine also supports

objects. An object is either a class instance having fields or an array having elements. An

object consists of two major parts: the object header and the body (instance fields or array

elements).

The following requirements determine the Jikes RVM object model: instance field and

array accesses should be as fast as possible, null-pointer checks should be performed by

the hardware if possible, virtual method dispatch should be fast, other less frequent Java

operations should not be prohibitively slow, and object header size should be as small as

possible to minimize heap space overhead.

If a reference to an object is stored in a register, the fields of the object can be accessed

at a fixed offset with a single RISC instruction. In the case of arrays, the reference to an

array points to the first element and the remaining elements are laid out in ascending order.

The array length is stored just before the first element. Thus, array elements can also be

accessed at a fixed offset with a single instruction (not counting the array bounds check).

According to the Java Language Specification [5] and the Java Virtual Machine

Specification [8], an attempt to use a null reference in a case where an object reference

is required results in a NullPointerException. In Jikes RVM, references are machine

addresses and null is represented by machine address 0x0. Array objects grow up from

5

Chapter 2. Background

the object reference and scalar objects grow down (Figure 2.1). The AIX operating system

permits loads from low memory, but accesses to very high memory, at small negative

offsets from a null pointer, normally cause hardware interrupts. In this way, array object

accesses are trapped by the hardware, because we need to load the array length, which has

an offset -4. In the case of scalar objects, the hardware will trap field accesses at negative

offsets from the object reference, if the object reference is null.

scalar

TIB pointer

object status

array

TIB pointer

object status

length

high memory

low memory

Figure 2.1: Object Layout

2.3.2 Object Headers

The default object model uses a two-word header, which supports virtual method dispatch,

dynamic type checking, memory management, synchronization (each Java object has an

associated lock state, which can be a pointer to a lock object or a direct representation of

the lock), and hashing (each Java object has a default hash code). The object header is

6

Chapter 2. Background

located 3 words below the value of a reference to the object, leaving room for the length

field in case of an array. Other object models include three-word header when Jikes RVM

uses concurrent garbage collection or Brooks-style read barrier [4], and five-word header

for Jikes RVM garbage collection tracing [6].

One word of the header is a status word, which is divided into three bit fields. The

first bit field contains a pointer to a lock object or a direct representation of the lock. The

second bit field is used for storing the default hash code for hashed objects. The third bit

field is used by the memory manager and can include some combination of a reference

count, forwarding pointer, etc.

Another word of the header contains a Type Information Block (TIB) pointer. The TIB

holds information that applies to all objects of a particular class. It includes the virtual

method table, a pointer to an object representing the type, and pointers to a few data

structures to facilitate efficient interface invocation and dynamic type checking.

2.3.3 Methods and Fields

Compiled method bodies in Jikes RVM are represented as arrays of int and arrays of byte

on PowerPC and IA-32. The Jikes RVM Table of Contents (JTOC) stores pointers to

static fields and methods, literals, numeric constants, references to String constants, and

references to the Type Information Blocks for each class in the system. These structures

can have many types and the JTOC is declared to be an array of int, thus Jikes RVM uses

a descriptor array, co-indexed with the JTOC, to mark the entries containing references.

Pointers to instance fields and virtual methods are stored in the Type Information Block

of the class, which serves as a Jikes RVM virtual method table and insures simple dispatch

of virtual methods invoked through the invokevirtual call. Regardless of whether a virtual

method is overridden, the invokevirtual call dispatch is simple since the method occupies

the same TIB offset in its defining class and in every subclass.

7

Chapter 2. Background

On the other hand, the invokeinterface call in Jikes RVM uses an Interface Method

Table (IMT) [3], which resembles a virtual method table for interface methods. As with

the TIB, any method that could be an interface method has a fixed offset into the IMT.

However, unlike in the TIB, two different methods may have the same offset into the IMT,

in which case a conflict resolution stub is inserted in the IMT.

2.3.4 VM Conventions

Dedicated Registers

General purpose registers (GPR) and floating-point registers (FPR) in Jikes RVM can

be categorized into four types: scratch, dedicated, volatile, and nonvolatile. Dedicated

registers are registers with known contents. There are four of them: JTOC (pointer

to Jikes RVM Table Of Contents), FP (Frame Pointer, which addresses the top of the

thread specific frame), TI (Thread ID, used to set and test the locking field of light-weight

object locks) , PR (Processor Register, pointer to an object representing the current virtual

processor).

Stacks

Stacks grow from high memory to low memory. A stack is an array of 4-byte slots, each

containing either a primitive, an object pointer, a return address pointer, or a frame pointer

(Figure 2.2). The interpretation of a slot’s value depends on the value of the IP register.

Calling Conventions

All parameters are passed in volatile registers, if there are enough volatile registers

available. Object references and int parameters (or results) consume one general-purpose

8

Chapter 2. Background

LR save area

MI=-1

FP=0

saved FPRs

saved GPRs

(padding)

SP

locals

operands

spills

(object header)

...

...

saved FP

MI

“end of VM stack” sentinel

“invisible method” id

non-volatile register save area

optional padding so frame size is multiple 8

caller save/restore area

local variables

operand stack

parameter spill area

spot for this frame’s callee’s return address

this frame’s method id

this frame’s caller’s frame

guard region for detecting and processing stack overflow

low memory

high memory

Figure 2.2: Stack Frame Layout

register, long parameters consume two general-purpose registers (low-order half in the

first), and float and double parameters consume one floating-point register. Parameters are

assigned to registers starting with the lowest volatile register through the highest volatile

register of the required kind (GPR or FPR). Additional parameters are passed on the stack

in a parameter spill area of the caller’s stack frame. The first spilled parameter occupies

the lowest memory slot. Slots are filled in the order that parameters are spilled. Similarly,

an int or object reference result is returned in the first volatile general-purpose register,

a float or double result is returned in the first volatile floating-point register, and a long

9

Chapter 2. Background

result is returned in the first two volatile general purpose registers (low-order half in the

first).

Method prologue responsibilities in Jikes RVM include: executing a stack overflow

check and growing the thread stack if necessary, saving the caller’s next instruction pointer,

the callee’s return address, from the Link Register (LR), saving any nonvolatile floating-

point registers used by the callee, saving any nonvolatile general-purpose registers used

by the callee, storing and updating the Frame Pointer (FP), storing the callee’s compiled

method ID, checking to see if the Java thread must yield the virtual processor and yielding

if a thread switch was requested.

Method epilogue responsibilities in Jikes RVM include: restoring the Frame Pointer

(FP) to point to the caller’s stack frame, restoring any nonvolatile general-purpose registers

used by the callee, restoring any nonvolatile floating-point registers used by the callee,

branching to the return address in the caller.

2.3.5 Magic

Magic is a mechanism that allows us to implement certain Jikes RVM functionality that

cannot be expressed in pure Java. There are two types of magical operators. The first

are static methods of VM Magic class, while the second are mechanisms to declare code

uninterruptible.

