Older-first Garbage Collection in Practice:
Evaluation in a Java Virtual Machine -

Darko Stefanovie Matthew HertZ? Stephen M. Blackburh Kathryn S. McKinley J. Eliot B. Mos$

T Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003
{hertz,moss}@cs.umass.edu

§ Dept. of Computer Science
University of New Mexico
Albuguerque, NM 87131

darko@cs.unm.edu

ABSTRACT

Until recently, the best performing copying garbage catiexused
a generational policy which repeatedly collects the veryngest
objects, copies any survivors to an older space, and thee-inf
quently collects the older space. A previous study that gaeoage-
collection simulation pointed to potential improvemengsusing
an Older-First copying garbage collection algorithm. The Older-
First algorithm sweeps a fixed-sized window through the Hieap
older to younger objects, and avoids copying the very yosingje-
jects which have not yet had sufficient time to die. We descaitd
examine here an implementation of the Older-First algoritih the
Jikes RVM for Java. This investigation shows that Oldes@an
perform as well as the simulation results suggested, aradlgien-
proves total program performance when compared to usinga-fix
size nursery generational collector. We further compacde6First
to a flexible-size nursery generational collector in whisé turs-
ery occupies all of the heap that does not contain older thjéc
these comparisons, the flexible-nursery collector is aonatly the
better of the two, but on average the Older-First collectafgrms
the best.

1. INTRODUCTION

Garbage collection for object-oriented programming laugs
automates memory management and thus relieves prograrofmers
a source of errors and the burden of explicit memory manageme
Since most objects die quickly [15], generational copyinfec-
tors divide the heap intgenerationg3, 9, 15]. They collect the
youngest objects frequently, and copy survivors into pEegively
older generations. When the heap fills, they collect therajéa-
eration together with the younger generation.

Generational collectors prematurely copy the very younges
jects because every object nesdsnetime to die. The Older-First

*This work is supported by NSF ITR grant CCR-0085792,
NSF grant ACI-9982028, DARPA grants F30602-98-1-0101 and
F33615-01-C-1892, and IBM. Any opinions, findings, conidas,

or recommendations expressed in this material are the isttired

do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 2002 ACM 0-89791-88-6/97/05%5.00.

* Dept. of Computer Sciences
University of Texas at Austin
Austin, TX, 78712
mckinley@cs.utexas.edu

7 Dept. of Computer Science

Australian National University
Canberra, ACT, 0200, Australia
Steve.Blackburn@cs.anu.edu.au

copying garbage collector [14] exploits this observatigrakioid-

ing collecting the youngest objects. It organizes the haagrder

of object age and collects a fixed-size window that slidesugh

the heap from older to younger objects. When the heap is full,
Older-First collects the window, compacts the survivoogigally)

in place, returns any free space to the nursery, and thetigresi
the window for the next collection over objects just yountfen
those that survived. If it bumps into the allocation poittesets
the window to the oldest end of the heap.

Previous work describes a range of implementation pogsaisil
for the Older-First collector (OF) [13, 14]. It also presegarbage
collection simulation results that show OF performs muctiebe
than a fixed-size nursery generational collector. In thiskwae
describe an implementation of OF for Java in IBM’s Jikes R\&M,
well performing system [1, 2]. We present a variety of exegute-
sults that (1) validate our simulation model, (2) compareceion
times and copying ratios of OF and generational collectod,(3)
explorepausetimes (the range of times for one collection) and the
total collection time tradeoff.

These results show that Older-First delivers on its proraiseg
outperforms a tuned fixed-size nursery generational doltdxy on
average 5-25% for 10 Java programs on a wide range of heap size
We further show that these improvements are mostly due teest
copying costs.

In our experiments [4] the flexible-nursery collection adtuced
by Appel [3] consistently performs better than a fixed-siaesery
collector. Our results show that OF sometimes (in 7 of therbd p
grams studied) does better than this generational cotlestavell,
and further, OF almost always beats both generationalatolie on
maximum pause time, since the generational collectors swse-
times collect the whole heap, which OF never does.

We proceed in Section 2 with an overview of OF and design
decisions we made in the implementation as part of our Garbag
Collector Toolkit for the IBM Jikes RVM for Java. In Section 3
we give the details of the experimental setting and Sectigives
a comparative performance evaluation of the collector vatipect
to throughput, and in Section 4.3 with respect to garbagedidn
pause times.

2. DESIGN AND IMPLEMENTATION OF
THE OLDER-FIRST COLLECTOR

The Older-First collector organizes the heap by object adg [
It collects a fixed-size window that slides through the haanf
older to younger objects. When the heap is full, OF collelots t
window, makes any free space available for future allocatand
then positions the window for the next collection over otggast
younger than those that survived. If it bumps into the alioca

allocation

cl I | I | J) _
survivors

A I N N N

Figure 1: Design of the Older-First Collector

point, it resets the window to the oldest end of the heap.

This scheme is illustrated in Figure 1, which shows the aliion
regionA and the copy regiof, each of which can be considered as
queues of window-size groups of objects. OF allocates tb#uk
of regionA. Whenever all usable memory is consumed, OF collects
a window from the front of regiod, copying survivors to the back
of regionC. If all usable space is consumed aAds empty, then
OF ‘flips’ the roles of the two regions, collects the first windin
the new regiom, and copies its survivors to the back of the new,
now empty, regiorC. OF then continues to allocate to the back of
the new regiorA.

As illustrated in the figure, the heap is organized from left t
right, older to younger objects. The Older-First colleatuustre-
membeipointers from any uncollected regions to the collected re-
gion, and during a collection assume that pointers into tiected
region refer to live objects. OF need not rememdlepointers be-
tween regions; it needs to remember a pointer between tvioneg
only if it will independently collect the target before theusce. A
generational collector with two generations has just oicé segion
boundary, but OF has many boundaries and thuwiite barrier
remembers more pointers.

Previous work discusses the design and several implenmmtat
strategies for OF [13, 14]. We make a few modifications to deis
sign for our implementation. Most of these changes are sacgs
because the collector uses a 32-bit environment in Jikes R\M
stead of the envisaged large address space, which woulteayzb
timizations that reduce pointer maintenance costs. Tiygnadide-
sign had several other mechanisms to reduce pointer maimten
costs, and this implementation introduces a further erdrarat
to reduce the number of remembered pointers. The remairider o
this section presents the high-level design of the OldestRigo-
rithm implementation and discusses how this implementativi-
ates from the initial OF design.