Some methods in class VM Magic are treated specially by the compilers. These

methods make operating system calls, implement access to raw memory, perform unsafe

casts, etc. They cannot be implemented in Java code, thus the bodies of VM Magic

methods are undefined. For each of these methods the Java instructions to generate

assembly code are stored in VM MagicCompiler. When a compiler encounters a call to a

magic method, it inlines appropriate code for the magic method into the caller method.

10

Chapter 2. Background

An uninterruptible method is compiled without the insertion of hidden thread switch

points. This code can be written assuming that it cannot lose control while executing due

to a timer-driven thread switch. Neither yield points (places where current thread may

yield to another thread) nor stack overflow checks will be generated for uninterruptible

methods.

2.4 Garbage Collection Toolkit

Garbage Collection Toolkit (GCTk) is software developed for Jikes RVM at the

Department of Computer Science of the University of Massachusetts to greatly simplify

development and evaluation of garbage collection algorithms inside the virtual machine.

Like the rest of Jikes RVM, GCTk is written in Java.

Features of the toolkit include: a strong focus on code reuse, a set of built-in

collectors (including semi-space, fixed-nursery generational, “Appel-style” generational,

and “null” collectors), “brute-force” GC tracing (for getting a complete trace of object

graph mutations over the execution of a Java program), and support for “direct” and

“block-indirect” address mappings.

Limitations of GCTk include the following: GCTk is not supported software;

documentation is limited to javadoc-generated API documentation; error messages and

failure modes are not uniformly helpful; finalization is not supported; no SMP support;

includes only copying collectors (i.e., no mark-sweep, reference counting, etc.)

Starting from Jikes RVM 2.2.0, the Java Memory management Toolkit (JMTk), which

grew out of GCTk, replaced so-called “Watson” collectors in Jikes RVM 2.0.3. This

marked the end of GCTk develoment.

11

Chapter 2. Background

2.5 64-bit PowerPC architecture

The PowerPC instruction set architecture was designed from the very beginning with both

32-bit and 64-bit computation modes in mind [9]. Thus, the 64-bit PowerPC architecture is

a superset of the 32-bit architecture, providing binary compatibility for 32-bit applications.

It extends addressing and fixed-point computation to 64 bits. It also supports dynamic

switching between the 64-bit mode and the 32-bit mode (not likely to be supported within

a single process by the operating system, but rather to allow 32-bit and 64-bit processes to

exist simultaneously).

The 64-bit PowerPC execution environment is summarized by a number of properties.

The C long type (and types derived from it) and all pointer types in 64-bit mode are 64

bits in size. 64-bit applications can make use of 64-bit PowerPC instructions, including

64-bit instructions for loading and storing 64-bit data operands, and for performing 64-

bit arithmetic and logical operations. The size of a general machine register is 64 bits

in 64-bit mode. The maximum theoretical limit for the size of 64-bit applications, their

heaps, stacks, shared libraries, and loaded object files is millions of gigabytes, although

the practical limits are dependent on the file system limits, paging space sizes, processor

implementation limits on virtual and physical address space, and system resources

available. New instructions for 64-bit implementations of the PowerPC architecture are

summarized in Table 2.1.

2.6 Motivation for a 64-bit PowerPC port of Jikes RVM

The main motivation for implementating the 64-bit PowerPC port of Jikes RVM comes

from the idea of address-order write barriers for the Older-First garbage collector [10, 11].

The Older-First garbage collector is a copying stop-the-world garbage collector that

12

Chapter 2. Background

collects older objects before the younger ones and halts program threads during garbage

collection. It notably reduces the amount of copying in comparison with generational

collectors with both fixed and variable-size nurseries. On the other hand, the 32-bit Older-

First garbage collector suffers from the increased cost of the write-barrier (up to 10 times

more expensive). Nevertheless, the savings in copying can prevail over the increased cost

of the write-barrier to provide overall performance, which is comparable and in many

cases better than performance of generational collectors.

The aforementioned situation leads to a possibility of improving the implementation of

the Older-First garbage collector even further by decreasing the cost of the write-barrier.

An intuitive solution to this problem comes with the introduction of a 64-bit address space,

which may be used to significantly reduce pointer tracking cost.

Newly available inexpensive 64-bit machines, including recently introduced Apple

Power Mac G5, make it even more attractive to have an open-source 64-bit VM available.

13

Chapter 2. Background

cntlzd Count Leading Zeros Doubleword
divd Divide Doubleword
divdu Divide Doubleword Unsigned
extsw Extend Sign Word
fcfid Floating Convert From Integer Doubleword
fctid Floating Convert To Integer Doubleword
fctidz Floating Convert To Integer Doubleword with round toward Zero
lwa Load Word Algebraic
lwaux Load Word Algebraic with Update Indexed
lwax Load Word Algebraic Indexed
ld Load Doubleword
ldarx Load Doubleword And Reserve Indexed
ldu Load Doubleword with Update
ldux Load Doubleword with Update Indexed
ldx Load Doubleword Indexed
mulhd Multiply High Doubleword
mulhdu Multiply High Doubleword Unsigned
mulld Multiply Low Doubleword
rldcl Rotate Left Doubleword then Clear Left
rldcr Rotate Left Doubleword then Clear Right
rldic Rotate Left Doubleword Immediate then Clear
rldicl Rotate Left Doubleword Immediate then Clear Left
rldicr Rotate Left Doubleword Immediate then Clear Right
rldimi Rotate Left Doubleword Immediate then Mask Insert
slbia SLB Invalidate All
slbie SLB Invalidate Entry
sld Shift Left Doubleword
srad Shift Right Algebraic Doubleword
sradi Shift Right Algebraic Doubleword Immediate
srd Shift Right Doubleword
std Store Doubleword
stdcx. Store Doubleword Conditional Indexed
stdu Store Doubleword with Update
stdux Store Doubleword with Update Indexed
stdx Store Doubleword Indexed
td Trap Doubleword
tdi Trap Doubleword Immediate

Table 2.1: New instructions for 64-bit implementations of the PowerPC architecture

14

Chapter 3

Design

We now describe general design decisions for 64-bit implementations of Jikes RVM. These

decisions are relevant not only to the 64-bit PowerPC architecture, but to most of the 64-bit

architectures available today. We first consider the layout of various data structures (static

data, heap objects, and thread stacks) and then consider effects on signatures and code.

3.1 JTOC Layout

As we mentioned before, the Jikes RVM Table of Contents (JTOC) stores pointers to

static fields and methods. In addition to this, the JTOC includes all pointers to the global

data structures of the VM, such as classes and virtual method tables (called TIBs, for

Type Information Blocks), as well as literals, numeric constants, and references to String

constants. Since these data can be of many different types, the JTOC is declared as an int

array. Hence, Jikes RVM uses a descriptor array, co-indexed with the JTOC, to identify

which entries contain references (so the garbage collector can trace them).