2.1 Blocks and Frames

Jikes RVM currently supports only 32 bits of address space,
which prevents us from using an address-ordered heap irnlingc
write barrier can quickly compare virtual addresses to rdatee
if it needs to remember a pointer. We instead simulate alade
dress space by organizing objects witfraimes which are mapped
(by software) into a larger, logical, age-ordered addresees. A
frame is a contiguous aligned chunk of virtual address spasie
2F . whereF is set at system build time and was 26 for this work,
giving up to 64 frames of 64 Mb each. (In practice we actuadlg u
a few less than 16 frames because of virtual address spade-res
tions imposed by the operating system, etc.) We call the tigar
bits of a frame’s address tfiemme number

A frame is the largest amount of contiguous space in which ob-
jects reside, and the frame size thus determines the maxiolam
ject size. A frame is also the minimum unit of collection, so i
general we do not fill frames completely. For example, in tike O

collector, the window size determines how much space weatko
within a frame.

The collector represents ages by associatiige-of-deati{TOD)
with each frame, using an array indexed by frame number. \&e us
TOD because TOD values do not change as time passes, whereas
ages do. The TOD corresponds to the frame’s position in tigeta
logical address space, and allows us to apply an age-oriterhar-
rier that is analogous to (but not as efficient as) the adetvedsr
write barrier possible in a larger virtual address spacehicthvthe
frames would be placed in virtual address space in age order.

As the program executes, first one hands frames out té tiee
gion, filling each one with a windowfull of objects. When thesaip
is full, one starts handing frames out to t@eegion, filling them
with survivors from collecting the oldest frames of tAeregion.
After copying survivors from a collected frame, the framedraes
available to handout to either tiieor C region. The actual order of
the frames in virtual memory does not matter: the TOD tablegi
the necessary logical ordering both for collection and lherwrite
barrier.

Space within frames is allocated in aligned chunks of sfze 2
that we callblocks For this studyB = 17, giving a block size of
128K. A block can be no smaller than a virtual memory page and
no larger than a frame. We perform space accounting (i.tor@n
maximum heap size) in terms of blocks, and we map and unmap
virtual memory dynamically to allocate space to frames dyina
cally and to recover the space at the end of each collectiatiiww
a frame, allocation proceeds sequentially. When the nejecbb
allocation would cross a block boundary, we attempt to obaai
additional block for the frame (assuming the frame is ndj fllhis
will trigger collection if the block budget is exhausted.

2.2 Managing TOD Values

As we allocate frames to theandC regions, the frames obtain
increasing TOD values, drawing from one sequence forAtie-
gion and a higher numbered sequence forGhregion. Now if the
survival rate from the region collections is low (say 1%), then the
A region will consume TOD values much more rapidly thanGhe
region grows (100 times as fast for 1% survival), which mdahas
the Aregion TOD values can collide with tl®ion values.

In an actual large address space implementation, one weeld n
to do something, and since we are trying to emulate the ladge a
dress space case, what we do even in this implementatiofiéstco
the remaining frames of th&eregion all at once, and “flip” regions
just as we do in the case of a window reset. In fact, we call this
case ahard window resef‘hard” because it is forced; we also call
normal window resets “soft”).

When there is a “flip”, we establish the starting TOD valuehef t
new C region a certain amount higher than the starting TOD value
of the (new)A region. We call that amount thene sizeand one
can specify on the command line as a multiple of the maximum
heap size (itself a command line parameter). For our runsdwe a
justed the zone size so that hard resets did not occur (sctinvia
did not implement the hard reset case since we did not need to)

Another exceptional case is having so many window resetd, ha
or soft, that the TOD values themselves overflow. One way e ha
dle this in a large address space implementation is to capgrttire
heap to the other end of the address space, which we rafi@re-
set As with hard resets, we chose the zone size so that that zone
resets did not occur in our runs. We note that for long running
programs, it may be impossible to avoid zone resets.

2.3 Write Barrier

Our implementation limits the number of remembered pogmter
while maintaining the simplicity of the OF write-barrierste The
OF write-barrier test needs to remember a pointer between tw
blocks only if it will collect the target block before the soa block.
This occurs only if the TOD value of the target block’s fraradeiss
than the TOD value of the source block’s frame. Hence, it neve
needs to remember intra-frame pointers.

Our write barrier is complicated by the fact that we could not
use a pure address-ordered write barrier, but had to usedital
ordering of frames (age). Making each frame hold a singlkcol
tion window, we ensure that collections advance framerbyrg.
Therefore our write barrier can exclusive-or the sourceaty and
target object’'s addresses to determine if they are in the $eame.
(OF collects objects within the same frame at the same tinde an
need not remember intra-frame pointers.) If the objectsfram
different frames, the barrier looks up the frames’ ages abéetand
uses the original age-based pointer filtering technique §i&ys
collects older objects before younger ones). Although regpen-
sive than a pure address-ordered test, the implementegllvenitier
significantly limits the number both of expensive table lop& and
of remembered pointers.

In the event, the following are the PowerPC [10] instructsen
quences that the two barriers are compiled to. Figure 2 shisvs
code of the address-order write barrier, used in the gdnaedt
collectors. Figure 3 shows the write barrier with age lookuthe
frame table, used in the OF collector.

;; clear low-order 28 bits of pointer source:

rlwi nm Rt enp, Rsource, 0x0, 0x0, 0x3
;; compare with pointer target:

cnp crl, Rtarget, Rtenp

;; if comparison is favorable, skip remembering:
bge 1 | abel : do- not - renenber - poi nt er
;; fall-through: remember pointer

Figure 2: Address-order write barrier

;; calculate frame numbers for source and target:
rlwi nm Rt enpl, Rsource, 0x6, Oxla, Ox1f
extsb Rtenpl, Rtenpl
rlwi nm Rt enp2, Rtarget,
extsb Rtenp2, Rtenp2

;; intraframe pointers test:

cnp crl, Rtenpl, Rtenp2
beq 1 | abel : do- not - renenber - poi nt er
;; heap boundary test:

crmpi crl, Rtenp2, Oxf

blt 1 | abel: do-not-renenber-pointer
;; load base of TOD array:

lwz Rtemp3, a-static-offset(JTOC)

;; look up age of source and target:

0x6, Oxla, OxI1f

sli Rtenmpl, Rtenpl, 0x2
Iwzx Rtenpl, Rtenp3, Rtenpl
sli Rtenmp2, Rtenp2, 0x2

Ilwzx Rtenp2, Rtenp3, Rtenp2

;; age comparison test:

cnp crl, Rienpl, Rtenp2

bl e 1 | abel : do- not - renenber - poi nt er
;; fall-through: remember pointer

Figure 3: Write barrier with age lookup

3. EXPERIMENTAL METHOD

In this section, we describe the collectors, implementediovi-
ronment, hardware platform, test programs, configuratemame-
ters, and metrics we use to evaluate our work.