For 64-bit implementations of Jikes RVM, the JTOC allocation unit remains 32-bits,

15

Chapter 3. Design

4-byte aligned. Statics of reference type take 2 array slots, with the second one marked

“EMPTY” (but actually containing half of the 64-bit pointer value).

Alignment is an additional consideration that comes up in 64-bit implementations. On

the PowerPC, the 8-byte load and store instructions provide only for offsets that are a

multiple of 4 (i.e., 4-byte aligned), and the atomic access instructions (used for volatiles

and in most updates of object Status words (see below)) require 8-byte alignment. Further,

even though most accesses will work 4-byte aligned, performance is better when they they

are 8-byte aligned. So we 8-byte align all items that are 8 bytes long. Figure 3.1 contrasts

the 32-bit and 64-bit versions of the JTOC layout corresponding to these Java declarations:

static double a = 3.14D;

static int b = 123;

static Object o = null;

static void foo () � ... �

int []32-bit case 64-bit case

static int b = 123

static double a = 3.14D (hi)

static void foo() {...}

static Object o = ...

0

1

2

3

4

5

6

7

static double a = 3.14D (lo)

static void foo() {...} (lo)

static Object o = ... (lo)

static Object o = ... (hi)

EMPTY

EMPTY

EMPTY

EMPTY

EMPTY

METHOD

METHOD

NUMERIC_FIELD

WIDE_NUMERIC_FIELD

REFERENCE

NUMERIC_FIELD

WIDE_NUMERIC_FIELD

EMPTYEMPTY

REFERENCE

static void foo() {...} (hi)

EMPTY

8EMPTY EMPTY

static int b = 123

static double a = 3.14D (hi)

static double a = 3.14D (lo)

Figure 3.1: Jikes RVM Table of Contents (JTOC) Layout

3.2 Object Layout

Jikes RVM associates a two-word object header with each class instance object. One word

of the header is the status word. The other word is a reference to the TIB of the object’s

16

Chapter 3. Design

class, which describes the object’s class, its superclass, the interfaces it implements, and

has pointers to the class’s virtual methods.

In our 64-bit implementation of Jikes RVM, the header size is 16 bytes, twice that

of the 32-bit world. The object status is mostly kept in the low-order part of its 8-byte

word. The status must be accessed and updated using 8-byte operations, however, since it

can contain a GC forwarding pointer (taking 64 bits since it is a reference). We allocate

objects aligned on 8-byte boundaries, so that atomic accesses to the header words are

legal.1 The system uses such accesses when performing monitor (locking) operations on

the object, and also during garbage collection to store a forwarding pointer, mark bits, etc.

Part of the design of Jikes RVM is that the header and length word precede the elements

of an array (see Figure 3.2), and object fields precede the header for scalar (non-array)

objects (see Figure 3.3). The reason for the latter design decision is so that references to

the header or fields of a scalar object, or to the header or length of an array, will go to

very high memory locations when the object reference is null (zero), i.e., they will wrap

around and become “negative”. Thus references through null pointers turn into accesses

to unmapped memory. This avoids explicit null-pointer checks in most cases.

32-bit case 64-bit case

TIB pointer

object status object status(mostly unused)

TIB word

status word

bit 0 (MSB) bit 31 (LSB) bit 0 (MSB)

TIB pointer

bit 31 bit 63 (LSB)bit 32

(array elements)

length

(array elements)

length(unused)length word

Figure 3.2: Array Object Layout

The figures contrast the 32-bit and 64-bit object layouts, showing that there are only

two differences introduced in the 64-bit version. The status word usually uses only the

1The LDARX and STDCXr atomic access instructions on the 64-bit PowerPC architecture
require 8-byte alignment.

17

Chapter 3. Design

32-bit case 64-bit case

TIB pointer

object status object status(mostly unused)

TIB word

status word

bit 0 (MSB) bit 31 (LSB) bit 0 (MSB)

TIB pointer

bit 31 bit 63 (LSB)bit 32

(object fields) (object fields)

Figure 3.3: Scalar Object Layout

low order 32 bits of its 64-bit slot—but it uses all 64 bits in the case of a GC forwarding

pointer, so we cannot pack array headers more tightly. The length word for arrays uses

only the low 32 bits of its slot, because the Java language [5] does not permit arrays with

more than 231 � 1 elements, i.e., array indices are always of type int). Given the alignment

constraints, and the need for object header fields to lie at fixed offsets from object pointers,

it does not appear possible to avoid the unused half-slot associated with array lengths, at

least not without a more complex design or significant cost impact to some operations

on objects that one would like to be cheap. Fortunately, the space impact in terms of

percentage increase in storage needed for arrays is likely to be small in most cases.

3.3 Stack Frame Layout

We first describe generic properties of Java stack frames, mostly derived from the JVM

specification. Each JVM thread has its own JVM stack. A JVM stack stores frames and is

not manipulated directly except to push and pop frames. In Jikes RVM, these per-thread

stacks are declared as arrays of int, merely reserving some memory to be used as a JVM

stack. (In the 64-bit implementation we actually use the space as a collection of aligned

8-byte quantities.)

A frame stores a variety of data and partial results, participates in dynamic linking, etc.

The JVM creates a frame for each method invocation, and deletes it when the invocation

18

Chapter 3. Design

completes. Each frame, among other things, has its own array of local variables and an

operand stack. Figure 3.4 shows the stack layout used in Jikes RVM, contrasting the 32-

and 64-bit versions. The 64-bit version simply widens each slot from 32 to 64 bits, as

discussed further below. Here are explanations of the abbreviations in the figure. LR is the

link register, which receives the return address when performing a call (“branch and link”)

instruction. MI is the method identifer. As it builds a frame, Jikes RVM stores the method

identifier of the method being invoked in the frame. Every method in the system has a

unique 32-bit identifier. The system uses the identifier to interpret stack frame contents

when handling exceptions, during garbage collection, etc. FP stands for the frame pointer;

during a method invocation the FP register points to the method invocation’s stack frame.

Calling and returning update the FP in LIFO fashion. FPR and GPR stand for floating

point register and general purpose register. The SP is a stack pointer, used only in methods

compiled by the baseline compiler, to refer to the top of the operand stack within the

current stack frame (about which more below). The stack grows from high to low memory.

The bottom frame (highest in memory) has a special “sentinel” marker, indicated by the

MI being � 1.

A single slot in the array of local variables or the operand stack of a frame holds a

value of type boolean, byte, char, short, int, float, reference, or returnAddress. A pair

of consecutive slots may hold a value of type long or double. VM instructions address

local variables by indexing. One may access a value of type long or double only by using

the lesser index of the pair of slots.

The operand stack starts empty when its frame is created. The JVM provides

instructions to push constants, local variables, static fields, object instance fields, array

elements, etc., onto the stack; to pop items from the stack and store them into variables,

fields, array elements, etc.; to take operands from the operand stack, operate on them,

and push the result back onto the operand stack; to prepare parameters to be passed to a

method and to receive method invocation results; and other stack manipulations, such as

19

Chapter 3. Design

LR save area

MI=-1

FP=0

saved FPRs

saved GPRs

(padding)

SP

locals

operands

spills

(object header)

...

...

saved FP

MI

“end of VM stack” sentinel

“invisible method” id

non-volatile register save area

optional padding so frame size is multiple 8

caller save/restore area

local variables

operand stack

parameter spill area

spot for this frame’s callee’s return address

this frame’s method id

this frame’s caller’s frame

guard region for detecting and processing stack overflow

low memory

high memory

(unused)

(unused)

Figure 3.4: New Stack Frame Layout

duplicating and swapping around items near the top of the stack.

Based on the information provided above, stack frame layout in any implementation

must strictly conform to the JVM specification, i.e., somehow model it faithfully, so as to

allow correct execution with the same semantics as the JVM bytecode instruction set.

The Jikes RVM Base compiler generates native code by producing naı̈ve code for each

bytecode, explicitly pushing and popping items on the operand stack and directly modeling

the local variable array.2

2Later versions of the Jikes RVM Base compiler determine the stack height at each bytecode
and thus avoid maintaining an explicit stack pointer (SP), but they still generate code that does all
the data movement to/from the operand stack.

20

Chapter 3. Design

For this strategy to work, particularly for “untyped” bytecodes such as dup and dup2,

which duplicate one or two slots on the top of the stack, we must use the same number

of slots in the 64-bit implementation as in the 32-bit one. Because references and return

addresses must fit in one slot (so as to satisfy the JVM specification), all slots need to be

64 bits in size. Thus, we simply “widen” all the stack frame slots in going from 32 to 64

bits, as shown in Figure 3.5. This uses more space than strictly necessary, but affects only

thread stacks, which usually do not dominate space consumption. As shown in the figure,

an int (or other non-64-bit numeric value) uses only the low-order half of its slot, whereas

references and return addresses use the whole slot. Items of type long and double use

one whole slot, but have two slots reserved. Again, this wastes space, but only in thread

stacks, not objects or statics (globals). In order to offer best performance and to provide

for atomic updates of stack frame slots if necessary slots are 8-byte aligned.

32-bit case 64-bit case

int (unused) int

long (hi)

long(lo) long

(unused)

float

double(hi)

double(lo)

reference

float

double

(unused)

reference

(unused)byte byte

Figure 3.5: Operand Stack Layout

There are two ways to provide correct 32-bit integer arithmetic in these

implementations: maintain a correct sign-extended 64-bit value in the operand stack, or

store only the low-order 32 bits (leaving the high-order half of the slot undefined). The

latter approach is better because it avoids having to sign-extend most integer arithmetic

bytecode results so as to guarantee that the result is a proper sign-extended value. (For

example, if we add two integers, the result can overflow into the 33rd bit, but Java int

arithmetic is modulo 232.) We always sign-extend 32-bit integers as we load them from

21

Chapter 3. Design

the operand stack, and we store only the low-order 32 bits into the operand stack.

We observe that in an optimizing compiler, it is possible for intermediate results in

registers, which are always 64 bits wide, to be correct in the low-order 32 bits but not

properly sign extended. This may lead to problems with some operators (division comes

to mind, as well as array indexing) so as to require explicit sign-extension in some cases

(though many cases may be improved [7]). Comparison is a common case, but fortunately

the PowerPC offers 32-bit as well as 64-bit comparison operators, so we simply use the

appropriate one.

One final observation we have is that using 64-bit wide stack slots might benefit some

32-bit implementations that model the JVM specification directly. If the processor requires

loads of 64-bit longs or doubles to be 64-bit aligned, the only way to guarantee that in the

operand stack is to make the slots 64 bits wide. Using a single aligned load avoids using

separate instructions to load the two halves of a 64-bit value, which is likely faster and

certainly takes less code space. Also, as with the PowerPC, proper alignment in memory

gives faster access, since it guarantees that a single access does not cross a cache line or

page boundary.

3.4 Method Signatures and Code

There are two somewhat distinct ways in which we encountered the need to change or

add methods as we moved from the 32-bit to the 64-bit world. One is support for system

calls. In the 32-bit world, all arguments to system calls fit into 32 bits, whether they are

integers or pointers; in the 64-bit world we need to distinguish integers and pointers since

we prepare arguments and return results of these types differently. More fundamental is

the semantic distinction between an int and an address.

An interesting property of the design of Jikes RVM is that most of it is written in Java,

22

Chapter 3. Design

including the garbage collectors, thread scheduler, and most of the exception handling

mechanism, in addition to the compilers, class loader, etc. In order to support systems

programming in Java, Jikes RVM includes a number of so-called magic routines [1]. There

are magics for system calls to the C library, and magics for performing address arithmetic,

among other things. In the version of Jikes RVM we used, a pre-processor rewrites the type

ADDRESS to either int (in the 32-bit world) or long (in the 64-bit world). The magic

operators that convert between object pointers and ADDRESS therefore have different

signatures in the two worlds. We now consider implications of the new mapping of

ADDRESS to long in the 64-bit world.

3.4.1 System Calls

To minimize the number of system call interface magic routines that the compiler needs

to know about (each one is a special case in compilation), the Jikes RVM convention is to

convert all object pointers to type ADDRESS using the objectAsAddress magic. Thus,

in the 32-bit world, system calls that take one parameter always take an int, whether that

is written as int (for an integer) or as ADDRESS (for a pointer).

In the 64-bit world we encounter the need for a system call magic for one int argument

and a separate one for one long argument (what ADDRESS maps to). If we consider a

system call that takes k arguments, then we may need up to 2k different methods in the

64-bit world to deal with all possible combinations of int and ADDRESS.

We considered two approaches to make the necessary changes. One way was to keep

the method name the same and distinguish the different versions using signatures, i.e.,

overloading the same method name. The other way was to introduce different method

names, which encode the desired signature (including a distinction between ADDRESS

and int). In the latter case we change a name like sysCall1 (a one argument call) to

something like sysCall I and sysCall A. This better documents intent, and is therefore a

23

Chapter 3. Design

good software engineering practice. It also helps make sure that we adjust all the calls

to sysCall1 (since we are making that name go away), and further, that if we change

the name in a particular call to sysCall A, that we ensure that the argument is of type

ADDRESS. (If it is not, then compilation will fail in either the 32-bit world, the 64-bit

world, or both.) Note that this comes up in part because we want to build the 32- and 64-bit

versions from the same source code, with as few “if 32-bit” and “if 64-bit” conditionals as

reasonably possible.

Our full system call naming convention is sysCall , followed by one letter for each

argument, then r, and lastly a letter indicating the result type (X for void). We use I

for int, A for ADDRESS, and L for long (which comes up a few times). For example,

sysCall A rI denotes a call that takes one argument, an ADDRESS, and returns an int

result. Table 3.1 summarizes system call changes.