3.1 Collector families

In these experiments, the baseline is a two-generatioeatoH
with variable nursery size [3]. We refer to this collectotlasAppel
collector. It devotes all free space to the nursery. Whemthisery
is full, it copies surviving objects to the older generafiand then
reduces the nursery size by this volume. It repeats thisegsoc
until the older generation occupies the entire heap, athwpant
it performs a full heap collection, returning all free spdoethe
nursery. We have found this to be the best performing geinesit
collector [4].

Normalized to this collector, we compare two families of-col
lectors with fixed window size—the traditional two genevatl
fixed-size nursery collectors and the Older-First collestoln a
nursery of sizek, the two generational fixed-size nursery collector
sizes the nursery &thytes, and collects evekyytes of allocation.
It promotes surviving objects into the older generatiorg aen
the heap is full, it collects the entire heap. We refer to tioitector
as thegenerationalor fixed-generationatollector.

We also include the non-generational semi-space collediah
demonstrates that all of the collectors perform better tudliecting
the entire heap.

3.2 Experimental environment

We use and measure collectors in the Jikes RVM release 2)0.3 [
(formerly Jalapefio), built and running with the optimgioom-
piler turned on. Jikes RVM has no interpreter, and all Java-by
code is translated to native PowerPC code before execulibe.
virtual machine is itself written in Java, and it translattssown
bytecodes to native code [1]. This translation could be ddman-
time, but to avoid obscuring the behavior of benchmark @oty,
the classes of the virtual machine are precompiled duriagptlild
stage of Jikes RVM. However, the measured execution inslthie
compilation of the application methods to native code.

Our version of Jikes RVM includes the recently developed and
publicly available version of the UMass GC Toolkit. We bede
the collector implementations to be well-tuned. The wriserter
used in the Appel and fixed-generational collectors is amesdd
order write barrier with fast common case code [14, 5]. Thitewr
barrier used in the Older-First collector is somewhat léSsient,
as discussed in the preceding secfion.

The hardware platform is a Macintosh PowerMac G4 with a sin-
gle 733 MHz PowerPC 7450 processor, 32 KB L1 data and instruc-
tion caches, 256 KB unified L2 cache, and 640 MB of memory, run-
ning Yellow Dog Linux 2.1 (Linux kernel 2.4.10). The machiise
placed in single-user mode and disconnected from the nktiwor
the duration of the experiment.

1These results can still be improved, for the compiler doé$utly
optimize the write barrier code. Upon inspecting the coetpile-
sult, around the actual barrier code (Figure 3) we find some un
needed instructions and at least one extra branch. We ezt
fully optimized barrier would provide an additional 1-2%ng sav-
ings, but, without significant reengineering of the optiimjzcom-
piler we cannot replace the compiled barrier with fully optied
code to verify this savings. On the other hand, we are cuyrent
developing a 64-bit version of Jikes RVM which will permiting

the address-order write barrier for the Older-First cabeas well.

3.3 Test programs

We use all 8 programs from SPECjvm98 [11, 8] without any
modification. Using SPEC JBB [12] posed a challenge: in iig-or
inal form, it is a throughput-based self-calibrating pargr We
modified the code so that it performs a fixed amount of work. To
avoid confusion, this benchmark is namezkudojbb In a similar
fashion,pseudojBYTEmariwvas derived from the javaBYTEmark
code. A summary of benchmark programs used is in Table 1.

Since the Appel collector serves as reference for perfocman
measurements, we use it to determine the minimum heap sziede
to run each benchmark (namely, we stipulate that under earoir

stance will the memory manager request more memory from the

operating system than a given amount—instead, the memany ma
agerfailsif it cannot satisfy all requests within that amount of mem-
ory). In many cases, other collectors need somewhat laegmpsh
to operate and thus data points for very small heaps will serab

In the results below, we report heap sizes relative to thigsmim
heap size.

3.4 Configuration parameters

include a few results for write-barrier effects.

Garbage collection time is the sum of all collector inducadse
times, which we measure in elapsed time using the Jikes R¥M in
terface to the PowerPC Linux system clock, with an effeatnie
lisecond resolution. Note that the reported garbage daletime
does not capture thill cost of memory management, since most
allocation and write barrier actions take place during ttexation
of the mutator program, and not during garbage collectiarses.
These actions are extremely short and interleaved withcgtjun
code as a result of instruction scheduling and out-of-oedeicu-
tion; therefore it is not feasible to measure their costadiye

4. RESULTS

Because the experimental results cover a large configarspiace,
we begin by considering in detail a single benchmark, and the
present total time, mark/cons, and pause-time resultdlfbeach-
marks. We choospseudojblas our detailed study because it allo-
cates the most and has the largest live data size in our set.

4.1 Results for benchmark pseudojbb

We vary the heap size between the minimum feasible size and Figure 4 shows the mark/cons ratios obtained in statigtathering

3.25 times that amount. This range reveals the space-tadedff
which isde rigueurin garbage collection. In small heaps, the col-
lector runs more frequently and in larger heaps, less. In kegge
heaps that are sparsely populated with live objects, pagisgits.
Note that even the largest benchmark configurations opirstses
than a third of available physical memory on the experimepitd-
form, therefore we entirely avoid paging activity in thes@eri-
ments. We cover the range 1-3.25 with 17 heap sizes, spaaed mo
densely towards the low end.

For both generational and Older-First collector familigs,vary
the window size between 5% and 60% of maximum permissible
size, which is roughly half the heap size. (Within this range
find the best-performing window sizes for each family. Walger
window sizes, both families quickly degenerate into theisgace
collector.) We use 9 window sizes in this range.