System calls need to be “magic” because they involve a transition to the C world,

which uses different calling conventions. All “magic” methods are static methods of the

class VM Magic. All compilers in Jikes RVM recognize calls of these static methods and

generate code for them specially (similar to, but distinct from, the “native” mechanism

offered at the Java language level).

3.4.2 Semantic Splitting

Substituting ADDRESS for int resulted in what we call splitting of system call methods,

such as sysCall1 into multiple methods, such as sysCall I rX and sysCall A rX. This

splitting happens because we introduce what amounts to a type distinction, between

ADDRESS and int. (The point is even more clear with VM Address and int, since the

former is a reference type from the standpoint of the Java source compiler.)

We found other splitting necessary because of semantic distinctions we needed to

make. One such change has to do with the size of quantities, specifically of fields. In

24

Chapter 3. Design

sysCall1
sysCall A rX sysFree, sysMalloc

sysCall2
sysNetSocketListen, sysNetSocketNoBlock,

sysCall II rX
sysNetSocketNoDelay, sysWrite, sysWriteByte

sysCall IA rI sysNetSocketAccept
sysCall AI rX sysSyncCache, sysZero, sysZeroPages
sysCall AI rI sysOpen, sysStat
sysCall AA rI sysMUnmap, sysRename
sysCall AA rA sysMMapDemandZeroFixed

sysCall3
sysCall III rX sysWriteLong
sysCall III rI sysNetSocketLinger, sysSeek
sysCall IAI rI sysArg, sysReadBytes, sysWriteBytes
sysCall AII rX sysFill
sysCall AAI rX sysCopy
sysCall AAI rI sysList, sysMAdvise, sysMProtect, sysMSync

sysCall4
sysCall IIII rI sysNetSocketBind, sysNetSocketConnect
sysCall AAII rI sysNetSelect
sysCall AAII rA sysMMapGeneralFile, sysMMapNonFile
sysCall AAAA rI sysVirtualProcessorCreate

Table 3.1: New system call naming convention

the heap (instance or static field), an int takes 4 bytes, a long takes 8, and a reference takes

4 or 8 depending on whether the implementation is 32- or 64-bit. In the stack, an int and a

reference each take one slot and a long takes two, with the slot size varying between the

implementations. The upshot is that we needed to distinguish between size in the heap

and size on the stack. It was easy to introduce appropriate methods to do that. The harder

part is changing all the callers of those methods appropriately.

A second place where we encountered the need for semantic splitting is making a

distinction between int and a machine word. These two were more or less interchangeable

in the 32-bit implementation, but clearly not the same in the 64-bit one. A specific example

25

Chapter 3. Design

is the internal routine aligned32Copy, for fast copying of aligned 32-bit arrays. Its

original signature was (int dst, int src, int numBytes). We changed this to (ADDRESS

dst, ADDRESS src, int numBytes), and also added a method alignedWordCopy with

the same signature. The new method can copy faster on the 64-bit platform by doing 64-

bit loads and stores; it also assumes that the source and destination are 64-bit aligned (as

will naturally happen in the 64-bit heap). In the 32-bit world, alignedWordCopy copies

32-bit quantities and assumes only 32-bit alignment, which is appropriate to that world.

Here are two additional places of note where our port introduced semantic splits. One

is the magics having to do with accessing “words” in memory. The original system offered

int getMemoryWord(int address); the 64-bit port offers these routines instead:

int getIntAtAddress (ADDRESS address)

ADDRESS getAddressAtAddress(ADDRESS address)

WORD getWordAtAddress (ADDRESS address)

We made analogous changes to a number of similar magics.

A second splitting of note has to do with atomic access operations. The 64-bit

PowerPC offers load-with-reservation and store-conditionally instruction for both 32 and

64 bit quantities. The magic interface presented these instructions using these magics:

int prepare(Object obj, int offset)

boolean attempt(Object obj, int offset, int oldValue,

int newValue)

These we split, and obtained:

26

Chapter 3. Design

int prepareInt (Object obj, int offset)

ADDRESS prepareAddress(Object obj, int offset)

boolean attemptInt (Object obj, int offset,

int oldValue, int newValue)

boolean attemptAddress(Object obj, int offset,

ADDRESS oldValue,

ADDRESS newValue)

We needed only int and ADDRESS variants because those are the only two kinds of things

for which the system needed atomic accesses.

Old Method New Methods
getIntAtAddress, getAddressAtAddress,

getMemoryWord
getWordAtAddress
setIntAtAddress, setAddressAtAddress,

setMemoryWord
setWordAtAddress

prepare prepareInt, prepareAddress
attempt attemptInt, attemptAddress
getSize getStackSize, getHeapSize
aligned32Copy aligned32Copy, alignedWordCopy
internalAligned32Copy internalAligned32Copy, internalAlignedWordCopy

Table 3.2: Summary of method splitting

27

Chapter 4

Implementation

Having described the overall design decisions we now take a look at specifics of the

implementation. In our implementation of the 64-bit PowerPC port of Jikes RVM, we

excluded the Opt compiler, adaptive optimization system, JNI (Java Native Interface),

and so-called “Watson” (IBM) garbage collectors. The Opt compiler is a relatively large

and complicated part of Jikes RVM. We felt that the initial implementation of the 64-bit

PowerPC port would be complete enough with only the Base compiler, and would provide

us with enough functionality to explore a number of interesting questions specific to the

64-bit world.1 We comment later on what would be involved in porting the Opt compiler.

The adaptive optimization system in Jikes RVM provides functionality to identify

and recompile “hot” methods. It also enables context-insensitive online profile-directed

inlining. Thus, it requires both Base and Opt compilers to be present in order to be useful.

Since we decided to omit the Opt compiler from our initial porting effort, porting the

adaptive system was irrelevant, though we estimate that it would be relatively simple to do

(so far as we know, it has no word-length dependencies).

1As a practical matter, the Opt compiler would have required many more student-months of
effort, in a project assigned to a single graduate student.

28

Chapter 4. Implementation

JNI, the Java Native Interface, is the native programming interface for Java. It enables

programmers to take advantage of platform-specific functionality outside of the Java

Virtual Machine. JNI was not required for Jikes RVM itself to be fully functional—it

was needed only for a small subset of the Java programs that run on Jikes RVM and that

use JNI in some way or another. The vast majority of the programs in which we were

interested for our research purposes did not rely on JNI. In addition to these observations,

JNI contained a fairly large amount of very platform-specific code, which would require a

lot of rewriting. Guided by these facts, we decided to exclude JNI from our initial porting

effort as well.

In our choice of garbage collectors, we favored the GCTk (Garbage Collection

Toolkit), which provides a unified framework for developing various kinds of garbage

collection algorithms. Hence, we ported most GCTk collectors but we left out the older

“Watson” collectors written by the run-time team of the Jikes RVM project.

Jikes RVM source code can be divided into an architecture-dependent part, containing

the low-level compiler implementation, and a mostly architecture-independent part

implementing the run-time system, including the class loader, memory managers,

scheduler, etc. We first describe our implementation of the 64-bit PowerPC Base compiler

port. We then describe address disambiguation and introduction of new system-wide

constants. Later we consider implementation issues related to method splitting, including

system calls. Finally we talk about other changes to the Jikes RVM including the

bootimage writer, C code, and the configuration and build system.

4.1 Base Compiler

The Base compiler is the simpler of the two compilers of Jikes RVM. Its goal is to

generate code that is clearly correct, and to do so simply and quickly. Base compiler

29

Chapter 4. Implementation

code generation is a straightforward, single pass, bytecode-by-bytecode translation of Java

virtual machine instructions into PowerPC machine code.

Our goal was to have a pure 64-bit implementation of the Base compiler, which fully

benefits from the new features of the 64-bit PowerPC architecture and the new 64-bit

instructions. In passing, we updated the mnemonics used in both the 32- and 64-bit

versions of the Base compiler from the old POWER mnemonics to the current PowerPC

ones.

The Base compiler in Jikes RVM consists of about a dozen files, with most of the

code contained in VM Assembler.java and VM Compiler.java. VM Assembler.java

mostly contains methods that emit corresponding PowerPC instructions by generating the

necessary bit patterns encoding different instructions and their arguments.

The PowerPC 64-bit mode instruction set is a superset of the 32-bit instruction set.

Instructions are 32-bit values, so the type INSTRUCTION remained the same (mapped to

int), offsets into compiled code remained divisible by 4, and so on.

We implemented a number of new 64-bit instructions in VM Assembler to enable

their use in the 64-bit PowerPC Base compiler (Figure 4.1). These look much like the

instructions previously supported, and are pure additions in the same style.

In addition to new 64-bit instructions, we introduced a number of “macro” instructions

to load and store 32-bit integer and word-sized quantities to and from the operand stack

(Figure 4.2). These introduce a higher degree of abstraction in code generation and reduce

the number of 32- versus 64-bit conditionals elsewhere in the code.

In some cases, we changed the implementation of bytecodes only slightly to guarantee

correct 32/64-bit code generation, using the new, more abstract, “macro” instructions

(Figure 4.3). In many other cases, Java code implementing the bytecodes was split into

two separate versions and/or significantly changed in other ways so as to generate machine

code to implement both 32- and 64-bit cases, using new 64-bit opcodes and features of the

30

Chapter 4. Implementation

64-bit PowerPC architecture (Figure 4.4). (In the example, the 32-bit version calls an out-

of-line support routine for dividing long values, whereas the 64-bit version uses the 64-bit

hardware instructions.)

Register usage conventions for the 64-bit implementation mostly remained the same,

except that values of type long now take only one general-purpose register (or one spill

slot). This change additionally affected the interpretation of saved registers in dynamic

bridge frames, the loading of registers as a call is generated, and the saving of registers in

the method prologue.

Upgrading VM Assembler and VM Compiler, and a few other files that directly

produce machine code was mostly straightforward and localized. It was time-consuming

because of the sheer number of cases one must consider carefully and get right. Also, we

ended up doing two or three iterations of changes. For example, we added the “macro”

instructions later in the process, when we saw that we were introducing many more 32/64-

bit conditionals into the code than we would like.

4.2 Address Disambiguation and System-wide Constants

Address disambiguation and introduction of new system-wide constants constituted the

next big step of our porting effort. From the very beginning, the Jalapeño virtual machine,

the predecessor of Jikes RVM, was designed to run on only a single combination of

architecture and operating system—PowerPC/AIX. This influenced the initial design and

implementation of the system in several ways, including the use of the Java int type to

represent logically diverse types such as machine addresses, machine words, distances

between machine addresses, field offsets, and ordinary integers. At the same time, the

system contained numeric literals representing quantities such as “number of bytes in an

address”, “number of bytes in an int”, “log base 2 of the number of bytes in an address”,

31

Chapter 4. Implementation

static final int LWAtemplate = 58<<26 | 2;

static final INSTRUCTION LWA (int RT, int DS, int RA) {
return 58<<26 | RT<<21 | RA<<16 | (DS&0xFFFC) | 2;

}

final void emitLWA (int RT, int DS, int RA) {
if (VM.VerifyAssertions) {

VM.assert(fits(DS, 16));
VM.assert(correctds(DS));

}
INSTRUCTION mi =

LWAtemplate | RT<<21 | RA<<16 | (DS&0xFFFC);
if (VM.TraceAssembler)

asm(mIP, mi, "lwa", RT, signedHex(DS), RA);
mIP++;
mc.addInstruction(mi);

}

Figure 4.1: Load Word Algebraic (LWA) implementation in VM Assembler.java

and “log base 2 of the number of bytes in an int”, throughout its source code as numeric

literals (4, 4, 2, and 2, for these constants).

Implementation of a 64-bit port of Jikes RVM required both system-wide

final void emitLint (int RT, int D, int RA) {
//-#if RVM_FOR_POWERPC32
emitLWZ(RT, D, RA);
//-#endif
//-#if RVM_FOR_POWERPC64
emitLWA(RT, D, RA);
//-#endif

}

Figure 4.2: Load int implementation in VM Assembler.java

32

Chapter 4. Implementation

case 0x68: /* --- imul --- */ {
if (VM.TraceAssembler) asm.noteBytecode("imul");
//asm.emitLWZ (T0, 4, SP);
//asm.emitLWZ (T1, 0, SP);
//asm.emitMULLW(T1,T0, T1);
//asm.emitSTWU(T1, 4, SP);
asm.emitLint (T0, BYTES_IN_WORD, SP);
asm.emitLint (T1, 0, SP);
asm.emitMULLW(T1, T0, T1);
asm.emitSTWU (T1, BYTES_IN_WORD, SP);
break;

}

Figure 4.3: imul bytecode translation in VM Compiler.java (commented-out code
corresponds to the initial 32-bit only implementation)

disambiguation of addresses from other values and replacement of numerous numeric

literals in the source code with system-wide symbolic constants that could be set once,

during the build process.

For the purpose of address disambiguation, we introduced a new name, ADDRESS,

which we used throughout the system to represent constants or variables storing machine

addresses or distances between them.2 Another name, WORD, was used to represent

constants or variables storing machine words. We relied on a feature of the Jikes compiler3

that allows mapping a name to a type keyword. For the 32-bit implementation, both

ADDRESS and WORD are mapped to Java int, which is a 32-bit integer type. For the

64-bit implementation, we map ADDRESS and WORD to Java long, a 64-bit integer

type. The last class of values, offsets within objects or single tables, remained of type Java

int, since they will always fit into a 32-bit variable even in 64-bit environments.

At the same time, we introduced a set of system-wide constants into VM Constants

2This substitution had already begun within the GCTk code, but had not propagated further and
had never been tested for the 64-bit target.

3This is a Java source code to bytecode compiler that is entirely separate from the Jikes RVM.