3.5 Metrics

The first performance metric is the mark/cons ratio. For eopy
ing garbage collectors such as the ones we consider heseattu
is the total amount of data copied by the collector dividedtmsy
total amount of data freshly allocated by the program (lakiron
of Table 1). If the expense of copying data is the predomieant
pense of garbage collection, and that cost is nearly prigmadtto
the amount copied, the mark/cons ratio ought to be a goodatwfi
of performance. Perhaps this expense solely determinégttioh
costs early in the history of garbage collection work. Ineyah
systematic differences arise between collector familexsabse of
copying costs and other costs, such as pointer tracking [NMdy-
ertheless, the mark/cons ratio provides a clue into theingmpost,
and remains the only direct metric derivable in simulation.

Counting the amount of data allocated imposes a significat o
head on each object allocation, and similarly for the amotidata
copied. Therefore, we perform separate statistics-gathexperi-
mental runs to obtain mark/cons ratios.

We use the total execution time of the program as the ultimate
metric of garbage collection performance. Each reportad is the
minimum over three measured runs for a given configuratiotal T
execution time includes costs incurred both at garbagecadn
time and within the mutator, including the cache localitieefs of
object motion and of write-barrier actions. Unfortunatéhe total
execution time does not provide an insight into the contiduof
these various effects. We do report garbage collectionstiraad

runs, with a graph for the generational collector, and atyfapthe
Older-First collector. Heap size (horizontal) is drawn togarith-
mic scale to provide details at smaller sizes close to thénnuim
feasible. Mark/cons ratios (vertical) are normalized wébpect to
the mark/cons ratio of the Appel collector at each given reag.

For the fixed-generational collector, the relative mark&oatio
is almost always above 1. Thus, the Appel collector copigsifi
icantly less and utilizes the heap better than a fixed-gépnesd
collector, for all choices of nursery size on a range of heagss
This result agrees with the goals of the Appel collector (Rl is
only now appearing in the literature [4]. Figure 4(b) shohat the
mark/cons ratio of the Older-First collector is both lowlar the
generational collector and usually lower than Appel. Thesalts
confirm our earlier simulation-based study comparing O it
fixed-generational collector [14].

Looking more closely at the sizes of the collected regiomgety
in the case of the generational collector, window size foj), @
note that there is considerable variation in which regiae giives
the lowest mark/cons ratio, as the heap size is varied, aactiaht
efficient sizes tend to be small, but not too small. Many caméig
tions of the generational collector operate well with niysgzes
from 5 to 15% of the heap size, but fail with large sizes. OF @gen
robust with respect to this parameter; it operates well witihdow
sizes between 5 and 40% of the heap.

Figure 5 shows the garbage collection times for differenbage
collectors, again fopseudojbb Although there is variation in the
fine detail, garbage collection times have the same behagor
the mark/cons ratios: the fixed-generational collectoregalty ex-
hibits higher garbage collection times than Appel, and Qtegaly
further lowers times, with relative differences diminisgitowards
larger heap sizes.

Figure 6 shows the total execution times feudojbb Recall
that total execution time comprises the time spent in garizad-
lection (previous figure), mutator or useful work time, andte+
barrier time (incurred within the mutator but not measurepas
rately). Comparison of Figure 5(a) and Figure 6(a) showsttie
fixed-generational collector has a higher total executiore than
the Appel collector, but the relative difference is not asnmunced
as for garbage collection time alone. This dilution of diffieces is
expected, because garbage collection time is considelegsthan
mutator time, especially for larger heaps, as shown in Eiguior
the Appel collector.

Program Description MH | AL
SPEC_201compress | Compresses and decompresses 20MB of data using the Lermpakhod. 19 | 215
SPEC_202 jess Expert shell system using NASA CLIPS. 12 | 508
SPEC_205 raytrace Raytraces a scene into a memory buffer. 15 | 252
SPEC_209.db Performs series of database functions on a memory residéatase. 22 | 192
SPEC_213javac Sun’s JDK 1.0.4 compiler. 28 | 639
SPEC_222 mpegaudio| MPEG audio decoder 10 | 153
SPEC_228 mtrt Graphics ray tracer 21 | 255
SPEC_228 jack Generates a parser for Java programs. 14 | 534
pseudojbb Fixed-work version of the SPEC JBB benchmark 59 | 667
pseudojBYTEmark Fixed-work version of the JavaBYTEmark benchmark 12 | 211

Table 1: Benchmark programs used in the experiment. MH is theminimum heap size needed to run the program using the Appel
collector, and AL is the total amount of data allocated by theprogram. Both are expressed in megabytes.

pseudojbb pseudojbb
3 T T T 35 T T
x Gen 5% - e Gen 5% ---e--
28 g Gen 10% —— Gen 10% —+—
T L6 § Gen 15% ---x--- | 3 At Gen 15% “<-x--- |
g - \ Gen 20% _ Gen 20% -@x-®
< 54 \ Gen 25% i L N . Gen 25% &
e~ Gen 30% g 25 o\e Soe Gen 30% -—-m— |
g 22 LR Gen 40% . s ; et Geng0% ---0 -
K Gen 50%.. <-4 ° . . -
® 2 Gen 60% -4/ = o
2 18 R g2 K
= '~‘ . o
g 16 K g 15
S 1.4 R o
2 O\ o
S 12 1 N
1 ¥
08 Il Il Il Il Il Il 05 Il Il Il Il Il Il
1 1.25 15 2 25 3 1 1.25 15 2 25 3
Heap size relative to minimum heap size (log) Heap size relative to minimum heap size (log)
(a) Generational collector (a) Generational collector
pseudojbb pseudojbb
2 T T T 2.2
. OF 5% e
1.8 OF 10% —+— 2 1
] OF 15% ---x--- 18
g 16 OF 20% - | S .
OF 25% -8 a 4
2 14 x OF 30% — = | g 16
@ OF 40% ---o-- o 14 o
g 12 ; OF 500 -6 -
= OF 60% - 2 12]
S 1 K/% 1 5
K ‘~ ! - S
S 08 sy A K = @
@ > € 0.8
g 06 ; Q 06
x
g 0.4 0.4
0.2 0.2 *
0 0 L
1 1.25 1.5 2 25 3 1 1.25 15 2 25 3
Heap size relative to minimum heap size (log) Heap size relative to minimum heap size (log)
(b) Older-First collector (b) Older-First collector

Figure 4: Mark/cons ratio: pseudojbb. Figure 5: Garbage collection time: pseudojbb.