33

Chapter 4. Implementation

(Figure 4.5), and replaced all uses of numeric literals in the source code with these new

constants. These changes produced a 32/64-bit clean implementation of the system; we

give a code comparison example in Figure 4.6. In practice, going through all the code in

the system to find uses of numeric constants and replacing them with appropriate symbolic

names was one of the most time-consuming aspects of the port. There are two reasons for

this: the volume of code we needed to peruse, and the level of understanding we needed

of each bit of code in order to substitute the proper symbolic name.

4.3 Method Splitting

Changes in method signatures and code, described in Section 3, involved two steps in terms

of implementation. The first step was to implement new methods, conforming to new

naming conventions. The second step was to identify the parts of the system that used those

methods with changed signatures and to rewrite the calls using the new conventions. The

fact that many places that needed adjustment to use new conventions coincided with places

that we had to address-disambiguate in the previous step of the port helped to identify parts

of the code that used methods with changed signatures. It was helpful that we had changed

the signatures, since we thus got Java source compilation errors at those places that needed

updating.

4.4 Miscellaneous Changes

In order for Jikes RVM to run and be able to load and compile additional classes, a certain

set of basic functionality (a classloader, an object allocator, a compiler, etc.) must be

compiled into an executable boot image. The boot image is a copy of Jikes RVM in

memory, written to a file. A short program, called the boot-image runner, written in C,

loads a boot image back to memory and executes it, branching to a designated startup

34

Chapter 4. Implementation

method. A boot image is created by a special program, the boot-image writer. The boot-

image writer is an ordinary Java program and can run on any JVM.

Extending the boot-image writer to generate a 64-bit boot image involved most of the

previously described modifications we made to Jikes RVM. In other words, it included

address disambiguation and introduction of new system-wide constants, changing method

naming conventions and method signatures, and implementing separate 64-bit method

cases in some parts of the code, using preprocessor directives.

Only a very small part of Jikes RVM is written in C. This is the most low-level part of

the code responsible for access to the file system, the network, and processor resources,

using the standard C library. Half of this code includes simple functions that convert

parameters and return values between Java and C formats. The other half of the C code

consists of the boot-image runner and two signal handlers, one for handling hardware traps

and trap instructions and one for passing timer interrupts to Jikes RVM.

In C code we use the 64BIT preprocessor flag to implement 64-bit cases of certain

functions along with ADDRESS, WORD, and UWORD typedef identifiers, which map

to appropriate signed or unsigned values in the 32-bit and 64-bit environments.

The Jikes RVM configuration and build system consists of the main jconfigure script,

a number of additional helper scripts, a set of predefined configurations for different

architecture/OS configurations, and a set of predefined configurations of the Jikes RVM

(including compiler combinations and the type of garbage collector and allocator used).

The required changes in the configuration and build system for 64-bit PowerPC

configurations included creating a new architecture/OS configuration powerpc-ibm-

aix4.3.3.0-64, defining a new RVM FOR POWERPC64 preprocessor variable in

the jconfigure script, and modifying jconfigure to include script cases for the new

preprocessor variable.

35

Chapter 4. Implementation

case 0x6d: /* --- ldiv --- */ {
if (VM.TraceAssembler) asm.noteBytecode("ldiv");
//asm.emitLWtoc(T0, VM_Entrypoints.longDivideOffset);
//asm.emitMTLR(T0);
//asm.emitLWZ (T1, 12, SP);
//asm.emitLWZ (T0, 8, SP);
//asm.emitLWZ (T3, 4, SP);
//asm.emitLWZ (T2, 0, SP);
//asm.emitCall(spSaveAreaOffset);
//asm.emitSTW (T1, 12, SP);
//asm.emitSTWU (T0, 8, SP);
//-#if RVM_FOR_POWERPC32
asm.emitLwordtoc(T0, VM_Entrypoints.longDivideOffset);
asm.emitMTLR(T0);
asm.emitLWZ (T1, 3 * BYTES_IN_WORD, SP);
asm.emitLWZ (T0, 2 * BYTES_IN_WORD, SP);
asm.emitLWZ (T3, BYTES_IN_WORD, SP);
asm.emitLWZ (T2, 0, SP);
asm.emitCall(spSaveAreaOffset);
asm.emitSTW (T1, 3 * BYTES_IN_WORD, SP);
asm.emitSTWU(T0, 2 * BYTES_IN_WORD, SP);
//-#endif
//-#if RVM_FOR_POWERPC64
asm.emitLD (T0, 2 * BYTES_IN_WORD, SP);
asm.emitLD (T1, 0, SP);
asm.emitTDIEQ0(T1);
asm.emitDIVD (T0, T0, T1);
asm.emitSTDU (T0, 2 * BYTES_IN_WORD, SP);
//-#endif
break;

}

Figure 4.4: ldiv bytecode translation in VM Compiler.java (commented-out code
corresponds to the initial 32-bit only implementation)

36

Chapter 4. Implementation

//-#if RVM_FOR_POWERPC32
static final int BYTES_IN_ADDRESS_LOG = 2;
//-#endif
//-#if RVM_FOR_POWERPC64
static final int BYTES_IN_ADDRESS_LOG = 3;
//-#endif
static final int BYTES_IN_INT_LOG = 2; // defined by Java
static final int BYTES_IN_INT = 1<<BYTES_IN_INT_LOG;
static final int BITS_IN_BYTE_LOG = 3; // defined by Java
static final int BITS_IN_BYTE = 1<<BITS_IN_BYTE_LOG;
static final int BITS_IN_INT_LOG = 5; // defined by Java
static final int BITS_IN_INT = 1<<BITS_IN_INT_LOG;
static final int BITS_IN_ADDRESS_LOG =
BYTES_IN_ADDRESS_LOG + BITS_IN_BYTE_LOG;

static final int BITS_IN_ADDRESS = 1<<BITS_IN_ADDRESS_LOG;
static final int BITS_IN_WORD_LOG = BITS_IN_ADDRESS_LOG;
static final int BITS_IN_WORD = BITS_IN_ADDRESS;

static final int MAX_INT = 0x7fffffff;
static final int BYTES_IN_SHORT_LOG = 1;
static final int BYTES_IN_SHORT = 1<<BYTES_IN_SHORT_LOG;
static final int BYTES_IN_LONG_LOG = 3;
static final int BYTES_IN_LONG = 1<<BYTES_IN_LONG_LOG;
static final int BYTES_IN_DOUBLE = 8;

Figure 4.5: System-wide constant declaration in VM Constants.java

int beg = VM.objectAsAddress(instructions);
private static int obsoleteMethodCount;

versus
ADDRESS beg = VM.objectAsAddress(instructions);
private static int obsoleteMethodCount;

int tibIndex = method.getOffset<<2;
versus

int tibIndex = method.getOffset<<BYTES_IN_ADDRESS_LOG;

Figure 4.6: Address disambiguation and new system-wide constants in practice

37

Chapter 5

Historical

This chapter describes the differences between Jikes RVM versions 2.0.3 and 2.3.0.1

5.1 “Magic”

Jikes RVM 2.3.0.1 implements a set of new magical classes: VM Address, VM Word,

VM Offset, and VM Extent, which are used in parts of the runtime and the garbage

collector.