pseudojbb
1.3 T T T
Gen 5% ----e--
A Gen 10% —+—
1.25] Gen 15% —-----
I} R A Gen 20% ---%---
=3 L Ve Gen 25% &
< 12 s : Gen 30% --®- |
i<} "X e..a Gen 40% ---o--
9 115 o Gen50% ----&--- |
g \4\ e Gen 60% -
o 3 " .
[
qé 1.1 \g\’—;.‘ gee
= WX,
S 105 N ¥ Ny
1 e X
9
095 | | | | | |
1 1.25 1.5 2 25 3
Heap size relative to minimum heap size (log)
(a) Generational collector
pseudojbb
L2 s ‘ OF 5% e
OF 10% —+—
_ 11 A A
“é E IR
< ~ = < =S
g bogw = ik
I . - . e A -
= /;/ OF 60% -+~
8 09 -
3 2
= 08 e
5 2
]
- 0.7 /g
06 | | | | | |
1 1.25 1.5 2 25 3
Heap size relative to minimum heap size (log)
(b) Older-First collector
Figure 6: Total execution time: pseudojbb.
pseudojbb
0.5 T T T
Appel —+—
0.45
oal |
g omo
s 03
e 0.25
£ o2 K
8 o015
0.1 \’_"\‘\

0.05

Figure 7: GC time as fraction of total execution time (Appel

1 1.25 1.5 2 25 3
Heap size relative to minimum heap size (log)

collector): pseudojbb.

Comparison of Figure 5(b) and Figure 6(b) shows that thegang
of heap sizes at which the total execution time of the OldestF
collector is below that of the Appel collector (1-1.6) is uedd
with respect to the corresponding range for garbage caletines
alone (1-2.5). This result is explained by an unequal domtign
of write-barrier times: OF must record more pointer stotemnt
generational collectors, and its write barrier implemgéatais not
as efficient.

To demonstrate these differences, we take as a case stuelythe
ecution ofpseudojbbin a heap of size 74 (relative heap siz#.25),
comparing the Appel collector and the OF collector with vawd
size 10%. Total execution times are 42.035s (OF) and 45 .(5s
pel), giving the ratio 0.93 (as in Figure 6(b)). Garbageexilbn
times are 5.148s (OF) and 9.378s (Appel), giving the rat® Qas
in Figure 5(b)). Mark/cons ratios are 0.173 (OF) and 0.33p@),
giving the ratio 0.52 (as in Figure 4(b)). Now we look at peint
maintenance costs. In each case, 98.2 million write barfeyde
in Figure 3 or fig:write-barrier-address-order) were exedu The
number of interesting pointers, which must be remembesgei 2i4
million for OF, but only 2.59 million for the Appel collectpgiv-
ing aratio of 2.41. A further difference arises at garbagkection
time, when remembered pointers with target in the collecégibn
are processed. In OF, a total of 10.32 million rememberedtps
are processed, but only 2.59 million for the Appel collectiving
a ratio of 3.99. A further difference is in the number of gayba
collections; OF performs 97 collections, the Appel colbecss.
Although a larger number of collections may be good for reduc
ing pause time (Section 4.3), it increases the executioe, tgimce
stacks must be scanned more often. Here is the tradeoff wee hav
made. The flexible choice of garbage collection region asHmas
resulted in having to record approximately 2.5 times moiiatpes
at write barriers, and to process approximately 4 times rpoiet-
ers at garbage collection time; 14% more time is spent irkstac
scanning and other GC startup overhead. In spite of thessurezh
factors, and the disadvantage of a slower write barriett ‘fiash”
which we could not directly measure, the total executioretiior
OF is 7% lower, thanks to a halving of the mark/cons ratio.theo
program runsdhb) we noticed that OF achieved improvements that
we could not explain entirely as a tradeoff between copyind a
pointer-maintenance costs, and that are most likely a cpesee
of improved cache performance. A detailed study of comperat
cache behavior of these garbage collection algorithms ava \ir-
tual machine is called for but beyond the scope of the pressr.

4.2 Total Time and Mark/Cons Results for All
Benchmarks

We now present total execution time data for all 10 benchmark
For each benchmark, we summarize generational collectaita
a single plot line, using the best possible nursery sizedohdeap
size. Similarly, we present the best OF window size for eagph
size. Automatically or adaptively choosing these regiaesis a
very challenging problem that we do not explore here. Fig@ére
10 present these two results together with the semi-spdleetoo,
and normalize them with respect to the total execution tiftb®
Appel collector.

Performance results, namely total execution times, anerisur
ingly favorable to the Older-First collector. An earlieudy based
on fully accurate garbage collection traces and faithfodugation
[14] found that the Older-First collector's mark/cons oatias oc-
casionally as low as one-tenth that of the fixed-generalticoibec-
tor using the best configuration of each. In such cases, tiuy st
predicted, according to an estimate of the write-barrietathat
total memory managemenbsts could be a factor of two to three

SPEC _201_compress (Auto Best Config)

SPEC _213_javac (Auto Best Config)

2 T T T T
12 T T T T X §S —mX-—-
SS ——-X-—- 1.9 \\><~ gen —-m-—
1.15 s gen — = 18 ‘X of
' X / of —— 3 b N
T \ / S 47 \
I N g
\ Sl om-n o i
2 105 X o . s ° .
o RO | % 15
g 1 o e 14
o ’ W o
£ L <
£ 095 £ 13
= 8 1.2]
g e
g 09 7 11
0.85 1
09 Il Il Il Il Il Il
0.8 I " ‘25 1‘5 2‘ 2‘5 é 1 125 15 2 25 3
T N e 7 Heap size relative to minimum heap size (log)
Heap size relative to minimum heap size (log)
. . SPEC _222_mpegaudio (Auto Best Config)
SPEC _202_jess (Auto Best Config) 13
35 : : : o T T T T
SS X
gen —=— 1.25
3 X of —— | 5
5 N\ o 12
E e, <
< 25 X 2 115
e . o
g T E
g 2 e 3 M
[N o
® £ 105
£ =
= 15 <
E L 35 S N '2 !
o -
i
1 0.95
‘ ‘ ‘ ‘ ‘ ‘ Og Il Il Il Il Il Il
05 125 15 2 25 3 ! L2 15 2 25 8
T N . o Heap size relative to minimum heap size (log)
Heap size relative to minimum heap size (log)
. SPEC _227_mtrt (Auto Best Config)
SPEC _205_raytrace (Auto Best Config) 24
2.2 T T ' ‘ ‘ ss ”‘—x———
X SS —-x--- 22 N gen —-m-—
N gen —-m-) R of
2 N of —+— %
ko] X g 2 N
g 1.8 J‘ hN < X
< X S 138 ™
e e © %
[=
z 16 S 3 16
T ~ o .
[o o b
o 14 S S E 14 e
£ — —j\-—n X = = RaSSURNG
T 1.2 Tom: > RV R ¢ ° 12 -y B ERII
S L S S B N X = [. B
= B . e
W SN—
08 Il Il Il Il Il Il
0.8 i N ‘25 1‘5 ‘2 2‘5 3‘ 1 1.25 1.5 2 25 3
T N . o Heap size relative to minimum heap size (log)
Heap size relative to minimum heap size (log)
. SPEC _228_jack (Auto Best Config)
SPEC _209_db (Auto Best Config) 2
T T T T T T
15 ; , M S5 X
SS ——-X-—- AN gen —-m—
K=o
en ——m— st f ——
14 o EHE _ 18 . o
z g
Q 13 ¥ 16 >
< \ 2 %
e \ X v T
%’ 2 % 14 \X X
- = Tl
© X
S 11 £ n X
® S 12 L %
= E \.,.,'f"‘l\ - X
3 1 ° T g m 1
.9 = 1 *\]
0.9 W
08 | | | | | |
0.8 . 5 : ! ! 1 1.25 15 2 25 3

Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)

Heap size relative to minimum heap size (log)

Figure 9: Total execution time, for best configuration (conin-

Figure 8: Total execution time, for best configuration. ued)

pseudojBYTEmark (Auto Best Config)

1.15 T T T T T
. m m SS ——x-—-
11 ; S m geof} TR o
3 1.05 X’Q’%‘l moee* -_'\\-/‘\l
o - N N x =X
= *xN, N e
< 1 x
e
2 o095 . —
< /}———«//‘F’K
2 09
[}
e 7/»\1,/4/
= 085
8
2 08 /
0.75 H—k\‘\‘/
07 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
pseudojbb (Auto Best Config)
1.6 T T T
SS ——x-—-
15 % gen ——m— —
X of ——
g 14 <
Z 13 T
o [}
5 12 o
2 LI T
% 11 b ~.
s 1 e S
£ W»%\%“%
=< 0.9
5 //
= 08 2/
0.7 4
06 Il Il Il Il

Figure 10: Total execution time, for best configuration (cotin-

ued).

Il
1.25 15 2 25 3
Heap size relative to minimum heap size (log)

lower with OF. That study made no prediction about total exec
tion times, but from these estimates and from Figure 7 wedcoul
extrapolate a reduction of between 2.5% (for larger heags$iand
20% (for small heap sizes). However, among the set of Srilallta
and Java program traces used in the earlier simulation ,stundly

a few showed such dramatic reductions in the mark/cons watio
OF; for many programs, it found no significant improvement of
mark/cons ratios and estimated there could be only margimal
provement in total collection cost.

In the present live measurements, we observe more corisisten
reductions in the mark/cons ratio (Figures 11-13) with thee®
First collector compared to the generational collectahalgh not
dramatically lower as in the earlier study. These improveisia
the mark/cons ratio, however, translate into measurallgct®ns
of total execution time (Figures 8-10). Of note is that onesalv
benchmarks, the mark/cons ratio of Older-First is lowemegan
that of the Appel collector which is tuned to minimize copyinn
7 out of 10 benchmarks¢mpressjess raytracedb, jack, pseudo-
jBYTEmark pseudojbl, the total execution time with the Older-
First collector is ultimately lower than with the Appel cattor for
a wide range of heap sizes.

4.3 Measurements of Pause Times

The design goal of OF is to improve throughput by reducing the
mark/cons ratio, however OF achieves low mark/cons ratitis w
small window sizes. Since the amount of data copied at edeh co
lection is bounded by the window size, previous work prestict
[14] that lower pause times would be an additional benefitrwhe
using OF as compared to the generational collectors which-oc
sionally collect the entire heap. Similar reasoning agpiceusing
a fixed-generational collector as compared with Appel, cerais
space collector. We measure pause times for OF, fixed, andlApp
in the Jikes RVM collector and we analyze them using the ricen
developed method ahutator utilization[4, 7].

Reporting the duration of each garbage collection pausgéma
eral timing run introduces a slight overhead. Whereas the te-
ported for each pause is accurate, over the execution ofrire e
program this reporting increases the total time. To aval ghob-
lem, separate pause-timing runs were performed, whereash
ing runs described in the preceding section only reportedithe
once, at the end of execution.

We first focus on maximum pause times and present an aggregate
picture ofall program runs (for all heap sizes and collector config-
urations) in Figure 14. Each scatter point corresponds iagies
program run, and the marks distinguish the runs of generatio
OF, Appel, and the semi-space collector. The horizontatdinate
gives the longest pause time incurred in the run, and théceaért
gives the mutator utilization averaged over the entire ren, the
fraction of total execution time spent outside the garbalector.

The semi-space collector points form a vertical band about 3
wide on the logarithmic scale, which is expected given that t
span of heap sizes is 3.25. The shortest maximum pause times
come from the generational collector when the heap is se tuat
it never performs a full heap collection. Most generatiar@lec-
tor runs incur some long pauses when it collects the nursery t
gether with the older generation. The Appel collector hasesof
the highest mutator utilization scores, but it too has higiximum
pause times for major collections. The Older-First cobegtoints
are clustered in the favorable region of high mutator witiian and
low maximum pause times, but there are also a number of ruhs wi
very long pause times.

A survey of maximum pause times does not capture the pause be-
havior of a collector completely. For interactive (or réiate) use

Mark/cons ratio relative to Appel Mark/cons ratio relative to Appel

Mark/cons ratio relative to Appel

Mark/cons ratio relative to Appel

SPEC _201_compress (Auto Best Config)

3 T T
25 1
2 / 1 i
/ i \ !
X ! u i
L / U Y
1 N AN w SN X
0.5 \‘/\j{/ v*\/¢\/f
0 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _202_jess (Auto Best Config)
8 T T
SS Jrx—-
7 gen fom— |
of /—+—
X=X [
X / \
6 Fosg Al i v
AN X ///)(\\ FARN />’< \\
5 “ b S o
Y \5(/ X
4 \\
3
/!
2 \
.{/‘;.\I’ .—{7.\\I><l»7-.//‘\ f/. \‘-
1 s,
4*/'\"—"“’*\»»/ A
0 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _205_raytrace (Auto Best Config)
8 T
SS ——x-—-
7 + gen —-m— |
\ of ——
1
5
P)
5 o/ o/ N
LS
2 o Lo "
.{\'/ "I—;.,/l\i/ ey l\\'/
1 i s
w W
0 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _209_db (Auto Best Config)
6 b\(T T
Ay SS —-X---
X X gen —-m-—
5 Nt of —+—
\XI \X />,<\\
4 \\ // X\
3 Xee RN
X N
N L
2 LN - - - ’ N
= . ; “u 7 “m-a u
] g
1 e A~ A
M‘/ \o\/w ~
0 Il Il Il Il Il Il
1 1.25 15 2 25 3

Heap size relative to minimum heap size (log)

Figure 11: Mark/cons ratio, for best configuration.