VM Address in particular is used to represent a raw machine address type, which is

naturally machine-dependent. In our 64-bit port of Jikes RVM 2.0.3, we used ADDRESS

for this purpose, which was replaced with either Java int or long by the Jikes source-

to-bytecode compiler. This approach was simple to implement, but it had several

disadvantages. First, it lacks appropriate abstraction. Second, Java int and long are signed,

whereas machines addresses are unsigned values. This difference limited usable address

space in 32-bit implementation of Jikes RVM 2.0.3 to 2GB.

38

Chapter 5. Historical

VM Address supports a number of necessary methods such as methods for adding an

integer offset to an address to calculate another address, computing the difference of two

addresses, and comparison operations. At the same time, it does not implement operations

like address multiplication, which make sense for Java int, but no sense whatsoever for

addresses.

To use a Java object to represent a raw machine address type would have been

extremely inefficient. Instead, when the Jikes compiler encounters creation of a

VM Address object, it returns a primitive value that represents an address for a particular

platform. This means that currently address maps to a 32-bit or 64-bit unsigned integer.

5.2 Memory Management

Starting from Jikes RVM 2.2.0, the Java Memory management Toolkit (JMTk) became

the default memory management system of Jikes RVM. It replaced so called “Watson”

collectors in Jikes RVM 2.0.3 and phased out the development of GCTk.

JMTk is more portable, modular, and object-oriented toolkit than GCTk. It consists

of three major components: plans (SemiSpace, MarkSweep, GenCopy, GenMS, CopyMS,

and NoGC); policies (mark-sweep collection, free-list allocation, bump-pointer allocation,

etc.); and utilities (load-balancing parallel queues, sequential store buffers, etc.).

5.3 Baseline Compiler

Since Jikes RVM 2.0.3, the baseline compiler has undergone a major restructuring to

increase the amount of platform-independent code to about 2/3. Principal changes include:

a rewrite of PowerPC baseline compiler to enable it to generate code for both 32 and

64-bit PowerPC without preprocessor conditionals, elimination of explicit use of the

39

Chapter 5. Historical

SP register by computing offsets from the FP at compile time, and uniform use of

PowerPC mnemonics (instead of mixed POWER and PowerPC) for the instructions in

VM Assembler.

5.4 Miscellaneous

Other important changes since Jikes RVM 2.0.3 include: introduction of packages in

Jikes RVM source code, switching entirely to the GNU Classpath libraries, implemention

of support for separate name spaces for classloaders, and implementation of JNI for

Linux/PowerPC.

40

Chapter 6

Conclusions

We have described the design and implementation of a port of Jikes RVM to the 64-bit

PowerPC architecture. In the port, we addressed a number of issues that came up because

of the differences between modern 32-bit and 64-bit architectures. We introduced new

types ADDRESS and WORD and a number of system-wide constants to disambiguate

variables and code dealing with machine addresses. In parallel, we updated a number of

method signatures and respective code to allow Jikes RVM to treat correctly both four-

byte and eight-byte addresses. We believe that major design decisions we made and

implemented during our effort will make porting of Jikes RVM to other 64-bit architectures

substantially easier. In fact, we are currently porting Jikes to the IA-64 architecture.

Our effort, described in this thesis, provides a number of useful insights to people

involved in virtual machine research and development and will help them in design

and implementation of future robust and portable software. Several design factors are

important for this task. The most important observation is that one should avoid making

simplifying assumptions about the system. If certain values are the same in terms of size

and can be stored in a variable of the same type, it is still very important to preserve

semantic distinctions between different types of values (int, ADDRESS, and WORD

41

Chapter 6. Conclusions

versus int), because on other architectures their size may be different. This will also in

many cases resolve the problem of method signature changes and will help to come up

with appropriate method naming conventions (prepareInt and prepareAddress versus

prepare). In any case, method naming conventions must be selected carefully without

being closely related to a particular architecture to avoid unnecessary disambiguation later

(setEightBytes versus setDoubleWord). System-wide constants should be used in as

many places as possible to further enhance the portability of the system.

Porting Jikes RVM to the 64-bit PowerPC architecture created a number of interesting

research opportunities and introduced the first 64-bit, freely available, open-source virtual

machine to the academic and research community. It is also worth mentioning that

portability was not an initial design goal for Jikes RVM. Thus, our experience probably

covers a large set of major issues that will come up during the porting of Java virtual

machines to different architectures.

42

Chapter 7

Future Work

We contributed the source code of our 64-bit PowerPC port of Jikes RVM 2.0.3 to

IBM. Currently there is an effort to create a 64-bit PowerPC port of CVS head (version

2.3.0.1+) of Jikes RVM at IBM. As of November 2003, this port is still not functional

mostly due to the problems with JNI, which is required for GNU Classpath. Thus, future

work will include debugging of the 64-bit PowerPC port of CVS head of Jikes RVM to

provide the same functionality as we achieved in Jikes RVM 2.0.3 plus JNI and JMTk

(without optimizing compiler and adaptive infrastructure). Further improvements will

include adding a 64-bit pure PowerPC optimizing compiler and adaptive compilation

functionality.

43

References

[1] Bowen Alpern, Dick Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn
Hummel, Derek Lieber, Mark Mergen, Ton Ngo, Janice Shepherd, and Stephen
Smith. Implementing Jalapeño in Java. In Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’99), 1999.

[2] Bowen Alpern, Maria Butrico, Anthony Cocchi, Julian Dolby, Stephen Fink, David
Grove, and Ton Ngo. Experiences porting the Jikes RVM to Linux/IA32. In
Proceedings of the 2nd Java Virtual Machine Research and Technology Symposium
(Java VM ’02), 2002.

[3] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. Efficient
implementation of Java interfaces: Invokeinterface considered harmless. In
Proceedings of the 2001 ACM International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2001), 2001.

[4] R. A. Brooks. Trading data space for reduced time and code space in real-time
garbage collection on stock hardware. In Proceedings of the 1984 ACM Symposium
on LISP and functional programming, 1984.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, 2nd edition, 2000.

[6] Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S McKinley, and
Darko Stefanović. Error free garbage collection traces: How to cheat and not
get caught. In Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, volume 30(1) of ACM SIGMETRICS Performance
Evaluation Review, pages 140–151. ACM, June 2002.

[7] Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani. Effective sign
extension elimination. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI 2002), 2002.

44

References

[8] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

[9] Cathy May, Ed Sikha, Rick Simpson, and Hank Warren. The PowerPC Architecture:
A Specification for a New Family of RISC Processors. Morgan Kaufmann, 2nd
edition, 1994.

[10] Darko Stefanović. Properties of Age-Based Automatic Memory Reclamation
Algorithms. PhD thesis, University of Massachusetts Amherst, 1999.

[11] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage
collection. In Proceedings of the 1999 ACM International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’99),
1999.

45