Mark/cons ratio relative to Appel Mark/cons ratio relative to Appel Mark/cons ratio relative to Appel

Mark/cons ratio relative to Appel

SPEC _213_javac (Auto Best Config)

4 T T T T
as SS —-X-—-
X, ah gen —-m-
3.5 vz g SNy of ——
X\
3 A
b X\X/X\ s
25 oV
2 X
N
TE- - g h .
15 g b
1 PR— ' AR
T \
05 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _222_mpegaudio (Auto Best Config)
2.2 T T
A
2 SN .
X om
1.8 e
16 x/ jO o
14 \\
1.2 / \
1 \
0.8
0.6
04 Il Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _227_mtrt (Auto Best Config)
6 T T T
SS ——x-—-
o X gen —-m--
5 . /// ‘\ of ——
e xS
4] \ o X
3 M L e
bl
2 | - - \ P RN
R . et .
! \\""\4—’*’*’4\’/‘
O Il Il Il Il Il
1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)
SPEC _228_jack (Auto Best Config)
3.5 T T T
SS ——x-—-
gen --m-
3 - of —+—]
y e X \X”**x\
25 1 % < ke
2 A
X
. m—E-m
15 P L'\\l>-l».—/". AN |
-
1 \.\\/_‘\/L\o\\
05 Il Il Il Il Il Il

1 1.25 15 2 25 3
Heap size relative to minimum heap size (log)

Figure 12: Mark/cons ratio, for best configuration (continued).

Figure 13:

Mutator Utilization Avg.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
10000

Mark/cons ratio relative to Appel

Mark/cons ratio relative to Appel

25

15

0.5

4.5

3.5

25

15

0.5

pseudojBYTEmark (Auto Best Config)

T T T T T
§§ X
- gen —-m-—
" of ——
PN -
i \ AR
- \
P] i [] o .
a <
/ L] .
/
. /
[= !
!
~n X .
X X x x

1.25 1.5 2 25 3
Heap size relative to minimum heap size (log)

pseudojbb (Auto Best Config)

Mark/cons ratio, for best configuration (continued).

Il
1.25 15 2 25 3
Heap size relative to minimum heap size (log)

Gen

SemiSpace

! !

100000 1e+06
Maximum pause time (microseconds)

1le+07

Figure 14: Mutator utilization vs. maximum pause time, all
program runs.

it is important for the mutator to be able to make progressiwit
any given period, and therefore it is important that garbagjkec-
tion pauses do not occur in clusters. To quantify this pregjreve
examine all time intervals within a program execution. We that
minimum mutator utilizatioor MMU for interval lengthw is m if
for all intervals of length equal to or greater tham the mutator
utilization in the interval is at leash.2

MMU plots are shown in Figures 15-17 for all 10 benchmarks,
at the same relative heap size for each, twice the minimurp hea
size. For the fixed-generational collector, we show a retasive
well-performing nursery size of 15%, and a window of the same
size for OF.

For six of the 10 benchmarkspmpressjess andraytrace mpe-
gaudiq pseudojBYTEmarkandpseudojbbthe Older-First collec-
tor achieves both a higher average mutator utilizatisim{ercept)
and a lower maximum pausg-intercept) than the Appel collector,
and its MMU curve is everywhere above the Appel collectoreur
For pseudojbb there is a fivefold reduction in maximum pause
time. In addition, fomtrt, the Older-First collector has higher mu-
tator utilization and a lower maximum pause, but for a midge
of pauses the Appel collector has greater MMU. Jemacthere is
little difference among collectors with respect to maximpause
time, and the Older-First collector comes close to Appehwi-
spect to average mutator utilization; however, its MMU &uim
between the extremes is markedly lower than the Appel doltec
curve. Fordb, the Appel collector is the best both in terms of
throughput and responsiveness. Finghygk is an aberration with
the semi-space collector having the smallest maximum pamse
we must investigate this further.

Note that none of the collectors we discuss provide any kind o
real-time guarantee. Therefore, these results are onigatide of
actual behavior, insofar as the benchmarks are represerétrue
workloads.

5. SUMMARY

We present a firstimplementation of the Older-First colledh-
side a Java virtual machine. We evaluate it against its abtom-
petitor, the fixed-size nursery generational collectomval as the
Appel variable-size nursery generational collector. la domain
of throughput metrics, we find that the Older-First collegtields
lower mark/cons ratios than the fixed-size nursery geraraticol-
lector and is also lower than the Appel collector for a ranfjiene
portant, relatively small, heap sizes, across the SPECpnthy
mark suite. Moreover, this result is true of total prograrecxion
times, though the improvement over the Appel collector igene
more than 30%. In the domain of pause-time metrics, we found
that for many benchmarks, though not all, the Older-Firdiece
tor achieves significantly lower maximum pause times tharege
ational collectors.

We believe better implementations of OF are possible. For in
stance, profile-driven pretenuring provides immediateowements
to this basic collector organization [6]. We hope eveniutlbuild
OF in a 64-bit environment, in which OF will have the same fast
write barrier as the generational collectors. The questicadap-
tive tuning of window size and other heap configurations iema
open, as well as generalizations of the Older-First windation

policy.

2This formulation is exactly as in [4]. Itis slightly diffen& from
[7] in that MMU curves are necessarily monotone increasing.

le+08

le+08

le+07

SPEC _201_compress SPEC _213_javac
1 1
Appel Appel
OF - OF -
Gen -------- Gen --------
0.8 [- SemiSpace 0.8 - SemiSpace 1
0.6 / 0.6 |
o 7 =)
S / S
s / s
0.4 0.4
02 | 02|
0 Il L Il Il 0 Il s
100000 1le+06 le+07 1le+08 100000 1le+06 1le+07 le+08
Granularity (microseconds) (log) Granularity (microseconds) (log)
SPEC _202_jess SPEC _222_mpegaudio
1 1
Appel Appel
OF - OF -
Gen Gen --------
0.8 [- SemiSpace 0.8 - SemiSpace
0.6 0.6 |
) o)
= =
= =
0.4 04 | I
02| f o2t 7
ol / | | oL / i | |
100000 1le+06 le+07 1le+08 100000 1e+06 1le+07 le+08
Granularity (microseconds) (log) Granularity (microseconds) (log)
SPEC _205_raytrace SPEC _227_mtrt
1 1n
Appel Appel
OF - OF -
Gen Gen
0.8 - SemiSpace 0.8 - SemiSpace
0.6 0.6 |
) o)
= =
= =
0.4 - B 0.4
02+ ‘ 02+
ol [AR I ol A I I
100000 1le+06 le+07 1le+08 100000 1e+06 1le+07
Granularity (microseconds) (log) Granularity (microseconds) (log)
SPEC _209_db SPEC _228_jack
1 1
Appel Appel
OF - OF -
Gen -------- Gen --------
0.8 [- SemiSpace 0.8 - SemiSpace
0.6 0.6 |
) o)
= =
= =
0.4 - 0.4
0.2 0.2
ou L ol S
100000 1le+06 le+07 1e+08 100000 1e+06
Granularity (microseconds) (log) Granularity (microseconds) (log)
Figure 16: MMU (continued).

Figure 15: MMU.

pseudojBYTEmark

Gen
0.8 |- SemiSpace

MMU

02 /

oL / S)
100000 1le+06 1e+07
Granularity (microseconds) (log)

le+08

pseudojbb

0.8 |- SemiSpace

0.6 |

MMU

04

0.2

1le+06 1e+07
Granularity (microseconds) (log)

0
100000 le+08

Figure 17: MMU (continued).

6. ACKNOWLEDGEMENTS

We thank Ben Andrews for help analyzing assembly code se-
quences, and the anonymous reviewers for their comments tha

helped us strengthen the paper.

7. REFERENCES

[1] ALPERN, B., ATTANASIO, C. R., @cCCHI, A., LIEBER,
D., SMITH, S., Nco, T., BARTON, J. J., HUMMEL, S. F.,

SHEPERD, J. C.,AND MERGEN, M. Implementing Jalapefio

in Java. InProceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA '99), Denver,
Colorado, USA, November 1-5, 19@09ctober 1999),

vol. 34(10) ofACM SIGPLAN NoticesACM Press,

pp. 314-324.

[2] ALPERN, B., ATTANASIO, D., BARTON, J., BURKE, M.,
CHENG, P., Hol, J., GoccHI, A., FINK, S., GROVE, D.,
HIND, M., HUMMEL, S., LIEBER, D., LITVINOV, V.,
NGO, T., MERGEN, M., SARKAR, V., SERRANO, M.,
SHEPHERD, J., SMITH, S., SREEDHAR, V., SRINIVASAN,
H., AND WHALEY, J. The Jalapefio virtual machinBM
Systems Journal 39({freb. 2000).

[3] APPEL A. W. Simple generational garbage collection and

fast allocationSoftware Practice and Experience, 10
(1989), 171-183.
[4] BLACKBURN, S. M., DNES, R., MCKINLEY, K. S.,AND

Moss J. E. B. Beltway: Getting around garbage collection

gridlock. InProceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Implementation (PLDI{June 2002), ACM SIGPLAN
Notices, ACM Press. to appear.

BLACKBURN, S. M.,AND McKINLEY, K. S. In or out?
Putting write barriers in their place. Proceedings of the
Third International Symposium on Memory Management,
ISMM '02 (Berlin, Germany, June 2002), vol. 37 AEM
SIGPLAN NoticesACM Press.

BLACKBURN, S. M., SNGHAI, S., HERTZ, M.,

McKINLEY, K. S.,AND Moss J. E. B. Pretenuring for
Java. InProceedings of SIGPLAN 2001 Conference on
Object-Oriented Programming, Languages, & Applications
(Tampa, FL, Oct. 2001), vol. 36(10) #CM SIGPLAN
Notices ACM Press, pp. 342—-352.

CHENG, P.,AND BLELLOCH, G. A parallel, real-time
garbage collector. IRroceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Snowbird, Utah, USA, June
20-22, 200)(Snowbird, UT, May 2001), vol. 36(5) GACM
SIGPLAN NoticesACM Press, pp. 125-136.

DIECKMAN, S.,AND HOLZLE, U. A study of the allocation
behavior of the SPECjvm98 Java benchmark&EGOOP’98
- Object-Oriented Programming, 12th European Conference,
Brussels, Belgium, July 20-24, 1998, Proceedi(i98),

E. Jul, Ed., vol. 1445 of ecture Notes in Computer Science
Springer-Verlag, pp. 92-115.

LIEBERMAN, H., AND HEWITT, C. E. A real-time garbage
collector based on the lifetimes of objedBommunications
of the ACM 26(6)1983), 419-429. Also report TM—184,
Laboratory for Computer Science, MIT, Cambridge, MA,
July 1980 and Al Lab Memo 569, 1981.

MAY, C., SLHA, E., SMPSON, R.,AND WARREN, H.,
Eds.The PowerPC Archiecture: A Specification for a New
Family of RISC Processarsecond ed. Morgan Kaufmann,
San Francisco, California, 1994.

STANDARD PERFORMANCEEVALUATION CORPORATION
SPECjvm98 Documentatiprelease 1.03 ed., March 1999.
STANDARD PERFORMANCEEVALUATION CORPORATION
SPECjbb2000 (Java Business Benchmark) Documentation
release 1.01 ed., 2001.

STEFANOVIC, D. Properties of Age-Based Automatic
Memory Reclamation AlgorithmBhD thesis, University of
Massachusetts, Amherst, MA, Feb. 1999.

STEFANOVIC, D., MCKINLEY, K. S.,AND Moss J. E. B.
Age-based garbage collection.Pnoceedings of SIGPLAN
1999 Conference on Object-Oriented Programming,
Languages, & ApplicationfDenver, CO, Oct. 1999),

vol. 34(10) ofACM SIGPLAN NoticesACM Press,

pp. 379-381.

UNGAR, D. Generation scavenging: A non-disruptive high
performance storage reclamation algorithmPhaceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
EnvironmentgPittsburgh, Pennsylvania, Apr. 1984),
SIGPLAN Notices 1% (May 1984), pp. 157-167.

